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Decomposing Multilateral Price Indexes into the
Contributions of Individual Commodities

Michael Webster' and Rory C. Tarnow-Mordi*

This article describes methods for decomposing price indexes into contributions from
individual commodities, to help understand the influence of each commodity on aggregate
price index movements.

Previous authors have addressed the decomposition of bilateral price indexes, which
aggregate changes in commodity prices from one time period to another. Our focus is the
decomposition of multilateral price indexes, which aggregate commodity prices across more
than two time periods or countries at once. Multilateral indexes have historically been used for
spatial comparisons, and have recently received attention from statistical agencies looking to
produce temporal price indexes from large and high frequency price data sets, such as scanner
data. Methods for decomposing these indexes are of practical relevance.

We present decompositions of three multilateral price indexes. We also review methods
proposed by other researchers for extending multilateral indexes without revising previously
published index levels, and show how to decompose the extended indexes they produce.
Finally, we use a data set of seasonal prices and quantities to illustrate how these
decomposition methods can be used to understand the influence of individual commodities on
multilateral price index movements, and to shed light on the relationships between various
multilateral and extension methods.
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1. Decomposition of Bilateral Price Indexes

Price indexes are used to combine the price changes of individual commodities into an
aggregate measure of price change. Statistical agencies also find it useful to work in the
opposite direction: to decompose a price index into the contributions of individual
commodities. This facilitates the identification of the commodities with the greatest
contributions to change, which is helpful for validating the inputs and explaining the index
(ILO et al. 2004, chap.9).

It is useful to start with a few straightforward examples. A price index that takes the
form of an arithmetic mean of commodity price ratios or relatives has an additive
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decomposition. In other words, it can be decomposed into a sum of contributions, each
depending on prices (or price changes) of an individual commodity:

PO = "ci(pi, W) ©)

l

where p; is a vector of prices for commodity i, w; is a weight (vector) used to aggregate its
prices with the prices of other commodities, and c¢; is some unspecified function that
depends only on prices and weights of commodity i. Note that the subscript in ¢; is not
strictly necessary but is included to simplify references to summation terms.

For instance, the Laspeyres index between two periods (0 and 1) can be expressed as

> .pldl
PO = Y 0P @)

1
— i

L — 0.0 0
Zipi‘h T Pi

where p¥ and p! are the prices of commodity i in periods 0 and 1, ¢¥ is the quantity
of commodity i in period 0, and s¥ = p?q?/zjvzl pjq; is the expenditure share of
commodity i in period 0.

Similarly, an index that can be expressed as a geometric mean of price relatives has a
simple multiplicative decomposition:

PO = T ]citpi, wi) 3)

For instance, the Tornqvist index between 0 and 1 can be expressed as

RN
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where s; is the expenditure share of commodity i in period 1.

Several authors have written about the decomposition of common bilateral price indexes.
Balk (2008, chap.4) provides a good overview of the topic. As well as presenting
decompositions of the straightforward type above — additive decompositions of arithmetic
mean indexes, and multiplicative decompositions of geometric mean indexes — Balk
also presents additive decompositions of geometric mean indexes, multiplicative
decompositions of arithmetic mean indexes, and both arithmetic and multiplicative
decompositions of Fisher and Walsh indexes, referencing earlier publications by Van
[Jzeren (1952, 1983), Vartia (1974, 1976), Diewert (2002) and Reinsdorf et al. (2002).

Many of these decompositions feature a logarithmic mean involving the price index that
is being decorlnposed. For example, Balk shows that a general arithmetic mean index
POl = Ziwi% can also be written as

1\ i
PO = H(f;’—o) (5)
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1\ Oi
where (g—o) is the contribution of commodity i to the arithmetic mean index:
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and L is the logarithmic mean function, defined as L(x, y) =
for positive arguments x and y.

There are several possible decompositions of a single price index: for example, the
Laspeyres index has an additive decomposition given by Equation 2, as well as a
multiplicative decomposition given by Equation 5 where w; = s?. The commodity
contributions from some decompositions, such as Equation 5, depend on the aggregate
price changes (or levels): in the remainder of this article, we refer to such decompositions
as reflexive. We refer to decompositions with commodity contributions that depend only
on the prices of the relevant commodity and the expenditures (or quantities) of any or all
commodities, such as Equations 2 and 4, as simple. This distinction has not previously
been named in any source that we are aware.

Different decompositions may be useful in different scenarios. For instance, when we
are comparing the properties of two price indexes, it is useful to decompose them in
similar ways; when we are combining index movements additively or multiplicatively, a
corresponding (additive or multiplicative) decomposition facilitates the calculation of
contributions to the combined index.

Fundamentally, however, if we are interested in separating out the contributions of
individual commodities to a price index, a simple decomposition seems preferable to a
reflexive decomposition. This is because the aggregate price change, which the reflexive
decomposition explicitly references, necessarily depends on the prices of all commodities.

It seems unavoidable for the contributions to depend on expenditures (or quantities) as
these reflect measures of economic importance that are used to aggregate the price index.
For a simple decomposition, what is important is that the expenditures (or quantities) do
not depend on the price index.

Note that Equation 4 also yields a simple decomposition into the contributions of
individual price observations:

X xX=y

Pyt =TII100)"™ ©
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where fﬁ(S) = 1/2(s(-) —i—s-l) t=1

It can be shown that decompositions of this general form are unique: if, for a given price
index formula, tl}ere exist func}ions of expenditure shares fi(s) and gi(s) satisfying
POl = HiHr(pg)f ® = Hi]_[t(pf)g “® for any sets of prices p! and expenditure shares s/,
then fi(s) = gi(s) for all i and r. We meet other decompositions of this form later in the

article.
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2. Decomposition of Multilateral Price Indexes

The price indexes mentioned in the previous section are bilateral, in the sense that they
measure price change between two time periods 0 and 1. Suppose we are interested in
measuring price change over a window of adjacent time periods between O and 7, with
T > 1. Traditional practice involves either calculating a sequence of bilateral indexes
between 0 and each subsequent period {P%!, P%2 ... P%T} or a sequence of bilateral
indexes between consecutive periods {P*!, P12 ... PT=LT} The former sequence yields
a direct bilateral index and the latter sequence yields a chained bilateral index.
Alternatively, we can use a multilateral index method to simultaneously estimate a system
of price comparisons {P°,---, PT}.

Ivancic et al. (2011) proposed using multilateral methods to produce price indexes from
data sets of retail transactions, finding they gave more satisfactory results than either direct
or chained bilateral indexes. This has inspired further studies at several statistical agencies
with access to scanner data: see, for instance, De Haan and Krsinich (2014), De Haan
(2015), Howard et al. (2015), Chessa (2015), Krsinich (2016), Australian Bureau of
Statistics (2016, 2017).

A feature of multilateral indexes is that the price comparison between any pair of time
periods a and b may depend on prices in other periods, and on commodities that are sold in
a and not b or vice versa. This makes it important to be able to decompose multilateral
index movements: without this, it is challenging to interpret which commodities’ price
changes have the greatest influence on price comparisons.

The decomposition of multilateral price indexes is the focus of the remainder of this
paper. We decompose three multilateral methods considered in the studies cited above:

1. The Time Product Dummy (TPD) method advocated by Krsinich (2016), which is a
temporal analogue of the Country Product Dummy method introduced by Summers
(1973),

2. The GEKS method proposed by Gini (1931), Elteté and Koves (1964) and Szulc
(1964), especially the GEKS-T6rnqvist or CCD variant proposed by Caves et al.
(1982),

3. The Geary-Khamis (GK) method proposed by Geary (1958) and Khamis (1972).

We focus on these specific multilateral methods because a number of statistical agencies
are either researching them or starting to use them for the production of official price
indexes.

2.1. Decomposition of the TPD Method

Suppose we have a set of price observations p! pertaining to periods ¢t € {0, . . ., T} and
commodities i € {1, ..., N}, possibly with some missingness (combinations of i and ¢
for which p! is not observed or does not exist).

The TPD method involves calculating a system of price comparisons by fitting the model

Inpi=a+8"+vy +¢ @)

where « is the intercept, &' is the time effect parameter for period ¢, y; is the product
(commodity) effect parameter for commodity i and &} is an error term. In estimating
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the model, we choose an arbitrary time period and commodity to treat as reference
categories, and set their effects to zero: for notational convenience, we select period 0 and
commodity N.

The remaining parameters in the model are estimated by minimising the sum of squared
residuals. Where expenditure information is available, a common approach is to minimise
the sum of weighted squared residuals using the expenditure shares s’ as weights (see Rao
2005; De Haan and Krsinich 2014; Chessa 2015; Krsinich 2016; Australian Bureau of
Statistics 2016).

The time effect parameter estimates reflect the natural logarithm of the price level in
each period, relative to period 0, so it is natural to estimate the price level in each period by
taking the exponential of the time effect estimates. The TPD price comparison between
periods a and b is thus the ratio of price levels
exp (3” ) N

=t = 5 — & 8
op (59 exp ( ) ®)

TPD —

Strictly the exponential transformation introduces a model bias, which in this context
is usually implicitly or explicitly treated as small enough to ignore (see, for instance,
De Haan et al. 2016).

2.1.1.  Simple TPD Decompositions

We can decompose TPD price comparisons by following the weighted least squares
process used to derive the parameters. In general, regression model parameter estimates
under the weighted least squares process are given by the product of matrices

B =X"WX)"'X"Wp = Ap ©9)

In cases where the design matrix X and the weight matrix W are considered fixed and
known, this equation demonstrates that each parameter is a linear combination
(represented by matrix A) of the observed variables p; that is 3; = Zin., ;pj. This fact,
combined with the exponential transformation in Equation 8, gives a natural multiplicative
decomposition of the price change between two periods.

Specifically, the weighted least squares equation in our case is composed of

A .2 A a R T
- The parameter estimate vector 3 which is | & L R /v

- The design matrix X corresponding to the parameter vector and price vector, with a
simple structure:

1 D'y - DT(1) [Di(1) -+ Dy—i(1)
1 DY) --- D'(K)|Di(K) --- Dy-1(K)

where D'(k) and D;(k) are dummy variables with values of 1 if the k-th price
observation pertains to period ¢t and commodity i respectively and zero otherwise.
K is the total number of price observations.
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- The weight matrix W, a diagonal matrix of expenditure shares: diag (sf)
- The price vector p, which contains the log price observations for each commodity-
time, [ Inpy Inp, --- Inpp --- IHPK]T

Note that for simplicity, the price vector is indexed with a single variable k instead of the
separate time variable # and commodity variable i shown in Equation 7. This difference is
superficial: both representations are equivalent, but a single index variable makes the
linear algebra simpler.

As only the time effect parameters are needed to estimate TPD comparisons, the
weighted least squares solution of Equation 9 can be simplified using the Banachiewicz
formula for block matrix inversion (see Puntanen and Styan 2006):

A B!

C D

(A-BD10)! —(A—-BD1C)"'BD!
-D"'C(A-BD'C)"! D !'+D'C(A-BD!'C)"'BD!

where the block matrices are of appropriate dimensions and A, D, and (A — BD~1C) are
invertible. Applying this result, we obtain

§e= [ (W =W W W)™ (X - W, W IX])W]|

K
p=> waxIn(py) (10)
141 =

where W, =XTWX,, W_=X"WX,, W,, =X WX, and the a+ 1 subscript
indicates we take row a + 1 of the matrix in the square brackets. Note that when in the
proceeding paragraphs, variable @ may be replaced with variable b, but the analogical
formulas apply.

Equation (10) defines the weights w,  for a > 0; for a = 0 (the reference period) we set
wox = 0 for every k, as the corresponding weights from (10) would yield the parameter
estimate @&.

This simplification is useful for computation, as it limits the size of the matrix required
to be inverted to the number of time periods included in the model. This is a particular
advantage for TPD methods that aggregate the prices of an arbitrary number of
commodities over a window of a fixed size, as it protects the performance of any
implementation.

Combining Equations 8 and 10, it follows that a decomposition of the TPD price index
in terms of commodity price observations is

P’t;“l,’]D — ﬁp}jbk_wu.k
k=1
— HH (pz)Wb.ku.r)*wa.k(,-,z) (a1
it
= HHCZI'PD,I‘(Q’ b)
it

where k(i, f) is the observation corresponding to commodity i and period ¢, and
chpp a,b) = (pt)""* " is the contribution of price observation p! to the TPD price

comparison between periods a and b.
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We can alternatively decompose TPD price comparisons by deriving the parameters in a
manner similar to Diewert and Fox (2017). The weighted sum of squared errors can be
written as

E= ZZsﬁ(logpf —a—8— y,-)z (12)
i t

The time and commodity effect parameters that minimize E satisfy ;’—g =0 and % =0.
This yields a pair of equations

5" =" si(logp; — (¢ + 7)) (13)
Ztsﬁ ( logp} — 3’)
a+ 9= , (14)
A

Substituting Equation 14 into Equation 13 to eliminate & and 7¥; yields

St Szt'slil Qu t t Zus? log p;‘
3= () sy o - =) s
0 TS i Si
where s = 35!
l I3 1
Equation 15 can be written in vector-matrix form as Id = Md + b, where I is an
identity matrix of size T + 1, d is a vector of the time effect estimates, M is a matrix with
the element in the #-th row and u-th column equal to
t
sist
- SZ ’

i i

and b is a vector with the #-th element equal to

us? logp¥
> st b&ﬁ—;;—ﬁf——

The solution to this equation satisfies
M-Dd=-b (16)

The matrix M — I is singular so we cannot invert it to solve Equation (16). However,
we usually constrain the time effects by setting 8° = 0. This constraint can be expressed in
matrix form as

Cd=0 (17)

where C is a matrix with all entries in the first column equal to 1 and 0 elsewhere and 0 is a
vector of zeroes. Collier (1999) uses a similar technique in a different context (deriving
Geary-Khamis indexes). Adding Equations 16 and 17 yields

M-I+Cd=-b (18)
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d=-M-1I+C)"'b (19)

Let us denote the element in the r-th row and c-th column of M — I+ C)™! as m,..
Then from Equation 19 we can write an arbitrary time effect estimate 6 as

MS;‘ 1ogp ? us ?mau
8= —meng logp! — ZT = —ZZs?logpﬁ Mg — ZS—E (20)
7 i [ i

It follows that

A

Pih = exp (Sb —6%)

it

Equations 11 and 21 give apparently distinct, but actually equivalent, formulations of a
simple TPD decomposition. This fact is a consequence of the uniqueness of the solution to
a full rank weighted least squares problem. It also follows from our earlier observation
(from Section 1) that decompositions of this form are unique. Both formulations can be
used to explain the impact of individual commodities by combining the relevant terms,
that is, H,CtrpD,i(%b) gives the contribution of commodity i to the price comparison
between periods a and b.

Despite the equivalence of the two formulations of this decomposition, the former
formulation focuses on simplicity in linear algebra, but loses the explicit separation of time
and commodity terms in the decomposition, requiring these to be recovered after the
decomposition is derived. The latter formulation carefully maintains the separate time and
commodity terms, but is more difficult to express in terms of matrix operations. Both of
these decompositions will be referred to henceforth as the Simple TPD Decomposition.

2.1.2. Reflexive TPD Decomposition

A third decomposition of the TPD can be derived from a multilateral method proposed by
Rao (1990), which involves solving a set of equations

1

Pro =] <];—t> 22)

1

t
Si

pio\ 2ot
e i u 23
g H(P;{a) @y

simultaneously for the unknown parameters 7; and Pg,,.

reference price for commodity i, and we typically impose the condition P
a unique solution.

Rao (2005) demonstrates that the system of price comparisons obtained by solving
Equations 22 and 23 simultaneously is equivalent to the (weighted) TPD system.

; can be interpreted as a

0

Rao = 1 to obtain
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From Equation 22, the TPD price change between two periods a and b can be
expressed as

()" = (24)

b7
a, Pi
rito =TT ()

We need to be careful expressing the price change in this way, because some
commodities may only have a price in one of the two periods @ and b. Where, for instance,
a commodity is not sold in period a, we simply replace the expenditure share s¢ with a 0,
and consequently replace the exponentiated missing price (pf)sg with a 1.

Equation 24 has each commodity’s contribution to the price change expressed in terms
of its weighted prices, as well as the reference price ;. From Equation 23, we can see that
the reference prices depend on the aggregate price levels, which makes the decomposition
reflexive. It also has the interesting property that choosing a period other than O as the
reference would not alter the price comparisons, but could alter the reference prices 7r;, and
consequently the commodity contributions to those price comparisons. We will continue
to refer to this decomposition as the Reflexive TPD Decomposition.

2.2.  Decomposition of the CCD and GEKS Methods

The GEKS method involves calculating multilateral price comparisons by combining
bilateral Fisher indexes:

t

prb l

b

Pées =[] ( Pf,a) (25)
F

where P is a Fisher price index:

S i\ (S ptaf\ 1"
Yo phal |\ > phal

GEKS-Torngvist or CCD price comparisons are obtained by replacing the Fisher indexes
in Equation 25 with Tornqvist indexes:

Pyl = (26)

, prb e

a, T

Péep = H pla (27)
T

t

We can easily derive multiplicative decompositions of the CCD index using a
multiplicative decomposition of the Tornqvist index. From Equation 4, we know that
the Tornqvist index can be written as a product of commodity contributions

H0s)
cr,i(0,1) = (Z—;) . Substituting this into Equation 27, we obtain

i
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;
CTz t b ™
HH(@{ v )
b\ wi(®,b) o
Pi Hf,(m_; v]v,(t.b)
= HLW) [H(P?) : ] (28)
i (pf) 1
= HCCCD,i(aa b)

where

wit,a) =1 < S % -+ 5 % s“> is the weight of commodity i in the Térnqvist
i€@na)” i i€na)” i

price comparison between periods ¢ and a (represented by the notation i € (r N a))

wi(e,a) = TLH > wi(t,a) is the average weight across comparisons involving period a
( [7 wi(®.b) wi(t,@)—wi(t,b)
and cccp i(a, b) = (p oy I (pl) T+1 is the contribution of commodity i to the

CCD price comparison between periods a and b.

Note that this CCD decomposition is simple: it inherits this property from the Tornqvist
decomposition.

If there are any missing prices p}, we replace the corresponding term(s) with a 1. If there
are no missing prices (i.e., the same set of commodities is sold every period), Equation 28
can be simplified to an expression based on the CCDI index presented by Diewert and Fox
(2017):

=
~
2
+
@
=3
N

b
a, P, . %s?*sf’
PCV(bZD = H ( P I(Sg+51(_/) (pi ) ( ) (29)

where 57 = ziq st and p? =[] ()"

As observed by Chessa et al. (2017), Equation 29 can be expressed as a geometric
average of two factors. The second factor is very similar to Equation 24, revealing that the
TPD and CCD indexes are closely related. However, the first factor reveals that the CCD
gives more influence to local price changes between periods a and b.

NN o
reto=T1|(2)" | |20 1

We could obtain a multiplicative decomposition of a GEKS price comparison in
a similar way, by substituting a multiplicative Fisher decomposition into Equation 25.
The results are not presented here. We note, however, that a GEKS decomposition will
inherit the simple/reflexive property of the corresponding Fisher decomposition.
The multiplicative Fisher decompositions presented by Balk (2008, chap.4) are both
reflexive.

(30)

3
~
| S
o=
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2.3.  Decomposition of the GK Method

The GK method involves solving a set of simultaneous equations, similar to those from the
Rao method:

>,
Zimqf

thﬁcﬁ/PrGK
> .4

1 —
PGK_

€29

(32)

T =

where again, 7r; can be interpreted as a reference price for commodity i, and we typically
impose the condition P%K = 1 to obtain a unique solution.
To decompose GK index movements, it is helpful to first rewrite Equation 31 as

Pl = Za“” o (33)

.q! . . . .. . .
where o} = ﬁ can be interpreted as an expenditure share of commodity i in period ¢, if
J1j

all commodltles were sold at reference prices.
Instinctively, one might seek an additive decomposition of the GK price change
between two periods using Equation 33: some algebraic manipulation yields

b

»Pi
dottt
1 ﬂ-l

a

p.

altli
>0t
l 7Tl

ab __
PGK_

a 4
b Pb )71 a& (3 )
GK o —
470 ol =0 i
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a
¢>0 Ui pi =

where the first sum includes commodities sold in both a and b, and the second sum
includes commodities sold in b and not a (last line of Equation 34) or vice versa (second
last line). The last line of Equation 34 is an additive decomposition that is reflexive
through its inclusion of the aggregate price level P¢, and also indirectly through the
shares ¢! and the reference prices ;.

When an identical set of commodities is sold in a and b, the second term of this
decomposition disappears and the first term seems quite appealing as an additive
decomposition. However, in general, the asymmetric manner in which it handles prices
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missing from only one of a or b seems unsatisfactory. Taking the mean of the second last
and last lines of Equation 34 would address the asymmetry but the result is no longer an
additive decomposition.

We can obtain a more symmetric GK decomposition by first using Equation 5 to convert
Equation 33 to a multiplicative form:

0}
Pac=11 (’;—) (35)

1
where
9! = U-ifXL(PtGK’pﬁ/Wi)
1
Zj()'j’ XL(P’GK,pj’-/ﬂ'j)
_ @i XL(mPg.p))
> < L(7Pi.p))
qi X pi

> 4%p)
J
t

:si

where the second equality follows from the definition of ¢! and the homogeneity of the
logarithmic mean, and the approximation follows from the p! = mPLy relationship
implicit in the GK method.

It follows that

GK 7(1)9
n(%) (36)
)

Equation 36 is a multiplicative GK decomposition that is reflexive through both the
reference prices ; and the exponents 6!. Note the similarity to Equation 24.

3. Decomposition of Extended Multilateral Indexes

Statistical agencies compute and publish price indexes as new periods of price data
become available. The published index series is extended by linking or “splicing” price
comparisons involving the latest period onto published index levels for previous periods.
This section focusses on how to extend the index series when multilateral methods are
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used to generate price comparisons, and how we can use the results from the previous
section to decompose published index movements.

It is relatively straightforward to extend a bilateral index. For instance, when data from
period r becomes available, we would extend a direct bilateral index to period ¢ by first
calculating the price comparison P%' between the reference period (0) and ¢, and then
multiplying this by the index level in the reference period: P! = P% x P%!. Similarly, we
would extend a chained bilateral index by multiplying the previous index level P'~! by the
price comparison between the previous and current periods P'~ !+,

How best to extend a multilateral price index is more ambiguous. In period ¢, we
simultaneously estimate price comparisons between ¢ and several historical periods. Using
the price comparison from one historical period to extend the index may yield a different
result to using the price comparison from another.

Several authors have proposed splicing methods for extending multilateral indexes. In
this article, we focus on decomposing the methods considered in Australian Bureau of
Statistics (2017):

® Rolling window methods, including the movement splice proposed by Ivancic et al.
(2011), the window splice proposed by Krsinich (2016), the half (window) splice
proposed by De Haan (2015), and the mean splice proposed by Diewert and Fox
(2017). These methods involve selecting a fixed window length (7 4 1 periods) for
multilateral comparisons. As each new period of data becomes available, we
calculate a new system of comparisons over the window spanning from ¢ — 7'to ¢ and
splice it together with the previous system of comparisons (using a window spanning
fromt — T — 1tot — 1) to estimate the index movement from ¢t — 1 to ¢,

e The direct method proposed by Chessa (2015). This method involves selecting a
fixed base period b (say, December) as the start of the multilateral comparison
window. As each new period of data becomes available, we calculate a system of
comparisons spanning from b to r and use the direct price comparison between b and ¢
to estimate the price change between these periods. The base period can be updated
regularly (e.g., annually).

Table 1 expresses the extended price movements between consecutive periods (r — 1
and #) in terms of multilateral price movements from the current window (ending in 7) and
the previous window (ending in # — 1). The methods are algebraically similar, though in
practice the indexes may yield different trends. The next section presents empirical results.

Of most relevance here is that they all combine multilateral price movements in a
multiplicative manner (through division or geometric averaging). This means that we can
substitute a multiplicative decomposition for each of the multilateral price movements that
feature in the extended price movement, and collect like terms to obtain a multiplicative
decomposition of the extended price movement. Importantly, if the multilateral
decomposition is simple, then the decomposition of the extended price movement is
also simple.

In Table 1, P*Y(z) denotes the aggregate price comparison between periods x and y
derived from a multilateral window ending in period z, and c;(x,y;z) denotes the
contribution of commodity i to that aggregate comparison.
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Table 1. Comparison of extension methods.

Extension method Price movement between Decomposition of
consecutive periods consecutive movement
Movement splice Pt = proli(p P = et — 1,8:8)
i
Window splice =1t — __ P =1t — ci(t=T.1;)
p P = PrTEI—0) P - Hc‘i(t—T,t—l;t—l)
Half splice =14 — __ PP =1 — ci(t=T/2.t:1)
P P T PETRI(—) P =11 c(t=T/2,t=1it—1)

(assuming T is even) i

Mean splice . 1 i
—1t — 177 Pt (T | pr—1y — T cit=s) |T
P - Hszl [P'*f-ffl(z—l)} P - H |:Hx:1 ci(t—st—1;t—1)

Direct =1t — _ PP =1 _ ci(b,tst)
P T PMIE-T) P - Hc,(b,t—l;t—l)

i

It may be of interest to decompose longer term (e.g., annual) price comparisons of an
extended price index. These longer term movements can be expressed as a product of
consecutive price movements:

b
Pa,b: H Pt*l.t (37)
t=a+1

As above, we can substitute a multiplicative decomposition for each element of
Equation 37 and collect like terms to obtain a multiplicative decomposition into
commodity contributions

b
PP =TT I et — 1.0

i t=a+1

where c;(t — 1,1) is the contribution of commodity i to the extended movement between
t — 1 and ¢ (as given in the third column of Table 1). Once again, if the underlying
multilateral decomposition is simple, this will be preserved.

4. Empirical Results

In this section, we illustrate how the decomposition methods described in the previous
sections can be used to quantify the contributions of individual commodities to
multilateral price comparisons. In Subsection 4.1 we introduce the data used for this
analysis. In Subsection 4.2, we decompose indexes calculated using a range of multilateral
methods, and in Subsection 4.3 we decompose indexes calculated using a range of
extension methods. This allows us to compare and contrast the methods considered.
However, in practice, a statistical agency may prefer a single combination of multilateral
and extension methods for various reasons. In this context, the comparison between
methods is less important than the illustration that we can decompose an index calculated
using any combination of the multilateral and extension methods described above.
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Fig. 1. Price of fruit commodities.
4.1. Data

The main data set we use for this illustration contains monthly price and quantity
information relating to five fruit commodities over a period of four years. It is taken from
the IWGPS Consumer Price Index Manual (ILO et al. 2004, chap.22) and is a modified
version of a data set from Turvey (1979). Three of the commodities (Apples, Grapes and
Oranges) are sold every month whereas the remaining two (Peaches and Strawberries) are
sold only for a few months each year. Figures 1 and 2 plot the prices and quantities of each
commodity.
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