On Traveling Waves in Lattices: The Case of Riccati Lattices

Open access

On Traveling Waves in Lattices: The Case of Riccati Lattices

The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.

Murray, J. D. Lectures on Nonlinear Differential Equation Models in Biology, UK, Oxford, Oxford University Press, 1977.

Scott, A. C. Nonlinear Science. Emergence and Dynamics of Coherent Structures, UK, Oxford, Oxford University Press, 1999.

May, R. M. Stability and Complexity in Model Ecosystems, New Jersey, Princeton University Press, 2001.

Vitanov, N. K., F. H. Busse. Bounds on the heat transport in a horizontal fluid layer with stress-free boundaries. ZAMP, 48 (1997), 310-324.

Hoffmann, N. P., N. K. Vitanov. Upper Bounds on Energy Dissipation in Couette-Ekman Flow. Phys. Lett. A, 255 (1999), 277-286.

Colinet, P., J. C. Legros, M. G. Velarde. Nonlinear Dynamics of Surface-Driven Instabilities, Berlin, Wiley-VCH, 2001.

Kantz, H., D. Holstein, M. Ragwitz, N. K. Vitanov. Markov Chain Model for Turbulent Wind Speed Data. Physica A, 342 (2004), 315-321.

Vitanov, N. K., E. D. Yankulova. Multifractal Analysis of the Long-Range Correlations in the Cardiac Dynamics Of Drosophila Melanogaster. Chaos Solitons & Fractals, 28 (2006), 768-775.

Ablowitz, M., P. A. Clarkson. Solitons, Nonlinear Evolution Equations and Inverse Scattering, UK, Cambridge, Cambridge University Press, 1991.

Akhmediev, N. N., A. Ankiewicz. Solitons. Nonlinear pulses and beams, London. Chapman & Hall, 1997

Kivshar, Y. C., G. P. Agraval. Optical Solitons, San Diego, Academic Press, 2003.

Scott, A. C. Neuroscience: A Mathematical Primer, New York, Springer, 2002.

Perko L. Differential Equations and Dynamical Systems, New York, Springer, 2001.

Infeld, E., G. Rowlands. Nonlinear Waves, Solitons and Chaos, UK, Cambridge, Cambridge University Press, 1990.

Robertson, R., A. Combs. (Eds.), Chaos Theory in Psychology and the Life Sciences, New Jersey, Mahwah, Lawrence Erlbaum Associates Inc., 1995.

Vitanov, N. K., I. P. Jordanov, Z. I. Dimitrova. On Nonlinear Population Waves. Applied Mathematics and Computation, 215 (2009), 2950-2964.

Temam, R. Navier-Stokes Equations: Theory and Numerical Analysis, R. I., Providence, AMS Chelsea Publishing, 2001.

Vitanov, N. K. Upper Bounds on the Heat Transport in a Porous Layer. Physica D, 136 (2000), 322-339.

Holmes, P., J. L. Lumley, G. Berkooz. Turbulence, Coherent Structures, Dynamical Systems and Symmetry, UK, Cambridge, Cambridge University Press, 1996.

Boeck, T., N. K. Vitanov. Low-Dimensional Chaos in Zero-Prandtl-Number Benard-Marangoni Convection. Phys. Rev. E, 65 (2002), Article number: 037203.

Vitanov, N. K. Upper Bound on the Heat Transport in a Horizontal Fluid Layer of Infinite Prandtl Number. Phys. Lett. A, 248 (1998), 338-346.

Foias, C., O. Manley, R. Rosa, R. Temam. Navier-Stokes Equations and Turbulence, UK, Cambridge, Cambridge University Press, 2001.

Vitanov, N. K., Upper Bounds on Convective Heat Transport in a Rotating Fluid Layer of Infinite Prandtl Number: Case of Intermediate Taylor Numbers. Phys. Rev. E, 62 (2000), 3581-3591.

Kudryashov, N. A., D. I. Sinelschikov. Nonlinear Waves in Bubbly Liquids with Consideration for Viscosity and Heat Transport. Phys. Lett. A, 374 (2010), 2011-2016.

Vitanov, N. K. Convective Heat Transport in a Fluid Layer of Infinite Prandtl Number: Upper Bounds for the Case Rigid Lower Boundary and Stress-Free Upper Boundary. European Physical Journal B, 15 (2000), 349-355.

Vitanov, N. K., Z. I. Dimitrova, M. Ausloos. Verhulst-Lotka-Volterra (VLV) Model of Ideological Struggle. Physica A, 389 (2010), 4970-4980.

Vitanov, N. K., S. Panchev. Generalization of the Model of Conflict Between Two Armed Groups. Compt. rend. Acad. bulg. Sci., 61 (2008), 1121-1126.

Gardner, C. S., J. M. Greene, M. D. Kruskal, R. R. Miura. Method for Solving Korteweg-de Vries Equation. Phys. Rev. Lett., 19 (1967), 1095-1097.

Ablowitz, M. J., D. J. Kaup, A. C. Newell, H. Segur. Inverse Scattering Transform - Fourier Analysis for Nonlinear Problems. Studies in Applied Mathematics, 53 (1974), 249-315.

Remoissenet, M. Waves Called Solitons, Berlin, Springer, 1993.

Hirota, R. Exact Solution of Korteweg-de Vries Equation for Multiple Collisions of Solitons. Phys. Rev. Lett., 27 (1971), 1192-1194.

Kudryashov, N. A. Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation. Phys. Lett. A, 147 (1990), 287-291.

Kudryashov, N. A. Nonlinear Differential Equations with Exact Solutions Expressed Via the Weierstrass Function. Z. Naturforschung A, 59 (2004), 443-454.

Kudryashov, N. A., M. V. Demina. Traveling Wave Solutions of the Generalized Nonlinear Evolution Equations. Applied Mathematics and Computation, 210 (2009), 551-557.

Vitanov, N. K., Z. I. Dimitrova, H. Kantz. Modified Method of Simplest Equation and its Application to Nonlinear PDEs. Applied Mathematics and Computation, 216 (2010), 2587-2595.

Wu, X.-H., J.-H. He. EXP-Function Method and its Application to Nonlinear Equations. Chaos, Solitons & Fractals, 38 (2008), 903-910.

Fan, E. Extended Tanh-Method and its Application to Nonlinear Equations. Phys. Lett. A, 277 (2000), 212-218.

Vitanov, N. K. Modified Method of Simplest Equation: Powerful Tool for Obtaining Exact and Approximate Traveling-Wave Solutions of Nonlinear PDEs. Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 1176-1185.

Kudryashov, N. A Solitary and Periodic Solutions of the Generalized Kuramoto-Sivashinsky Equation. Regular & Chaotic Dynamics, 13 (2008), 234-238.

Kudryashov, N. A., M. B. Soukharev. Popular Ansatz Methods and Solitary Wave Solutions of the Kuramoto-Sivashinsky Equation. Regular & Chaotic Dynamics, 14 (2009), 407-419.

Kudryashov, N. A. Simplest Equation Method to Look for Exact Solutions of Nonlinear Differential Equations. Chaos Solitons & Fractals, 24 (2005), 1217-1231.

Lou, S. Symmetry Analysis and Exact Solutions of the (2 + 1)-Dimensional Sine-Gordon System. J. Math. Phys., 41 (2000), 6509-6524.

Martinov, N., N. Vitanov. Running-Wave Solutions of the Two-Dimensional Sine-Gordon Equation. J. Phys. A: Math. Gen., 25 (1992), 3609-3613.

Martinov, N., N. Vitanov. On Some Solutions of the Two-Dimensional Sine-Gordon Equation. J. Phys. A: Math. Gen., 25 (1992), L419-L426.

Martinov, N., N. Vitanov. New Class of Running-Wave Solutions of the (2 + 1)-Dimensional Sine-Gordon Equation. J. Phys. A: Math. Gen., 27 (1994), 4611-4618.

Vitanov, N. K. On Traveling Waves and Double-Periodic Structures in Two-Dimensional Sine-Gordon Systems. J. Phys. A: Math. Gen., 29 (1996), 5195-5207.

Clarkson, P. A., E. L. Mansfield, A. E. Milne. Symmetries and exact solutions of a (2 + 1)-Dimensional Sine-Gordon System. Phil. Trans. Roy. Soc. London A, 354 (1996), 1807-1835.

Vitanov, N. K., N. K. Martinov. On the Solitary Waves in the Sine-Gordon Model of the Two-Dimensional Josephson Junction. Z. Phys. B, 100 (1996), 129-135.

Vitanov, N. K. Breather and Soliton Wave Families for the Sine-Gordon Equation. Proc. Roy. Soc. London A, 454 (1998), 2409-2423.

Radha, R., M. Lakshamanan. The (2 + 1)-Dimensional Sine-Gordon Equation; Integrability and Localized Solutions. J. Phys A: Math. Gen., 29 (1996), 1551-1562.

Nakamura A. Exact Cylindrical Soliton Solutions of the Sine-Gordon Equation, the Sinh-Gordon Equation and the Periodic Toda Equation. J. Phys. Society Japan, 57 (1988), 3309-3322.

Ablowitz, M. J., A. Zeppetela. Explicit Solutions of Fisher Equation for a Specifical Wave Speed. Bull. Math. Biol., 41 (1979), 835-840.

Dimitrova, Z. I., N. K. Vitanov. Influence of Adaptation on the Nonlinear Dynamics of a System of Competing Populations. Phys. Lett. A, 272 (2000), 368-380.

Dimitrova, Z. I., N. K. Vitanov. Dynamical Consequences of Adaptation of Growth Rates in a System of Three Competing Populations. J. Phys. A: Math. Gen., 34 (2001), 7459-7473.

Dimitrova, Z. I., N. K. Vitanov. Adaptation and its Impact on the Dynamics of a System of Three Competing Populations. Physica A, 300 (2001), 91-115.

Dimitrova, Z. I., N. K. Vitanov. Chaotic pairwise competition. Theoretical Population Biology, 66 (2004), 1-12.

Vitanov, N. K., Z. I. Dimitrova, H. Kantz. On the Trap of Extinction and its Elimination. Phys. Lett. A, 349 (2006), 350-355.

Vitanov, N. K., I. P. Jordanov, Z. I. Dimitrova. On Nonlinear Dynamics of Interacting Populations: Coupled Kink Waves in a System of Two Populations. Commun. Nonlinear Sci. Numer. Simulat., 14 (2009), 2379-2388.

Vitanov, N. K., Z. I. Dimitrova. Application of the method of Simplest Equation for obtaining exact traveling-wave solutions for Two Classes of Model PDEs from Ecology and Population Dynamics. Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 2836-2845.

Wang, X. Y. Exact and Explicit Wave Solutions for the Generalized Fisher Equation. Phys. Lett. A, 131 (1988), 277-279.

Kudryashov, N. A. Exact Solitary Waves of the Fisher equation. Phys. Lett. A, 342 (2005), 99-106.

Vitanov, N. K. Application of Simplest Equations of Bernoulli and Riccati Kind for Obtaining Exact Traveling Wave Solutions for a Class of PDEs with Polynomial Nonlinearity. Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 2050-2060.

Martinov, N. K., N. K. Vitanov. On the Self-Consistent Thermal Equilibrium Structures in Two-Dimensional Negative Temperature Systems. Canadian Journal of Physics, 72 (1994), 618-624.

Panchev, S., T. Spassova, N. K. Vitanov. Analytical and Numerical Investigation of two Families of Lorenz-Like Dynamical Systems. Chaos Solitons & Fractals, 33 (2007), 1658-1671.

Thaker, W. C. Some Exact Solutions to the Nonlinear Shallow-Water Equations. J. Fluid Mech., 107 (1981), 499-508.

Malfliet, W., W. Hereman. The Tanh-Method: I. Exact Solutions of Nonlinear Evolution and Water Wave Equations. Physica Scripta, 54 (1996), 563-568.

Debnath, L. Nonlinear water waves, New York, Academic Press, 1994.

Ivanov, R. I. Water Waves and Integrability. Phil. Trans. R. Soc. A, 365 (2007), 2267-2280.

Johnson, R. S. The Classical Problem of Water Waves: a Reservoir of Integrable and Nearly-Integrable Equations. J. Nonl. Math. Phys., 10 (2003), No. 1, 72-92.

Kudryashov, N. A., N. B. Loguinova. Extended Simplest Equation Method for Nonlinear Differential Equations. Applied Mathematics and Computation, 205 (2008), 396-402.

Kudryashov, N. A., M. V. Demina. Polygons of Differential Equations for Finding Exact Solutions. Chaos Solitons & Fractals, 33 (2007), 480-496.

Kudryashov, N. A., N. B. Loguinova. Be Careful with the Exp-Function Method. Commun. Nonlinear Sci. Numer. Simulat., 14 (2009), 1881-1890.

Kudryashov, N. A. Seven Common Errors in Finding Exact Solutions of Nonlinear Differential Equations. Commun. Nonlinear Sci. Numer. Simulat., 14 (2009), 3507-3529.

Hone, A. N. W. Painleve Tests, Singularity Structure and Integrability. Lect. Notes Phys., 767 (2009), 245-277.

Vitanov N. K., Z. I. Dimitrova, K. N. Vitanov. On the Class of Nonlinear PDEs that Can Be Treated by the Modified Method of Simplest Equation. Application to Generalized Degasperis-Processi Equation and b-Eequation. Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 3033-3044.

Vitanov, N. K. On Modified Method of Simplest Equation for Obtaining Exact and Approximate Solutions of Nonlinear PDEs: The Role of the Simplest Equation. Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 4215-4231.

Comte, J. C., P. Marquie, M. Remoissenet. Dissipative Lattice Model with Exact Traveling Discrete Kink-Soliton Solutions: Discrete Breather Generation and Reaction Diffusion Regime. Phys. Rev. E, 60 (1999), 7484-7489.

Baldwin, D., Ü. Göktas, W. Hereman. Symbolic Computations of Hyperbolic Tangent Solutions for Nonlinear Differential-Difference Equations. Computer Physics Communications, 162 (2004), 203-217.

Xie, F., J. Wang. A New Method for Solving Nonlinear Differential-Difference Equations. Chaos Solitons & Fractals, 27 (2006), 1067-1071.

Aslan, I. Analytic Solutions to Nonliner Differential-Difference Equations by Means of the Extended (G'/G)-Expansion Method. J. Phys. A: Math. Theor., 43 (2010), 395207.

Aslan, I. A Discrete Generalization of the Extended Simplest Equation Method. Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 1967-1973.

Kudryashov, N. A. A Note on the G'/G -Expansion Method. Applied Mathematics and Computation, 217 (2010), 1755-1758.

Wadati, M. Transformation Theories for Nonlinear Discrete Systems. Progr. Theor. Phys. Suppl., 59 (1976), 36-63.

Holling, C. S. The Components of Predation as Revealed by a Study of Small-Mammal Predation of the European Pine Sawfly. Canadian Entomologists, 91 (1959), 293-320.

Journal of Theoretical and Applied Mechanics

The Journal of Institute of Mechanics of Bulgarian Academy of Sciences

Journal Information

CiteScore 2018: 0.88

SCImago Journal Rank (SJR) 2018: 0.192
Source Normalized Impact per Paper (SNIP) 2018: 0.646

Mathematical Citation Quotient (MCQ) 2017: 0.01

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 163 132 23
PDF Downloads 75 63 8