Regional differences of densitometric and geometric parameters of the third metacarpal bone in coldblood horses – pQCT study

Open access


Introduction: The aim of the study was to analyse selected densitometric and geometric parameters in the third metacarpal bone along the long axis in horses. The densitometric parameters included the cortical and trabecular bone mineral density, while the geometric parameters included the cortical, trabecular, and total areas, strength strain index X, strength strain index Y, and the polar strength strain index.

Material and Methods: The parameters were analysed using eight sections from 10% to 80% of the length of the bone. Peripheral quantitative computed tomography was used in the study. Statistical analysis was carried out using the Friedman analysis of variance and post-hoc tests.

Results: The proximal metaphyseal region showed the highest predicted resistance to bone fractures in the transverse (back-front) plane, the distal metaphyseal region had the highest predicted resistance to transverse and torsional fractures in the transverse (side-side) plane. The cross-sectional area and the shape of the cross-section of the cortical bone of the MCIII had the highest coefficient of variation. The density of the cortical bone was least variable.

Conclusions: The cortical area and cortical bone mineral density assumed the highest values in the diaphyseal region, while the highest total area, trabecular area and trabecular bone mineral density values were obtained in the metaphyseal proximal and distal region.

1. Alho A.: Mineral and mechanics of bone fragility fractures: A review of fixation methods. Acta Orthop Scand 1993, 64, 227–232.

2. Claes L.E., Wilke H.J., Kiefer H.: Osteonal structure better predicts tensile strength of healin bone than volume fraction. J Biomech 1995, 28, 1377–1390.

3. Currey J.D.: The effects of strain rate, reconstruction and mineral content on some mechanical properties of bovine bone. J Biomech 1975, 8, 81–86.

4. Dzierzęcka M., Charuta A.: Bone mineral density and bone mineral content of the bilateral first phalanges of the thoracic limbs in horses. Pol J Vet Sci 2012, 15, 159–161.

5. Dzierzęcka M., Charuta A.: The analysis of densitometric and geometric parameters of bilateral proximal phalanges in horses with the use of peripheral quantitative computed tomography. Acta Vet. Scand 2012, 54, 41–51.

6. Dzierzęcka M., Komosa M.: Variability of the proximal phalanx in warmblood and coldblood horses – morphological and structural analyses. Belg J Zool 2013, 143, 119–130.

7. Dzierzęcka M., Purzyc H., Charuta A., Barszcz K., Komosa M., Hecold M., Kłosińska D.: Evaluation of distal phalanx formation and association with front hoof conformation in coldblooded horses. Biologia 2016, 71, 337–342.

8. Evans R.K., Negus C., Antczak A.J., Yanovich R., Israeli E., Moran D.S.: Sex differences in parameters of bone strength in new recruits: beyond bone density. Med Sci Sports Exerc 2008, 40, 645–653.

9. Ferretti J.L., Capozza R.F., Zanchetta J.R.: Mechanical validation of a tomographic (pQCT) index for noninvasive estimation of rat femur bending strength. Bone 1996, 18, 97–102.

10. Fürst A., Meier D., Michel S., Schmidlin, A., Held L., Laib A.: Effect of age on bone mineral density and micro architecture in the radius and tibia of horses: an Xtreme computed tomographic study. BMC Vet Res 2008, 25, 1–12.

11. Gross T.S., McLeod K.J., Rubin C.T.: Characterizing bone strain distributions in vivo using three triple rosette strain gages. J Biomech 1992, 25, 1081–1087.

12. Hanson P.D., Markel M.D.: Bone mineral density measurements of equine metacarpi. Proc Am Coll Vet Surgeons 1993, 28, 13.

13. Lai Y.M., Qin L., Hung V.W., Chan K.M.: Regional differences in cortical bone mineral density in the weight-bearing long bone shaft-a pQCT study. Bone, 2005, 36, 465–471.

14. Laskey M.A., de Bono S., Zhu D., Shaw C.N., Laskey P.J., Ward K.A., Prentice A.: Evidence for enhanced characterization of cortical bone using novel pQCT shape software. J Clin Densitom 2010, 13, 247–255.

15. Les C.M., Stover S.M., Keyak J.H., Taylor K.T., Willits N.H.: The distribution of material properties in the equine third metacarpal bone serves to enhance sagittal bending. J Biomech 1997, 30, 355–361.

16. Liew A.S., Johnson J.A., Patterson S.D., King G.J., Chess D.G.: Effect of screw placement on fixation in the humeral head. J Shoulder Elbow Surg 2000, 9, 423–426.

17. Nicholson C.L., Firth E.C.: Assessment of bone response to conditioning exercise in the radius and tibia of young thoroughbred horses using pQCT. J Musculoskelet Neuronal Interact 2010, 10, 199–206.

18. Parkin T.D., Clegg P.D., French N.P., Proudman C.J., Riggs C.M., Singer E.R., Webbon P.M., Morgan K.L.: Horse-level risk factors for fatal distal limb fracture in racing Thoroughbreds in the UK. Equine Vet J 2004, 36, 513–519.

19. Parkin T.D., Clegg P.D., French N.P., Proudman C.J., Riggs C.M., Singer E.R., Webbon P.M., Morgan K.L:. Catastrophic fracture of the lateral condyle of the third metacarpus/metatarsus in UK racehorses - fracture descriptions and pre-existing pathology. Vet J 2006, 171, 157–165.

20. Paśko S., Dzierzęcka M., Purzyc H., Charuta A., Barszcz K., Bartyzel B.J., Komosa M.: The osteometry of equine third phalanx by the use of three-dimensional scanning: new measurement possibilities. Scanning 2017, doi:10.1155/2017/1378947.

21. Piskoty G., Jäggin S., Michel S.A., Weisse B., Terrasi G.P., Fürst A.: Resistance of equine tibiae and radii to side impact loads. Equine Vet J 2012, 44, 714–720.

22. Porr C.A., Kronfeld D.S., Lawrence L.A., Pleasant R.S., Harris P.A.: Deconditioning reduces mineral content of the third metacarpal bone in horses. J Anim Sci 1998, 76, 1875–1879.

23. Rubin C.T., Lanyon L.E.: Limb mechanics as a function of speed and gait: a study of functional strains in the radius and tibia of horse and dog. J Exp Biol 1982, 101, 187–211.

24. Skedros J.G., Sybrowsky C.L., Parry T.R., Bloebaum R.D.: Regional differences in cortical bone organization and microdamage prevalence in Rocky Mountain mule deer. Anat Rec A Discov Mol Cell Evol Biol 2003, 274, 837–850.

25. Smock A.J., Hughes J.M., Popp K L., Wetzsteon R.J., Stovitz S.D., Kaufman B.C., Kurzer M.S., Petit M.A.: Bone volumetric density, geometry, and strength in female and male collegiate runners. Med Sci Sports Exerc 2009, 41, 2026–2032.

26. Steudel K.: The work and energetic cost of locomotion. I. The effects of limb mass distribution in quadrupeds. J Exp Biol 1990, 154, 273–285.

27. Steudel K.: The work and energetic cost of locomotion. II. Partitioning the cost of internal and external work within a species. J Exp Biol 1990, 154, 287–303.

28. Stover S.M., Pool R.R., Martin R.B., Morgan J.P.: Histological features of the dorsal cortex of the third metacarpal bone mid-diaphysis during postnatal growth in thoroughbred horses. J Anat 1992, 181, 455–469.

29. Taes Y., Lapauw B., Griet V., De Bacquer D., Goemaere S., Zmierczak H., Kaufman J.M.: Prevalent fractures are related to cortical bone geometry in young healthy men at age of peak bone mass. J Bone Miner Res 2010, 25, 1433–1440.

30. Tóth, P., Horváth C., Ferencz V., Nagy K., Gligor N., Szenci O., Bodó G.: Assessment of the mineral density and mineral content of the equine third metacarpal and first phalanx bone by dual energy x-ray absorptiometry. Acta Vet Hung 2010, 58, 317–329.

Journal of Veterinary Research

formerly Bulletin of the Veterinary Institute in Pulawy

Journal Information

IMPACT FACTOR J Vet Res 2017: 0.811

CiteScore 2017: 0.68

SCImago Journal Rank (SJR) 2017: 0.29
Source Normalized Impact per Paper (SNIP) 2017: 0.484


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 187 187 10
PDF Downloads 88 88 8