Effect of Higher Order Element on Numerical Instability in Topological Optimization of Linear Static Loading Structure

Open access


This paper presents the mathematical model to solve the topological optimization problem. Effect of higher order element on the optimum topology of the isotropic structure has been studied by using 8-node elements which help in decreasing the numerical instability due to checkerboarding problem in the final topologies obtained. The algorithms are investigated on a number of two-dimensional benchmark problems. MATLAB code has been developed for different numerical two dimensional linear isotropic structure and SIMP approach is applied. Models are discretized using linear quadratic 4-node and 8-node elements and optimal criteria method is used in the numerical scheme. Checkerboarding instability in the final topology is greatly reduces when incorporated 8-node element instead of 4-node element which can be confirmed through comparing the final topologies of the structure.

[1] Christensen, P. W., A. Klarbring. An Introduction to Structural Topological Optimization. Springer, 2009.

[2] Bendsoe, M. P., O. Sigmund. Material Interpolation Schemes in Topology Optimization. Arch. Appl. Mech., 69 (1999), 635-654.

[3] Bendsoe, M. P. Optimal Shape Design as a Material Distribution Problem. Struct. Optim., 1 (1989), 193-202.

[4] Li, Y., K. Saitou, N. Kikuchi. Topology Optimization of Thermally Actuated Compliant Mechanisms Considering Time Transient Effect. Finite Elem. Anal. Des., 40 (2004), 1317-1331.

[5] Hammer, V. B., N. Olhoff. Topology Optimization of Continuum Structures Subjected to Pressure Loading. Struct. Multidiscip. Optim., 19 (2000), 85-92.

[6] Bendsoe, M. P., O. Sigmund. Topology Optimization Theory, Methods and Applications, Springer, Berlin-Heidelberg-New York, 2003.

[7] Neches, L. C., A. P. Cisilino. Topology Optimization of 2D Elastic Structures Using Boundary Elements. Eng. Anal. Boundary Elem., 32 (2008), 533-544.

[8] Michell, A. G. M. The Limits of Economy of Material in Frame Structures. Philos. Mag. Ser. VI, 8 (1904), 589-597.

[9] Kang, Z., X. Wang, R. Wang. Topology Optimization of Space Vehicle Structures Considering Attitude Control Effort. Finite Elem. Anal. Des., 47 (2009), 431-438.

[10] Zhu, J. H., W. H. Zhang, L. Xia. Topology Optimization in Aircraft and Aerospace Structures Design. Arch. Comp. Methods Eng, http://dx.doi.org/10.1007/s11831-015-9151-2.

[11] Garicia-Lopez, N. P., M. Sanchez-Silva, A. L. Medaglia, A. Chateauneuf. A Hybrid Topology Optimization Methodology Combining Simulated Annealing and SIMP. Comput. Struct., 89 (2011), 1512-1522.

[12] Nishiwaki, S., M. I. Frecker, S. Min, N. Kikuchi. Topological Optimization of Compliant Mechanisms Suing the Homogenization Method. Int. J. Numer. Meth. Eng., 42 (1998), 535-559.

[13] Bendsoe, M. P., N. Kikuchi. Generating Optimal Topologies in Structure Design Using a Homogenization Method. Computer Methods in Appl. Mech. and Eng., 71 (1988), 197-224.

[14] Wang, Y., Z. Kang, Q. He. An Adaptive Refinement Approach for Topology Optimization Based on Separated Density Field Description. Comput. Struct., 117 (2013), 10-12.

[15] Sigmiund. O. A 99 Line Topology Optimization Code Written in Matlab. Struct. Multidiscip. Optim., 21 (2001), 120-127.

[16] Hutton, D. V. Fundamental of Finite Element Analysis, The McGraw-Hill Companies, 2004.

[17] James, A. K., Joaquim R. R. A. Martins. An Isoparametric Approach to Level Set Topology Optimization Using a Body-Fitted Finite-Element Mesh. Comput. Struct., 90-91 (2012), 97-106.

[18] Jog, C. S., C. S. Haber. Stability of Finite Element Models for Distributed Parameter Optimization and Topology Design. Comput. Meth. Appl. Mech. Eng., 130 (1996), 203-226.

[19] Chandrupatla, T. R., A. D. Belegunda. Introduction to Finite Element in Engineering, Prentice Hall Upper Inc., 2004.

[20] Hassani, B., H. Hinton. A Review of Homogenization and Topology Optimization III-Topology Optimization Using Optimality Criteria. Comput. Struct., 69 (1998), 739-756.

[21] Fulga, C., V. Preda. On Optimality Conditions for Multiobjective Optimization Problems in Topological Vector Space. J. Math. Anal. Appl., 334 (2007), 123-131.

[22] Chiandussi, G., M. Codegone, S. Ferrero. Topology Optimization with Optimality Criteria and Transmissible Loads. Comput. Math. Appl., 57 (1988), 772-788.

[23] Zhou, M., R. T. Hafta. A Comparison of Optimality Criteria Methods for Stress and Displacement Constraints. Comput. Methods Appl. Mech. Eng., 124 (1995), 253-271.

[24] Zhou, M., G. I. N. Rozvany. DCOC: An Optimality Criteria Method for Large Systems Part I: Theory. Struct. Optim., 5 (1992), 12-25.

[25] Jain, N., R. Saxena. Effect of Self-Weight on Topological Optimization of Static Loading Structures. Alexandria Eng. J., (2017); http://dx.doi.org/10.1016/j.aej.2017.01.006.

[26] Dáz, A. R., O. Sigmund. Checkerboard Patterns in Layout Optimization. Struct. Optim., 10 (1995), 40-45.

[27] Sigmund, O., J. Petersson. Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing with Checkerboards, Mesh-Dependencies and Local Minima. Struct. Optim., 16 (1998), 68-75.

[28] Bruggi, M. On the Solution of the Checkerboard Problem in Mixed-FEM Topology Optimization. Comput. Struct., 86 (2008), 1819-1829.

Journal of Theoretical and Applied Mechanics

The Journal of Institute of Mechanics of Bulgarian Academy of Sciences

Journal Information

CiteScore 2017: 1.14

SCImago Journal Rank (SJR) 2017: 0.217
Source Normalized Impact per Paper (SNIP) 2017: 0.583

Mathematical Citation Quotient (MCQ) 2017: 0.01


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 80 80 24
PDF Downloads 64 64 22