Histopathological evaluation of polycaprolactone nanocomposite compared with tricalcium phosphate in bone healing

Open access


Introduction: In recent years, the use of bone scaffolds as bone tissue substitutes, especially the use of such as hydroxyapatite and tricalcium phosphate, has been very popular. Today, the use of modern engineering techniques and advances in nanotechnology have expanded the use of nanomaterials as bone scaffolds for bone tissue applications.

Material and Methods: This study was performed on 60 adult male New Zealand rabbits divided into four experimental groups: the control group without any treatment, the second group receiving hydroxyapatite, the third group treated with β-tricalcium phosphate, and the fourth group receiving nanocomposite polycaprolactone (PCL) scaffold. In a surgical procedure, a defect 6 mm in diameter was made in a hind limb femur. Four indexes were used to assess histopathology, which were union index, spongiosa index, cortex index, and bone marrow.

Results: The results showed that nanocomposite PCL and control groups always had the respective highest and lowest values among all the groups at all time intervals. The histopathological assessment demonstrated that the quantity of newly formed lamellar bone in the nanocomposite PCL group was higher than in other groups.

Conclusion: All these data suggest that PCL had positive effects on the bone healing process, which could have great potential in tissue engineering and clinical applications.

1. Abedalwafa M., Wang F., Wang L., Li C.: Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev Adv Mater Sci 2013, 34, 123–140.

2. Ahmed I., Parsons A.J., Palmer G., Knowles J.C., Walker G.S., Rudd C.D.: Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite. Acta Biomater 2008, 4, 1307–1314.

3. Aminzare M., Amir E., Abbasi Z., Hassanzad Azare H., Hashemi M.: Evaluation of in vitro antioxidant characteristics of corn starch bioactive films impregnated with Bunium persicum and Zataria multiflora essential oils. Annual Res Rev Biol 2017, 15, 1–9.

4. Asti A., Gioglio L.: Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation. Int J Artif Organs 2014, 37, 187–205.

5. Azi M.L., Aprato A., Santi I., Junior M.J., Masse A., Joeris A.: Autologous bone graft in the treatment of post-traumatic bone defects: a systematic review and meta-analysis. BMC Musculoskeletal Disorders 2016, 17, 465–475.

6. Bae J.H., Song H.R., Kim H.J., Lim H.C., Park J.H., Liu Y., Teoh S.H.: Discontinuous release of bone morphogenetic protein-2 loaded within interconnected pores of honeycomb-like polycaprolactone scaffold promotes bone healing in a large bone defect of rabbit ulna. Tissue Eng 2011, 19, 2389–2397.

7. Bahareh Azimi B., Nourpanah P., Rabiee M., Arbab S.H.: Poly (ε-caprolactone) Fiber: an overview. J Eng Fibers Fabrics 2014, 9, 74–90.

8. Basu P., Sharan B.S., Kumar U.N., Manjubala I.: Polymer ceramic composite for bone regeneration application. Int J Chem Tech Res 2014, 16, 4038–4041.

9. Burg K.J.L., Porter S., Kellam J.F.: Biomaterial developments for bone tissue engineering. Biomaterials 2000, 21, 2347–2359.

10. Ciapetti G., Ambrosio L., Savarino L., Granchi D., Cenni E., Baldini N., Pagani S., Guizzardi S., Causa F., Giunti A.: Osteoblast growth and function in porous poly epsilon-caprolactone matrices for bone repair: a preliminary study. Biomaterials 2003, 24, 3815–3824.

11. Diba M., Kharaziha M., Fathi M.H., Gholipourmalekabadi M., Samadikuchaksaraei A.: Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue regeneration. Comp Sci Technol 2012, 72, 716–723.

12. Di Liddo R., Paganin P., Lora S., Dalzoppo D., Giraudo C., Miotto D., Tasso A., Barbon S., Artico M., Bianchi E., Parnigotto P.P., Conconi M.T., Grandi C.: Poly-ε-caprolactone composite scaffolds for bone repair. Int J Mol Med 2014, 34, 1537–1546.

13. Eftekhari H., Jahandideh A.R., Asghari A., Akbarzadeh A., Hesaraki S.: Assessment of polycaprolacton (PCL) nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits. Artif Cells Nanomed Biotechnol 2016, 30, 1–8.

14. Erisken C., Kalyon D.M., Wang H.: Functionally graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials 2008, 29, 4065–4073.

15. Grandi C., Di Liddo R., Paganin P., Lora S., Dalzoppo D., Feltrin G., Giraudo C., Tommasini M., Conconi M.T., Parnigotto P.P.: Porous alginate/poly (ε-caprolactone) scaffolds: preparation, characterization and in vitro biological activity. Int J Mol Med 2016, 27, 455–467.

16. Hench L.: Bioceramics: from concept to clinic. J Am Ceram Soc 1991, 74, 1487–1510.

17. Komaki H., Tanaka T., Chazono M., Kikuchi T.: Repair of segmental bone defects in rabbit tibiae using a complex of β-tricalcium phosphate, type I collagen, and fibroblast growth factor-2. Biomaterials 2006, 27, 5118–5126.

18. Lee J.Y., Son S.J., Son J.S., Kang S.S., Choi S.H.: Bone-healing capacity of PCL/PLGA/duck beak scaffold in critical bone defects in a rabbit model. Biomed Res Int 2016, ID 2136215, 1–10.

19. Lei B., Shin K.H., Noh D.Y., Koh Y.H., Choi W.Y., Kim H.E.: Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly (ε-caprolactone) polymer for bone tissue regeneration. J Biomed Mater Res B Appl Biomater 2012, 100, 967–975.

20. Mohammadi H., Hafezi M., Nezafati N., Hesaraki S., Nadernezhad A., Ghazanfari S.M.H., Sepantafar M.: Bioinorganics in bioactive calcium silicate ceramics for bone tissue repair: bioactivity and biological properties. J Ceram Sci Technol 2014, 5, 1–12.

21. Murphy C., Kolan K., Li W., Semon J., Day D., Leu M.: 3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineering. Int J Bioprint 2017, 3, 1–11.

22. Ogose A., Hotta T., Hatano H., Kawashima H., Tokunaga K., Endo N.: Histological examination of beta-tricalcium phosphate graft in human femur. J Biomed Mater Res 2002, 63, 601–604.

23. Rezaei A., Mohammadi M.R.: In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process. Mater Sci Eng C Mater Biol Appl 2013, 33, 390–396.

24. Roohani-Esfahani S.I, Lu Z.F., Li J.J., Ellis-Behnke R., Kaplan D.L., Zreiqat H.: Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Acta Biomater 2013, 8, 302–312.

25. Verrier S., Alini M., Alsberg E., Buchman S.R., Kelly D., Laschke M.W., Menger M.D., Murphy W.L., Stegemann J.P., Schütz M., Miclau T., Stoddart M.J., Evans C.: Tissue engineering and regenerative approaches to improving the healing of large bone defects. Eur Cells Mat 2016, 32, 87–110.

26. Vikingsson L., Sancho-Tello M., Ruiz-Saurí A., Martínez Díaz S., Gómez-Tejedor J.A., Gallego Ferrer G., Carda C., Monllau J.C., Gómez Ribelles J.L.: Implantation of a polycaprolactone scaffold with subchondral bone anchoring ameliorates nodules formation and other tissue alterations. Int J Artif Organs 2015, 38, 659–666.

27. Woodruff M.A., Hutmacher D.A.: The return of a forgotten polymer–polycaprolactone in the 21st century. Prog Polym Sci 2010, 35, 1217–1256.

28. Wu F., Liu C., O’Neill B., Wei J., Ngothai Y.: Fabrication and properties of porous scaffold of magnesium phosphate/polycaprolactone biocomposite for bone tissue engineering. Appl Surf Sci 2012, 258, 7589–7595.

29. Yu H., Wooley P., Yang S.Y.: Biocompatibility of poly-ε-caprolactone hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cells. J Orthop Surg Res 2009, 4, 5.

30. Živadinović M., Andrić M., Milošević V., Manojlović-Stojanoski M., Prokić B., Prokić B., Dimić A., Ćalasan D., Brković B.: Histomorphometric evaluation of bone regeneration using autogenous bone and beta-tricalcium phosphate in diabetic rabbits. Vojnosanit Pregl 2016, 73, 1132–1138.

Journal of Veterinary Research

formerly Bulletin of the Veterinary Institute in Pulawy

Journal Information

IMPACT FACTOR J Vet Res 2017: 0.811

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.29
Source Normalized Impact per Paper (SNIP) 2017: 0.484


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 74 74 39
PDF Downloads 63 63 35