THEORETICAL STUDY OF THE EFFECT OF PROBE SHAPE ON ADHESION FORCE BETWEEN PROBE AND SUBSTRATE IN ATOMIC FORCE MICROSCOPE EXPERIMENT

Open access

Abstract

The quantitative description of adhesion force dependence on the probe shape is of importance in many scientific and industrial fields. We performed a theoretical study on the influences of the probe shape (the sphere and parabolic probe) on the adhesion force at different humidity in order to elucidate how the adhesion force varied with the probe shape in atomic force microscope manipulation experiment. We found that the combined action of the triple point and the Kelvin radius is the guiding trend of the adhesion force, and these two fundamental parameters are closely related to the probe shape. Meanwhile, the theoretical results demonstrated that the adhesion force are in a good agreement with the experiment data if the van der Waals force is take into account.

[1] Eastman, T., D. M. Zhu. Adhesion Forces Between Surfaces Modified AFM Tips and a Mica Surface. Langmuir, 12 (1996), No. 111, 2859-2862.

[2] Thundat, T., X. Y. Zheng, G. Y. Chen, S. L. Sharp, R. J. Warmack, L. J. Schowalter. Characterization of Atomic Force Microscope Tips by Adhesion Force Measurements. Applied Physics Letters, 63 (1993), No. 15, 2150-2152.

[3] Binnig, G., C. F. Quate. Atomic Force Microscope. J. Phys. Rev. Lett., 56 (1986), 930-933.

[4] Werf, V. D., K. O. Putman, A. J. Constant, G. De, G. Bart, J. Greve. Adhesion Force Imaging in Air and Liquid by Adhesion Mode Atomic Force Microscopy. Applied Physics Letters, 65 (1994), No. 9, 1195-1197.

[5] Thomas, R. C., J. E. Houston, R. M. Crooks, T. S. Kim, T. A. Michalske. Probing Adhesion Forces at the Molecular Scale. J. Amer. Chem. Soc., 117 (1995), No. 13, 3830-3834.

[6] Thundat, T., X. Y. Zheng, G. Y. Chen, R. J. Warmack. Role of Relative Humidity in Atomic Force Microscopy Imaging. Surface Science Letters, 294 (1993), 939-943.

[7] Tabrizi, M. F., M. Kappl, H. J. Butt. Influence of Humidity on Adhesion: an Atomic Force Microscope Study. Journal of Adhesion Science and Technology, 22 (2008), 181-203.

[8] Chen, S. H., A. K. Soh. The Capillary Force in Micro and Nano Indentation with Different Indenter Shapes. International Journal of Solids and Structures, 45 (2008), 3122-3137.

[9] Butt, H. J., M. Kappl. Normal Capillary Forces. Advances in Colloid and Interface Science, 146 (2009), 48-60.

[10] Tabrizi, M. F., M. Kappl, Y. Cheng, J. Gutmann, H. J. Butt. On the Adhesion between Fine Particles and Mancontacts: An Atomic Force Microscope Study. Langmuir, 22 (2006), 2171-2184.

[11] Quyang, Q., K. Ishida, K. O. Kada. Investigation of Micro Adhesion by Stomic Force Microscopy. Applied Surface Science, 169 (2001), 644-648.

[12] Piner, R. D., J. Zhu, F. Xu, S. H. Hong, C. A. Mirkin. “Dip-Pen” Nanolithography. Science, 283 (1999), 661-663.

[13] Fisher, R. A. On the Capillary Forces in an Ideal Soil; Correction of Formulae given by W. B. Haines. Journal of Agricultural Science, 16 (1926), 492-505.

[14] Yang, L., Y. S. Tu, H. P. Fang. Modelling the Rupture of a Capillary Liquid Bridge between a Sphere and Plane. Soft Matter, 6 (2010), 6178-6182.

[15] Vogel, B., H. V. Kanel. AFM Study of Sticking Effects for Microparts Handling. Wear, 238 (2000), 20-24.

[16] Dantchev, D., G. Valchev. Surface Integration Approach: A New Technique for Evaluating Geometry Dependent Forces between Objects of Various Geometry and a Plate. J. Colloid Interface Sci., 372 (2012), 148-163.

[17] Valchev, G., D. Dantchev, K. Kostadinov. On the Forces Between Micro and Nano Objects and a Gripper. International Journal of Intelligent Mechatronics and Robotics (IJIMR), 2 (2012), No. 2, 15-33.

[18] Xiao, X., L. Qian. Investigation of Humidity-Dependent Capillary Force. Langmuir , 16 (1999 ), No. 21, 8153-8158.

[19] Lazzer, A. D., M. Dreyer, H. J. Rath. Particle-surface Capillary Forces. Langmuir, 15 (1999), 4551-4559.

[20] Jones, R., H. M. Pollock, J. A. S. Cleaver, C. S. Hodges. Adhesion Forces between Glass and Silicon Surfaces in air Studied by AFM: Effects of Relative Humidity, Particle Size, Roughness, and Surface Treatment. Langmuir, 18 (2002), No. 21, 8045-8055.

[21] Junno, T., K. Deppert, L. Montelius, L. Samuelson. Controlled Manipulation of Nanoparticles with an Atomic Force Microscope.J. Appl. Phys. Lett.,66 (1995), No. 26, 3627-3629.

[22] Paajanen, M., J. Katainen, O. H. Pakarinen, A. S. Foster. Experiment Humidity Dependency of Small Particle Adhesion on Silica and Titania. J. Colloid Interface Sci., 304 (2006), 518-523.

[23] Arai, F., D. Andou, T. Fukuda. Adhesion Forces Reduction for Micro Manipulation Based on Micro Physics, Proc. IEEE 9th Annual Int. Workshop on Micro Electro Mechanical Systems, 1996, 354-359.

[24] Li, Q., V. Rudolph, W. Peukert. London-van der Waals Adhesiveness of Rough Particles. Powder Technology, 161 (2006), 248-255.

[25] Sedin, D. L., K. L. Rowlen. Adhesion Forces Measured by Atomic Force Microscopy in Humid Air. Analytical Chemistry, 72910 (2000), 2183-2189.

[26] Chen, S. C., J. F. Lin. Detailed Modelling of the Adhesion Force between an AFM Tip and a Smooth Flat Surface under Different Humidity Levels. J. Micromechanics and Microengineering, 18 (2008), 115006-115013.

[27] Czarnecki, J., T. Dabros. Attenuation of the van derWaals Attraction Energy in the Particle Semi Infinite Medium System Due to the Roughness of the Particle Surface. J. Colloid Interface Sci., 78 (1980), 25-30.

[28] Raymond, R. D., B. Michael, R. W. Lee, C. P. Dennies. Calculation of van der Waals Forces with Diffuse Coatings: Applications to Roughness and Adsorbed Polymers. J. Adhes. Sci. Technol., 80 (2004), No. 5, 365-394.

[29] Rumpf, H. Die Wissenschaft des Agglomerierens. Chemie Ingenieiur Technik, 46 (1974), 1-11.

[30] Lennart, B. Hamaker Constants of Inorganic Materials. J. Adv. Colloid Interface. , 18 (1997), 125-169.

[31] Jang, J., M. A. Ratner, G. C. Schatz. Atomic-scale Roughness Effect on Capillary Force in Atomic Force Microscopy. Journal of Physics Chemstry B., 110 (2006), 659-662.

[32] Christenson, H. K. Adhesion Between Surfaces in Undersaturated Vapors a Reexamination of the Influence of Meniscus Curvature and Surface Forces. Journal of Colloid Interface Science, 121 (1988), No. 1, 170-178.

[33] Aveyard, R., J. H. Clint, J. H. Clint, V. N. Paunov, D. Nees. Capillary Condensation of Vapours between Two Solid Surfaces: Effects of Line Tension and Surface Forces. Phys. Chem. Chem. Phys., 1 (1999), 155-163.

Journal of Theoretical and Applied Mechanics

The Journal of Institute of Mechanics of Bulgarian Academy of Sciences

Journal Information

CiteScore 2017: 1.14

SCImago Journal Rank (SJR) 2017: 0.217
Source Normalized Impact per Paper (SNIP) 2017: 0.583

Mathematical Citation Quotient (MCQ) 2017: 0.01

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 136 134 16
PDF Downloads 42 41 6