Characterisation of thrombocytes in Osteichthyes

Open access


Thrombocytes in vertebrates other than mammals, inter alia in fish, are analogues of platelets in mammals. In Osteichthyes, these cells take part in haemostatic processes, including aggregation and release reactions in cases of blood vessel damage, and in the immune response development as well. This paper discusses the development of thrombocytes in Osteichthyes, taking into account the need to make changes to the concept of grouping progenitor cells as suggested in the literature. The following pages present the morphological and cytochemical properties of thrombocytes as well as their defence functions, and also point out differences between thrombocytes in fish and platelets in mammals. The paper further highlights the level of thrombocytes’ immune activity observed in fish and based on an increased proportion of these cells in response to antigenic stimulation, on morphological shifts towards forms characteristic of dendritic cells after antigenic stimulation and on the presence of surface structures and cytokines released through, inter alia, gene expression of TLR receptors, MHC class II protein-coding genes and pro-inflammatory cytokines. The study also points out the need to recognise thrombocytes in Osteichthyes as specialised immune cells conditioning non-specific immune mechanisms and playing an important role in affecting adaptive immune mechanisms.

1. Bianchi M.B., Jerônimo G.T., Pádua S.B., Satake F., Ishikawa M.M., Tavares-Dias M., Martins M.L.: The hematological profile of farmed Sorubim lima: reference intervals, cell morphology and cytochemistry. Vet Arhiv 2014, 84, 677–690.

2. Burrows A.T., Fletcher T.C., Manning M.J.: Haematology of the turbot, (Psetta maxima, L.): ultrastructural, cytochemical and morphological properties of peripheral blood leucocytes. J Appl Ichthyol 2001, 17, 77–84.

3. da Silva W.F., Egami M.I., Santos A.A., Antoniazzi M.M., Silva M., Gutierre R.C., Paiva M.J.R.: Cytochemical, immunocytochemical, and ultrastructural observations on leukocytes and thrombocytes of fat snook (Centropomus parallelus). Fish Shellfish Immunol 2011, 31, 571–577.

4. Ferdous F., Scott T.R.: A comparative examination of thrombocyte/platelet immunity. Immunol Letters 2015, 163, 32–39.

5. Fink I.R., Ribeiro C.M., Forlenza M., Taverne-Thiele A., Rombout J.H., Savelkoul H.F., Wiegertjes G.F.: Immune-relevant thrombocytes of common carp undergo parasite-induced nitric oxide-mediated apoptosis. Dev Comp Immunol 2015, 50, 146–154.

6. Glass T.J., Lund T.C., Patrinostro X., Tolar J., Bowman T.V., Zon L.I., Blazar B.R.: Stromal cell-derived factor-1 and hematopoietic cell homing in an adult zebrafish model of hematopoietic cell transplantation. Blood 2011, 118, 766–774.

7. Hill D.J., Rowley A.F.: Are integrins involved in the aggregatory and phagocytic behaviour of fish haemostatic cells? J Exp Biol 1998, 201, 599–608.

8. Huising M.O., van Schijndel J.E., Kruiswijk C.P., Nabuurs S.B., Savelkoul H.F., Flik G., Verburg-van Kemenade B.M. The presence of multiple and differentially regulated interleukin-12p40 genes in bony fishes signifies an expansion of the vertebrate heterodimeric cytokine family. Mol Immunol 2006, 43, 1519–1533. doi: 10.1016/j.molimm.2005.10.010.

9. Jaros J., Korytar T., Huong D.T., Weiss M., Köllner B.: Rainbow trout (Oncorhynchus mykiss) thrombocytes are involved in MHC II dependent antigen presentation. Fish Shellfish Immunol 2013, 34, 1657.

10. Katakura F., Katzenback B.A., Belosevic M.: Molecular and functional characterization of erythropoietin receptor of the goldfish (Carassius auratus L.). Dev Comp Immunol 2014, 45, 191–198.

11. Katakura F., Katzenback B.A., Belosevic M.: Recombinant goldfish thrombopoietin up-regulates expression of genes involved in thrombocyte development and synergizes with kit ligand A to promote progenitor cell proliferation and colony formation. Dev Comp Immunol 2015, 49, 157–169.

12. Katakura F., Sugie Y., Hayashi K., Nishiya K., Miyamae J., Okano M., Nakanishi T., Moritomo T.: Thrombopoietin (TPO) induces thrombocytic colony formation of kidney cells synergistically with kit ligand A and a non-secretory TPO variant exists in common carp. Dev Comp Immunol 2018, 84, 327–336.

13. Katzenback B.A., Karpman M., Belosevic M.: Distribution and expression analysis of transcription factors in tissues and progenitor cell populations of the goldfish (Carassius auratus L.) in response to growth factors and pathogens. Mol Immunol 2011, 48, 1224–1235.

14. Katzenback B.A., Katakura F., Belosevic M.: Goldfish (Carassius auratus L.) as a model system to study the growth factors, receptors and transcription factors that govern myelopoiesis in fish. Dev Comp Immunol 2016, 58, 68–85.

15. Kawamoto H., Ikawa T., Masuda K., Wada H., Katsura Y.: A map for lineage restriction of progenitors during hematopoiesis: the essence of the myeloid-based model. Immunol Rev 2010, 238, 23–36.

16. Kawamoto H., Katsura Y.: A new paradigm for hematopoietic cell lineages: revision of the classical concept of the myeloidlymphoid dichotomy. Trends Immunol 2009, 30, 193–200.

17. Khandekar G., Kim S., Jagadeeswaran P.: Zebrafish Thrombocytes: Functions and Origins. Adv Hematology 2012, ID 857058,

18. Kim S., Carrillo M., Radhakrishnan U.P., Jagadeeswaran P.: Role of zebrafish thrombocyte and non-thrombocyte microparticles in hemostasis. Blood Cell Mol Dis 2012, 48, 188–196.

19. Kobayashi I., Katakura F., Moritomo T.: Isolation and characterization of hematopoietic stem cells in teleost fish. Dev Comp Immunol 2016, 58, 86–94.

20. Kobayashi I., Moritomo T., Ototake M., Nakanishi T.: Isolation of side population cells from ginbuna carp (Carassius auratus langsdorfii) kidney hematopoietic tissues. Dev Comp Immunol 2007, 31, 696–707.

21. Kobayashi I., Saito K., Moritomo T., Araki K., Takizawa F., Nakanishi T.: Characterization and localization of side population (SP) cells in zebrafish kidney hematopoietic tissue. Blood 2008, 111, 1131–1137.

22. Köllner B., Fischer U., Rombout J.H.W.M., Taverne-Thiele J.J., Hansen J.D.: Potential involvement of rainbow trout thrombocytes in immune functions: a study using a panel of monoclonal antibodies and RT-PCR. Dev Comp Immunol 2004, 28, 1049–1062.

23. Lin H.F., Traver D., Zhu H., Dooley K., Paw B.H., Zon L.I., Handinet R.I.: Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood 2005, 106, 3803–3810. doi:10.1182/blood-2005-01-0179.

24. Nagasawa T., Nakayasu C., Rieger A.M., Barreda D.R., Somamoto T., Nakao M.: Phagocytosis by thrombocytes is a conserved innate immune mechanism in lower vertebrates. Front Immunol 2014, 5, 445.

25. Nagasawa T., Somamoto T., Nakao M.: Carp thrombocyte phagocytosis requires activation factors secreted from other leukocytes. Dev Comp Immunol 2015, 52, 107–111.

26. Ning Y.J., Lu X.J., Chen J.: Molecular characterization of a tissue factor gene from ayu: a pro-inflammatory mediator via regulating monocytes/macrophages. Dev Comp Immunol 2018, 84, 37–47.

27. Nombela I., Puente-Marin S., Chico V., Villena A.J., Carracedo B., Ciordia S., Mena M.C., Mercado L., Perez L., Coll J., Estepa A.: Identification of diverse defense mechanisms in trout red blood cells in response to VHSV halted viral replication. F1000 Research, 2017, 6, 1958. doi: 10.12688/f1000research.12985.1.

28. Ortega-Villaizan M.D.M.: The role of red blood cells in the immune response of fish.

29. Passer B.J., Chen C.H., Miller N.W., Cooper M.D.: Catfish thrombocytes express an integrin-like CD41/CD61 complex. Exp Cell Res 1997, 234, 347–353.

30. Pietretti D., Spaink H.P., Falco A., Forlenza M., Wiegertjes G.F.: Accessory molecules for Toll-like receptors in Teleost fish. Identification of TLR4 interactor with leucine-rich repeats (TRIL). Mol Immunol 2013, 56, 745–756.

31. Prasad G., Charles S.: Haematology and leucocyte enzyme cytochemistry of a threatened yellow catfish Horabagrus brachysoma (Gunther 1864). Fish Physiol Biochem 2010, 36, 435–443.

32. Rombout J.H.W.M., Koumans-van Diepen J.C.E., Emmer P.M., Taverne-Thiele J.J., Taverne N.: Characterization of carp thrombocytes with specific monoclonal antibodies. J Fish Biol 1996, 49, 521–531.

33. Rough K.M., Nowak B.F., Reuter R.E.: Haematology and leukocyte morphology of wild caught Thunnus maccoyii. J Fish Biol 2005, 66, 1649–1659.

34. Shigdar S., Cook D., Jones P., Harford A., Ward A.C.: Blood cells of Murray cod Maccullochella peelii peelii (Mitchell). J Fish Biol 2007, 70, 973–980.

35. Shigdar S., Harford A., Ward A.C.: Cytochemical characterisation of the leucocytes and thrombocytes from Murray cod (Maccullochella peelii peelii, Mitchell). Fish Shellfish Immunol 2009, 26, 731–736.

36. Stosik M.: Morphology and phagocytic activity of carp's thrombocytes, Cyprinus carpio L. Med Weter 1993, 49, 184–186.

37. Stosik M.: Thrombocyte number and their phagocytic activity in carp (Cyprinus carpio L.) of different age. Med Weter 1995, 51, 621–623.

38. Stosik M., Deptuła W.: Thrombocytes of fish. Med Weter 1992, 48, 556–558.

39. Stosik M., Deptuła W.: Studies on selected protective functions of thrombocytes and neutrophilic granulocytes in healthy and sick carp. Pol J Vet Sci 2000, 3, 219–225.

40. Stosik M., Deptuła W., Trávniček M.: Studies on number and on ingesting ability of thrombocytes in sick carps (Cyprinus carpio L.). Vet Med-Czech 2001, 46, 12–16.

41. Stosik M., Deptuła W., Trávniček M., Baldy-Chudzik K.: Phagocytic and bactericidal activity of blood thrombocytes in carps (Cyprinus carpio). Vet Med-Czech 2002, 47, 21–25.

42. Svoboda O., Stachura D.L., Machoňová O., Pajer P., Brynda J., Zon L.I., Traver D., Bartůněk P.: Dissection of vertebrate hematopoiesis using zebrafish thrombopoietin. Blood 2014, 124, 220–228.

43. Tavares-Dias M., Moraes F.R.: Morphological, cytochemical, and ultrastructural study of thrombocytes and leukocytes in neotropical fish, Brycon orbignyanus Valenciannes, 1850 (Characidae, Bryconinae). J Submicrosc Cytol Pathol 2006, 38, 209–215.

44. Tavares-Dias M., Ono E.A., Pilarski F., Moraes F.R.: Can thrombocytes participate in the removal of cellular debris in the blood circulation of teleost fish? A cytochemical study and ultrastructural analysis. J Appl Ichthyol 2007, 23, 709–712.

45. Ueda I.K., Egami M.I., Sasso W.S., Matushima E.R.: Cytochemical aspects of the peripheral blood cells of Oreochromis (Tilapia niloticus. Linnaeus, 1758) (Cichlidae, Teleostei): Part II. Brazilian J Vet Res Animal Sci 2001, 38, 273–277.

46. Zimmerman L.M., Vogel L.A., Edwards K.A., Bowden R.M.: Phagocytic B cells in a reptile. Biol Lett 2010, 6, 270–273. doi:10.1098/rsbl.2009.0692.

Journal of Veterinary Research

formerly Bulletin of the Veterinary Institute in Pulawy

Journal Information

IMPACT FACTOR J Vet Res 2017: 0.811

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.29
Source Normalized Impact per Paper (SNIP) 2017: 0.484


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 188 188 124
PDF Downloads 80 80 26