CALCULATING THE RIGHT-EIGENVECTORS OF A SPECIAL VIBRATION CHAIN BY MEANS OF MODIFIED LAGUERRE POLYNOMIALS

Open access

Abstract

This contribution deals with the identification of the right-eigenvectors of a linear vibration system with arbitrary n degrees of freedom as given in [1]. Applying the special distribution of stiffnesses and masses given in [1] yields a remarkable sequence of matrices for arbi- trary n. For computing the (right-)eigenvectors a generalised approach allowing the use of Laguerre polynomials is performed.

[1] Mikota, J. Compensators for the Attenuation of Fluid Flow Pulsations in Hy- draulic Systems, In: Selected Topics in Structronics and Mechatronic Systems, 2003, Eds. Belyaev A., Guran A., 49-81.

[2] Brun, M., G. F. Giaccu, A. B. Movchan, N. V. Movchan. Asymptotics of Eigenfrequencies in the Dynamic Response of Elongated Multi-structures. Proc. R. Soc. A, 468 (2012), No. 2138, 378-394. DOI: 10.1098/rspa.2011.0415.

[3] Dimarogonas, A. D., S. A. Paipetis, T. G. Chondros. Analytical Methods in Rotor Dynamics, Berlin-Heidelberg-New York, Springer Verlag, 2013.

[4] Müller, P. C. On Natural Frequencies and Eigenmodes of a Linear Vibration System. ZAMM, 87 (2007), No. 5, 348-351. DOI: 10.1002/zamm.200610319.

[5] Weber, W., B. Anders, B. W. Zastrau. On Eigenfrequencies of Multi-Body- Systems of Mikota-Type. AIP Conference Proceedings, 1281 (2010), No. 2, 949-953. DOI: 10.1063/1.3498651.

[6] Müller, P. C., M. Gürgöze. Natural Frequencies of a Multi-degree- of-freedom Vibration System. PAMM, 6 (2006), No. 1, 319-320. DOI: 10.1002/pamm.200610141.

[7] Klotter, K. Technische Schwingungslehre, Berlin-Heidelberg-New York, Springer Verlag, 1981.

[8] Rühs, F. Matrizen - 4. und 5. Lehrbrief. Freiberg, Eigenverlag Bergakademie Freiberg, 1969.

[9] Gantmacher, F. R. Matrizenrechnung I - Allgemeine Theorie. Berlin, Deutscher Verlag der Wissenschaften, 1965.

[10] Bronstein, I. N., K. A. Semendjajew, G. Musiol, H. Mühlig. Taschenbuch der Mathematik, Frankfurt (Main), Harri Deutsch Verlag, 2000.

[11] Abramowitz, M., I. A. Stegun. Handbook of Mathematical Functions, Mine- ola, Dover Publications, 1970.

[12] Smirnow, W. I. Lehrgang der Höheren Mathematik. Berlin, Deutscher Verlag der Wissenschaften, 1955.

[13] Collatz, L. Differentialgleichungen, Stuttgart, Teubner Verlag, 1990.

Journal of Theoretical and Applied Mechanics

The Journal of Institute of Mechanics of Bulgarian Academy of Sciences

Journal Information

CiteScore 2017: 1.14

SCImago Journal Rank (SJR) 2017: 0.217
Source Normalized Impact per Paper (SNIP) 2017: 0.583

Mathematical Citation Quotient (MCQ) 2017: 0.01

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 109 109 11
PDF Downloads 38 38 6