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Abstract 

There are numerous biomarkers of central and peripheral nervous system damage described in human and veterinary 

medicine. Many of these are already used as tools in the diagnosis of human neurological disorders, and many are investigated in 

regard to their use in small and large animal veterinary medicine. The following review presents the current knowledge about the 

application of cell-type (glial fibrillary acidic protein, neurofilament subunit NF-H, myelin basic protein) and central nervous 

system specific proteins (S100B, neuron specific enolase, tau protein, alpha II spectrin, ubiquitin carboxy-terminal hydrolase L1, 

creatine kinase BB) present in the cerebrospinal fluid and/or serum of animals in the diagnosis of central or peripheral nervous 

system damage in veterinary medicine.  
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Introduction 

Biomarkers have been defined by the Biomarkers 

Definition Working Group as “characteristics that are 

objectively measured and evaluated as an indicator  

of normal biological processes, pathogenic processes, 

or pharmacologic responses to a therapeutic intervention”. 

Ideal biomarker should be characterised by a high 

sensitivity and specificity. Biomarkers indicating 

damage of the nervous system can be present in the 

cerebrospinal fluid (CSF) or blood serum. If present in 

the CSF, they are either derived from the central 

nervous system (CNS) parenchyma or systemic 

circulation. Biomarkers present in the CSF have been 

divided by Petzold into six classes: i) pigments, ii) 

metabolic biomarkers, iii) cell-type specific biomarkers 

(including neurofilaments, glial fibrillary acidic 

protein, myelin proteins, myelin basic protein (MBP), 

and circulating nucleic acids), iv) CNS specific 

biomarkers, v) free radicals, and vi) inflammatory and 

immunological biomarkers (52).  

This review focuses on cell-type specific and  

CNS specific biomarkers measured in the CSF and/or 

serum of animals affected by CNS disorders. The  

most important applications of each biomarker in 

human and veterinary medicine are summarised in 

Table 1.  

Cell specific biomarkers. These biomarkers 

include proteins, lipids or nucleic acids which are 

expressed exclusively by one type of cell. They are the 

most valuable biomarkers because they may indicate 

the amount of cell damage of a given cell population 

during nervous tissue damage (52).  

Glial fibrillary acidic protein. The glial fibrillary 

acidic protein (GFAP) is a component of the astrocytic 

cytoskeleton which are thought to play a role in 

modulating astrocytic motility and shape (20), white 

matter architecture, myelination, and the integrity of 

the blood-brain barrier. It is specific to the CNS (40) 

and can be used to monitor glial pathology (53). It is 

thought that a breakdown of astroglial cells through 

mechanical injury or necrosis causes GFAP to leak 

through the blood-brain-barrier into the bloodstream, 

where it can be detected (37). A study of GFAP in 331 

human patients with various neurological disorders 

found the GFAP mean blood values to be the highest in 

patients with bacterial meningitis, subarachnoid 

haemorrhage, and status epilepticus (37).  
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Table 1. Application of the described biomarkers in human and veterinary medicine 

Biomarker Localisation 
Early reports of use in veterinary 
medicine  

Selected applications in human 
medicine 

Glial fibrillary acidic protein Astrocytes 
Diagnosis of NME in pug dogs 
(73), indicator of disease severity in 

Alexander disease (30). 

Biomarker of head injury (48), 

intracerebral haemorrhage in 

acute stroke (22), dementia, and 
multiple sclerosis. 

Phosphorylated axonal form 

of the heavy neurofilament 

subunit NF-H 

Axons of neurons 

Potential prognostic indicator of 

SCI in dogs with intervertebral disc 

herniation (43). 

Biomarker of neuronal injuries, 

particularly following SCI (54), 

Alzheimer’s disease (27). 

Myelin basic protein (MBP) 
Oligodendrocytes in CNS, 

Schwann cells in PNS 

Diagnosis of traumatic stress 

disorder following serious injury 

(77), supplementary tool in the 
diagnosis of demyelinating canine 

disorders (44). 

Application in TBI (60). 

S100β 

Ependymal cells, 
oligodendrocytes, microglial 

cells, Schwann cells, endothelial 

cells, lymphocytes, neurons 

unknown Application in TBI (70). 

Neuron specific enolase Neurons unknown 

Marker of cerebral hypoxia 

following TBI (69), indicator of 

brain infarction (63).  

Tau protein Axons of neurons 

Potential biomarker of spinal cord 
damage in the course of 

intervertebral disc herniation (59), 

biomarker of acute brain injury (8).  

Biomarker of tauopathies (64).  

Alpha II-spectrin  Axons of neurons 
Potential biomarker used to identify 
mild or difficult to detect brain 

lesions (78). 

Biomarker of severity of TBI 

(42). 

Ubiquitin carboxy-terminal 
hydrolase L1 

Neurons and neuroendocrine 
cells 

Potential use in monitoring 

neurologic injury following cardiac 

surgery (4). 

Marker of severe TBI, marker of 
degree of neurological damage 

caused by seizure (34), may 

assist in the diagnosis of 
Parkinson disease (3).  

Creatine kinase BB (CKBB) Astrocytes, neurons  Unknown  

Helpful in diagnosing cerebral 

hypoxia following cardiac arrest 
(32).  

NME – necrotising meningoencephalitis, SCI –spinal cord injury, TBI – traumatic brain injury 

 

 

Glial fibrillary acidic protein breakdown products were 

also measured in the serum of adult patients to assess 

the severity of traumatic brain injury (TBI) (48). Due to 

its CNS specificity, GFAP was detected in numerous 

other human neurological disorders, the description of 

which extends beyond the scope of this review.  

Anti-GFAP autoantibodies were detected in  

a number of diseases, including TBI, Alzheimer’s 

disease, and other dementias (38), stroke (31) and 

multiple sclerosis (56). The production of anti-GFAP 

autoantibodies was also detected in dogs with 

autoimmune disease (66). Toda et al. (73) found dogs 

with necrotising meningoencephalitis to have an 

increased level of CSF anti-GFAP autoantibodies. This 

level was higher than that in dogs with other 

inflammatory CNS diseases and other neurological 

disorders, and was higher in Pugs than in other dog 

breeds.  

This may indicate a greater susceptibility of 

astrocytes to damage in pugs, allowing GFAP to leak 

into the CSF in healthy pugs and those affected by 

necrotising meningoencephalitis (NME) (73). This 

research team also assessed anti-GFAP IgG in the CSF 

of various dog breeds. No correlation between age, 

gender, breed, clinical severity, and survival time of the 

dogs was established. Matsuki et al. (36) found anti-

GFAP autoantibodies in the CSF of dogs with NME 

(particularly pugs) and suggested that these 

autoantibodies could be used to monitor the disease in 

dogs undergoing treatment. Sato et al. (61) 

demonstrated increased serum GFAP levels in dogs 

with progressive myelomalacia and intervertebral disc 

disease. The GFAP blood levels correlated with the 

severity of the spinal lesions. The authors believed 

GFAP to be a predictive factor for progressive 

myelomalacia.  

Furthermore, GFAP is the most commonly used 

marker in neuro-oncology in humans, utilised to 

recognise neoplastic cells of glial lineage (24). Ide  

et al. (68) assessed GFAP in a number of canine 

neuroepithelial tumours. GFAP-positive cells were 

present in low grade astrocytomas, medulloblastoma, 
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and primitive neuroectodermal tumours (29). GFAP 

positive parenchyma was found in intracranial vascular 

hamartomas of five dogs.   

Considering that GFAP serum concentration can 

be used not only to detect the presence of astrocytic 

injury but also to determine its severity (61), its 

importance in veterinary medicine, particularly in 

neurodegenerative diseases, may grow. 

Phosphorylated axonal form of the neurofilament 

subunit NF-H. The phosphorylated axonal form of the 

neurofilament subunit NF-H (pNF-H) is a protein that 

is found only in neurons (18). Much higher levels of 

pNF-H are detected in the spinal cord than in the brain 

(65), which makes it a potentially reliable biomarker of 

neuroaxonal injury and degeneration (54). NF 

phosphorylation protects against degradation (28). 

Therefore, pNF can be readily detected in the serum 

and CSF (65). A recent study also examined this 

neurofilament in dogs with spinal cold injury (SCI) 

following intervertebral disc disease (43). The authors 

found that mean pNF-H serum levels were significantly 

higher in dogs with no pain perception than in those 

with intact pain perception. They were also higher in 

dogs that did not regain ambulation following surgery 

compared to those that did. However, some dogs with 

SCI did not have high pNF-H levels between day one 

and day three after injury. Furthermore, dogs with no 

pain perception, which did not regain ambulation 

following surgery, had significantly higher pNF-H 

levels in comparison to those that regained ambulation 

following surgery (43). Hayakawa et al. (25) found the 

plasma pNF-H levels to be detectable within 96 h in 

humans following SCI and to remain elevated for up to 

21 days. Since pNF-H is not an immediate indicator of 

CNS damage, it may be potentially used in dogs in 

combination with other biomarkers such as S100B or 

UCHL-1 that are detectable in the CSF and blood 

within the first hours after injury (9). 

Myelin basic protein. Myelin basic protein 

accounts for 30% of the total protein found in myelin 

and is considered specific to the nervous system. It is 

the only structural protein that is crucial for the 

formation of CNS myelin (82), signalling (10), 

interactions with the cytoskeleton (11), and the 

regulation of the expression of myelin (11). It is also of 

interest due to the immune response it is thought to 

induce in the course of certain demyelinating disorders, 

such as multiple sclerosis in humans. Its presence in the 

CSF is linked to diseases involving myelin breakdown 

(15). MBP CSF levels were found to be increased in 

dogs following low and high-speed trauma and 

correlated with the extent of damage in the 

hypothalamus and hippocampus. This suggests it could 

be used as an early stage biomarker of traumatic stress 

disorder (77). Oji et al. (44) who measured MBP 

concentrations in the CSF of German shepherds with 

degenerative myelopathy collected from the lumbar 

cistern, found them to be significantly higher than in 

control dogs. The authors recommended the analysis of 

MBP concentrations in the CSF as a supplementary 

tool in the diagnosis of demyelinating lesions. Elevated 

levels of MBP in the CSF correlated with the level of 

demyelination in Beagle dogs infected with canine 

distemper (71). Levine et al. (33) studied the 

correlation between MBP and the functional outcome 

following intervertebral disc herniation (IVDH) in dogs 

and found that dogs with a CSF concentration of MBP 

>3 ng/mL had worse outcomes compared to animals 

with a lower MBP concentration. However, these levels 

did not significantly correlate with the modified 

Frankel score of the patients on admission. The authors 

suggested that the biomarker may be used as  

a prognostic indicator following IVDH in dogs.  

Central nervous system-specific biomarkers. 

The following biomarkers are produced by more than 

one cell type. They are considered to be used as 

biomarkers of neuroaxonal damage or gliosis. 

S100β. S100β is a calcium binding protein mainly 

found in the CNS (17). Although it has been long 

believed that S100β is an astrocytic marker, a study in 

humans in 2007 (70) found it to be less astrocyte-

specific than GFAP. The protein was found in 

ependymal cells, oligodendrocytes, microglial and 

Schwann cells, as well as non-glial cells such as 

vascular endothelial cells, lymphocytes, and neurons. 

In studies on rats, S100β was found to be present in all 

glial cells including astrocytes, ependymal cells, 

oligodendrocytes, as well as microglial and Schwann 

cells (50). The protein was also found in several non-

neural cells, including adipocytes (23) and Leydig cells 

in rats, cats, and humans (14). Intracellular function of 

S100β is still unclear, although it is reported to play  

a role in cell proliferation, survival, and differentiation 

(39) as well as in maintaining cellular calcium 

homeostasis (39) and protecting the cells from 

oxidative damage (75). In small amounts, S100β has  

a reparatory function, promoting neurite outgrowth and 

neuronal survival, while larger amounts lead to 

neuronal and astrocytic death (1). S100β was found to 

be much less specific in mild or moderate traumatic 

brain injury compared to GFAP, and, contrarily to 

GFAP, was elevated in cases of extracranial lesions 

(49). Serum levels of S100β were reported to peak 

within 6 h following TBI in humans (5). Therefore, the 

serum concentrations of this protein may normalise 

after this time. 

A single study analysed the levels of S100β in 

dogs following circulatory arrest and found the CSF 

concentration to increase up to 18 h after reperfusion 

(74). More research is needed to determine the 

application of this biomarker in veterinary medicine.  

Neuron specific enolase. Neuron specific enolase 

(NSE) is a protein reported to be found only in neurons 

of the CNS, PNS, and neuroendocrine cells. It acts as  

a glycolytic isoenzyme converting 2-phosphoglycerate 

into phosphoenolpyruvate (47). Neuron structural 

damage leading to cell death causes NSE leakage into 

the extracellular space allowing its detection in serum 
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and CSF (6). Serum and CSF levels of NSE were found 

to be correlated with the severity of the neurological 

state on admission and with the outcome in patients 

with TBI (19). Cao et al. (13) demonstrated that NSE 

levels increased after 2 h in rats following an induced 

SCI compared to control rats. Within 6 h, the serum 

NSE levels were significantly higher in rats with 

moderate and severe SCI compared to those with mild 

SCI. Selakoic et al. (63) found that CSF and plasma 

concentrations of NSE correlated with the degree of 

neurological and functional deficits in humans with 

brain infarction, and suggested that this protein may be 

used as an early biomarker of this disease. Although 

NSE has long been thought to be neuron-specific, new 

studies have shown its levels to increase in the course 

of ischaemia of the liver, gut, and kidney unassociated 

with TBI in rats (51) and small cell lung cancer in 

humans (12). To date, there are no studies measuring 

NSE levels in animal patients in the course of 

neurological disorders. The analysis of this biomarker 

in the CSF and blood may prove useful in determining 

the severity and outcome in patients with brain injury. 

It may also have potential use in the diagnosis of 

certain neuroectodermal tumours in animals.  

Tau protein. Tau is a highly soluble microtubule 

associated protein whose main function is to bind to 

microtubules, promoting their assembly and stability 

(35). Following injury, it is cleaved by calpain-1 and 3, 

becomes insoluble and forms aggregates, known as 

neurofibrillary tangles (80). Such tau inclusions were 

identified in numerous degenerative diseases, which 

were collectively named tauopathies (79).  

In animals, tau phosphorylation has been studied 

in the brains of growing (58) and aged cats (26) and 

dogs (57). It has also been studied in the course of 

IVDH. In the case of IVDH, CSF tau protein levels 

were found to correlate with the severity of spinal cord 

injury. Based on the preliminary study carried out by 

Roerig et al. (60), Blomme et al. (8) speculate that CSF 

tau levels may have a potential application as  

a prognostic biomarker not only of IVDH, but also of 

acute brain and spinal cord injury.  

Alpha II-spectrin. Alpha II-spectrin is a protein 

present in neurons and is commonly found in axons and 

presynaptic terminals. It forms protease breakdown 

products - calpain and caspase associated with necrosis 

and apoptosis, respectively (21, 78). Although it is not 

CNS specific, it is regarded as a potential CNS injury 

biomarker due to its abundance in neurons. Studies 

associating breakdown products of this protein with 

neurological diseases were carried out in patients with 

TBI (42). Non-erythroid alpha II-spectrin is a major 

substrate for calpain (associated with necrosis) and 

caspase-3 (associated with apoptosis) cysteine 

proteases, and it produces breakdown products when 

cleaved with them; 120 kDa breakdown product is 

produced by a cleavage with caspase-3, and 145 and 

150 kDa breakdown products are produced by  

a cleavage with calpain (61). 

Pike et al. (55) studied the concentrations of alpha 

II-spectrin breakdown products in rats with TBI and the 

association between the presence of non-erythroid 

alpha II-spectrin and calpain-mediated alpha II-spectrin 

in CSF and TBI. In 2012, Berger et al. (7) reported 

ubiquitin carboxy-terminal hydrolase L1 and alpha  

II-spectrin breakdown products to be promising as 

quantitative biomarkers allowing the determination of 

the severity of injury in children with TBI. Weiss et al. 

(61) analysed calpain (involved in necrotic cell death) 

and caspase-3 (involved in apoptotic cell death) 

cleaved alpha II-spectrin breakdown products in dogs 

during hypothermic circulatory arrest (HCA) and 

cardiopulmonary bypass (CPB). They found that the 

levels of alpha II-spectrin breakdown product 

correlated with mild histological and neurological 

changes. They concluded that this biomarker seems 

promising in mild or difficult to detect brain lesions (61).  

Ubiquitin carboxy-terminal hydrolase L1. 

Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) is 

a multi-functional, proteolytically stable protein with 

high abundance in the brain comprising 1%-5% of its 

total soluble protein (45). It belongs to a family of de-

ubiquitinating enzymes, which can remove ubiquitin 

from their protein substrates. Recent studies have 

associated this protein with degenerative diseases 

including Parkinson’s, Huntington’s, and Alzheimer’s 

(81). Recently, UCH-L1 has been reported to be  

a useful TBI biomarker in humans (72). Another study 

found that measuring serum UCHL-1 and GFAP levels 

improves the sensitivity and specificity of the diagnosis 

of TBI, since these biomarkers reflect different injury 

mechanisms (16). The same authors also found that 

UCHL-1 was poorly predictive of patient recovery and 

was better at predicting poor outcome. UCHL-1 has 

also been used to determine the degree of neurological 

damage caused by seizures in humans (41).  

A single study of the levels of UCH-L1 in dogs 

was performed by Arnaoutakis et al. (4) who found that 

dogs with hypothermic circulatory arrest and those 

undergoing cardiopulmonary bypass displayed elevated 

CSF UCH-L1 levels within 8 h. The dogs undergoing  

2 h hypothermic circulatory arrest also had a significant 

increase in UCH-L1 serum concentrations compared to 

the baseline cardiopulmonary bypass group.  Therefore, 

further research into the usefulness of this biomarker in 

veterinary neurological disorders is warranted.  

Creatine kinase BB. Creatine kinase isoenzymes 

are generally found in areas of high energy production 

or its demand. Creatine kinase BB (CKBB) is found in 

astrocytes and neurons (2) and has been used as  

a biomarker of CNS damage (67). In 1995, Sawashima 

et al. (62) found a correlation between high-voltage 

slow activity in electroencephalography and CKBB in 

the serum of dogs with progressive brain disease. 

CKBB serum levels showed a statistically significant 

difference between healthy dogs and those with central 

neurological disease. Serum CKBB levels were not 

increased in cats with feline infectious peritonitis (FIP) 
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(46). Similarly, CKBB in sheep with neurological 

disorders associated with coenurosis and scrapie was 

not increased (76). Consequently, the usefulness of this 

biomarker in veterinary neurology remains uncertain.  

Conclusion. Biomarkers play a crucial role in 

human and veterinary medicine. They assist in 

understanding physiological and pathological 

biological processes and their clinical effects. They can 

also aid in assessing treatment protocols or predicting 

their outcomes. The main advantage of assessing 

biomarkers is the ability to detect a disease process at 

its early stage, or even at a subclinical level, as well as 

monitor the treatment success. At the same time, 

biomarkers may vary inter-individually, within a group 

or among various species. Moreover, studies 

concerning the analysis of a given biomarker may be 

encumbered by bias, measurement errors, and 

confounding factors. In a clinical scenario, the 

collection of CSF at numerous time points from 

companion animals with neurological disorders is 

frequently impossible due to general anaesthesia 

requirement. Hence, it is unlikely that CSF biomarkers 

will be used to monitor disease progression over the 

course of hours in veterinary patients with severe 

neurological disorders, and may, instead, be used at  

a single time point to assess the severity of neurological 

lesions. The biomarkers presented above have only 

been studied in individual neurological disorders of 

animals, the majority of which were experimentally 

induced. Further research into their use in 

developmental, auto-immunological, and neoplastic 

CNS and PNS disorders is needed, as their increased 

concentrations may aid in the diagnosis of certain 

diseases.  
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