Detection of antibiotic resistance and classical enterotoxin genes in coagulase -negative staphylococci isolated from poultry in Poland

Open access

Abstract

Introduction: The study sought to characterise antimicrobial resistance among coagulase-negative Staphylococcus (CNS) species recovered from broiler chickens and turkeys in Poland including the presence of 12 antimicrobial resistance genes and five classical genes of staphylococcal enterotoxins. Material and Methods: A panel of 11 antimicrobial disks evaluated the phenotypic sensitivity of the tested strains to antibiotics. Five multiplex PCR assays were performed using primer pairs for specific detection of antibiotic resistance genes and staphylococcal enterotoxin A to E genes. Results: Selected antimicrobial agent susceptibility testing revealed 100% of such in in vitro conditions to cefoxitin among strains of Staphylococcus sciuri and S. chromogenes. The blaZ (for ß-lactam) and mecA (for methicillin resistance) genes were in 58.3% and 27.5% of strains, respectively. Among genes resistant to tetracyclines, tetK was most frequent. Fewer (CNS) strains showed genes resistant to macrolides, lincosamides, and florfenicol/chloramphenicol. Multiplex PCR for classical enterotoxins (A-E) detected the see gene in two S. hominis strains, while the seb gene producing enterotoxin B was found in one strain of S. epidermidis. Conclusion: CNS strains of Staphylococcus isolated from poultry were either phenotypically or genotypically multidrug resistant. Testing for the presence of the five classical enterotoxin genes showed that CNS strains, as in the case of S. aureus strains, can be a source of food intoxications.

1. Betley M.J., Mekalanos J.J.: Nucleotide sequence of the type A staphylococcal enterotoxin gene. J Bacteriol 1988, 170, 34–41.

2. Boamah V.E., Agyare C., Odoi H., Adu F., Gbedema S.Y., Dalsgaard A.: Prevalence and antibiotic resistance of coagulasenegative staphylococci isolated from poultry farms in three regions of Ghana. Infect Drug Resist 2017, 10, 175–183.

3. Bystroń J., Molenda J., Bania J., Kosek-Paszkowska K., Czerw M.: Occurrence of enterotoxigenic strains of Staphylococcus aureus in raw poultry meat. Pol J Vet Sci 2005, 8, 37–40.

4. Clinical and Laboratory Standards Institute: Performance Standards for Antimicrobial Susceptibility Testing; 25th Informational Supplement. CLSI document M100-S25. Wayne, 2015, 35, pp. 64–72.

5. Cremonesi P., Perez G., Pisoni G., Moroni P., Morandi S., Luzzana M., Brasca M., Castiglioni B.: Detection of enterotoxigenic Staphylococcus aureus isolates in raw milk cheese. Lett Appl Microbiol 2007, 45, 586–591.

6. El-Nagar S., El-Azeem M.W.A., Nasef S.A., Sultan S.: Prevalence of toxigenic and methicillin resistant staphylococci in poultry chain production. J Adv Vet Res 2017, 7, 33–38.

7. Garofalo C., Vignaroli C., Zandri G., Aquilanti L., Bordoni D., Osimani A., Clementi F., Biavasco F.: Direct detection of antibiotics resistance genes in specimens of chicken and pork meat. Int J Food Microbiol 2007, 113, 75–83.

8. Hanssen A.M., Ericson Sollid J.U.: SCCmec in staphylococci: genes on the move. FEMS Immunol Med Microbiol 2006, 46, 8–20.

9. Just N., Kirychuk S., Gilbert Y., Létourneau V., Veillette M., Singh B., Duchaine C.: Bacterial diversity characterization of bioaerosols from cage-housed and floor-housed poultry operations. Environ Res 2011, 111, 492–498.

10. Kao S.J., You I., Clewell D.B., Donabedian S.M., Zervos M.J., Petrin J., Shaw K.J., Chow J.W.: Detection of the high-level aminoglycoside resistance gene aph(2″)-Ib in Enterococcus faecium. Antimicrob Agents Chemother 2000, 44, 2876–2879.

11. Kehrenberg C., Schwarz S.: Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob Agents Chemother 2006, 50, 1156–1163.

12. Long K.S., Poehlsgaard J., Kehrenberg C., Schwarz S., Vester B.: The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptograrnin A antibiotics. Antimicrob Agents Chemother 2006, 50, 2500–2505.

13. Magiorakos A.P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., Paterson D.L., Rice L.B., Stelling J., Struelens M.J., Vatopoulos A., Weber J.T., Monnet D.L.: Multidrug-resistant, extensively drug-resistant and pandrugresistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 201, 18, 268–281.

14. Malhotra-Kumar S., Lammens C., Piessens J., Goossens H.: Multiplex PCR for simultaneous detection of macrolide and tetracycline resistance determinants in streptococci. Antimicrob Agents and Chemother 2005, 49, 4798–4800.

15. Marek A., Stępień-Pyśniak D., Pyzik E., Adaszek Ł., Wilczyński J., Winiarczyk S.: Occurrence and characterization of Staphylococcus bacteria isolated from poultry in Western Poland. Berl Munch Tierarztl Wochenschr 2016, 129, 147–152.

16. McNamee P.T., Smyth J.A.: Bacterial chondronecrosis with osteomyelitis (“femoral head necrosis”) of broilers chickens: a review. Avian Pathol 2000, 29, 253–270.

17. Munger L.L., Kelly B.L.: Staphylococcal granulomas in a Leghorn hen. Avian Dis 1973, 17, 858–860.

18. Murakami K., Minamide W., Wada K., Nakamura E., Teraoka H., Watanabe S.: Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. J Clin Microbiol 1991, 29, 2240–2244.

19. Norton R.A., Bilgili S.F., McMurtrey B.C.: A reproducible model for the induction of avian cellulitis in broiler chickens. Avian Dis 1997, 41, 422–428.

20. Ostyn A., De Buyser M.L., Guillier F., Groult J., Felix B., Salah S., Delmas G., Hennekinne J.A.: First evidence of a food poisoning outbreak due to staphylococcal enterotoxin type E, France, 2009. Euro Surveill 2010, 15, pii: 19528. http://www.eurosurveillance.org.

21. Otto M.: Staphylococcus epidermidis – the “accidental” pathogen. Nat Rev Microbiol 2009, 7, 555–567.

22. Roberts M.C., Sutcliffe J., Courvalin P., Jensen L.B., Rood J., Seppala H.: Nomenclature for macrolide and macrolidelincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother 1999, 43, 2823–2830.

23. Ross J.I., Eady E.A., Cove J.H., Baumberg S.: Identification of a chromosomally encoded ABC-transport system with which the staphylococcal erythromycin exporter MsrA may interact. Gene 1995, 153, 93–98.

24. Shimizu A., Ozaki J., Kawano J., Saitoh Y., Kimura S.: Distribution of Staphylococcus species on animal skin. J Vet Med Sci 1992, 54, 355–357.

25. Simjee S., McDermott P.F., White D.G., Hofacre C., Berghaus R.D., Carter P.J., Stewart L., Liu T., Maier M., Maurer J.J.: Antimicrobial susceptibility and distribution of antimicrobial-resistance genes among enterococcus and coagulase-negative Staphylococcus isolates recovered from poultry litter. Avian Dis 2007, 51, 884–892.

26. Stępień-Pyśniak D., Wilczyński J., Marek A., Śmiech A., Kosikowska U., Hauschild T.: Staphylococcus simulans associated with endocarditis in broiler chickens. Avian Pathol 2017, 46, 44–51.

27. Toomey N., Bolton D., Fanning S.: Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs. Res Microbiol 2010, 161, 127–135.

28. Vakulenko S.B., Donabedian S.M., Voskresenskiy A.M., Zervos M.J., Lerner S.A., Chow J.W.: Multiplex PCR for detection of aminoglycoside resistance genes in enterococci. Antimicrob Agents Chemother 2003, 47, 1423–1426.

29. von Eiff C., Peters G., Heilmann C.: Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2002, 2, 677–685.

30. Wang Y., He T., Schwarz S., Zhao Q., Shen Z., Wu C., Shen J.: Multidrug resistance gene cfr in methicillin-resistant coagulasenegative staphylococci from chickens, ducks, and pigs in China. Int J Med Microbiol 2013, 303, 84–87.

31. Witte W.: Antibiotic resistance in gram-positive bacteria: epidemiological aspects. J Antimicrob Chemother 1999, 44, 1–9.

Journal of Veterinary Research

formerly Bulletin of the Veterinary Institute in Pulawy

Journal Information


IMPACT FACTOR J Vet Res 2018: 0,829
5-year IMPACT FACTOR: 0,938

CiteScore 2018: 0.68

SCImago Journal Rank (SJR) 2018: 0.291
Source Normalized Impact per Paper (SNIP) 2018: 0.501

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 110 110 110
PDF Downloads 56 56 56