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Many statistical agencies face the challenge of maintaining the confidentiality of respondents
while providing as much analytical value as possible from their data. Datasets relating to
businesses present particular difficulties because they are likely to contain information about
large enterprises that dominate industries and may be more easily identified. Agencies
therefore tend to take a cautious approach to releasing business data (e.g., trusted access, remote
access and synthetic data). The Australian Bureau of Statistics has developed a remote server,
called TableBuilder, which has the capability to allow users to specify and request tables
created from business microdata. The tables are confidentialised automatically by perturbing
cell values, and the results are returned quickly to the users. The perturbation method is
designed to protect against attacks, which are attempts to undo the confidentialisation, such as
the well-known differencing attack. This paper considers the risk and utility trade-off when
releasing three Australian Bureau of Statistics business collections via its TableBuilder
product.
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1. Introduction

While carrying out their role of collecting and disseminating data, statistical agencies

generally need to determine effective ways of meeting two key objectives: to maintain the

confidentiality of respondents and to provide its society with as much analytical value from

the data as possible. The two most common types of data that require confidentialisation are

data about people and data about businesses. Person-level data and business-level data have

many aspects in common. However, there are some characteristics commonly associated

with business data that may make confidentialising a more challenging problem.

Typically, some industries will be dominated by large businesses whose information is

difficult to conceal without suppressing or altering the data to a large extent. For many

business collections, continuous data items, such as turnover or profit, are of key interest to

users. Some of these continuous data items, such as capital expenditure, may have many

zero values and a few large values. Certain aspects of a business’s operations can become
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public knowledge, for example through the release of annual reports. Some users may also

have access to administrative data related to the businesses. There are potentially high

incentives for attackers to try to discover confidential information about businesses

because this may lead to a competitive advantage. These issues can become even more

problematic in countries with smaller economies, because of the limited number of

businesses that operate in those countries.

For some statistical agencies, there are legislative differences between the treatment of

person-level data and business-level data. For example, there can be opportunities to gain

consent to publish business data. This may allow the release of more data, but can also make

the process of applying confidentiality protection more complex. This is because there is

a need to monitor which businesses provide consent and because confidentialisation is

complicated in cases when consenting and nonconsenting businesses appear in the same

cell of a table. Another example is where confidentialisation is required at multiple levels of

business structure.

For the reasons listed above, release of detailed business micro-data by statistical

agencies may allow attackers to discover confidential information about a business. This is

why, at least in the case of the Australian Bureau of Statistics (ABS), the vast majority of

its business data is still released in the form of broad-level tables.

A common approach for confidentialising tabular business data is suppression

(González 2005; Tambay and Fillion 2013). This approach is easiest to apply when the full

set of tables to be published is known in advance. If additional tables are requested, then

any further suppression will need to take into account which cells were previously

suppressed. In practice the full set of tables is rarely known in advance. This means that

suppression is unlikely to be optimal and that the amount of information released with

each set of additional tables will be increasingly suppressed. Some statistical agencies

consider alternative approaches including accredited or “trusted” access (Abrahams and

Mahony 2008), replacing sensitive data with synthetic data (Miranda and Vilhuber 2013)

and various ways of perturbing micro-data.

The ABS has developed an approach that could be used to release confidentialised totals

from business data through its remote server, called TableBuilder. A simple model for

a remote server (Chipperfield and O’Keefe 2014; Chipperfield 2014; O’Keefe and

Chipperfield 2013; Thompson et al. 2013) is: (1) an analyst submits a query (i.e., request

for a table) to the remote server; (2) the remote server automatically modifies or restricts

the query’s output; (3) the server sends the modified output to the analyst. Tambay (2017)

use the ideas of a remote server (specifically TableBuilder) while also perturbing the

underlying micro-data. For reviews of remote servers in use or in development in national

statistical agencies, see Lucero et al. (2011), Reuter and Museux (2010).

There are some key advantages of a remote server. First, the degree to which an estimate

is modified depends upon the output itself. For example, modification of an estimate may

be relatively high if a cell is dominated by a single business and relatively low if a table

cell has many small businesses of roughly equal size. Second, because an analyst is

restricted from viewing the micro-data, less modification is needed than would otherwise

be the case. Third, it allows users to gain rapid access to estimates they request. Fourth, the

modification algorithm assures a specified level of protection is guaranteed.
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This article evaluates the prospect of allowing access to business survey data via

TableBuilder. For a full description, see Part 1 of Thompson et al. (2013). Section 3

defines disclosure and utility and discusses how TableBuilder’s perturbation settings could

be chosen to optimise the trade-off between disclosure and utility. Sections 4, 5 and 6

evaluate utility of TableBuilder outputs, conditional on a certain level of disclosure risk,

for two surveys and one administrative collection of the ABS. Section 7 makes some

concluding remarks, including a discussion of the prospects of releasing business data in

TableBuilder.

2. TableBuilder

2.1. Totals

Here we describe the essential perturbation algorithm, but for a more complete description

see Part 1 of Thompson et al. (2013). Consider any particular cell in a table and let there be

n sample units contributing to the cell, where the units are indexed by i ¼ 1; 2; : : : ; n.

Define a continuous valued characteristic (e.g., income or turnover) for the ith unit (e.g.,

business) by yi so that jy1j $ jy2j $ jy3j: : : $ jynj. The absolute values are taken because

it is the magnitude of y, not whether it is positive or negative, that has bearing on

considerations of risk and utility. (Changing all y values from positive to negative in a cell

would not affect the perturbation distribution P *- this is as it should be because a large

negative y value is just as sensitive as a large positive y value.) If we define the estimation

weight for the ith unit in the cell by wi the survey estimate of the total is Ŷ ¼
P

i wiyi.

Instead of releasing Ŷ, TableBuilder releases Ŷ* ¼ Ŷþ P*, where P* ¼
PK

i¼1 mid
*
i h*

i

� �
yiwi is the perturbation amount and:

. mi is a positive constant parameter. This parameter moderates the magnitude of the

perturbation relative to the value yi. In particular, the parameter m1(i ¼ 1) is the

most important of the parameters as it plays an important role in protecting

the largest contributor’s value, y1. The optimal value of mi depends upon the

distribution of y within the cell, the risk measure and the utility measures. Given the

complexity of these dependencies, the optimal values are calculated in simulation

(see Subsection 3.4).

. d*
i is a random variable taking the value 21 and 1 with equal probability and so

determines the direction of the perturbation.

. K is the number of top contributors in the cell that are used in calculation of P*. We

found that there was little value in allowing K . 4 since the main aim here is to

protect the largest contributor’s value (see Subsection 3.1).

. h*
i , for purposes of this evaluation, was a random value drawn from a symmetric

triangular distribution with lower limit 1 2 b ¼ 0:7 to 1þ b ¼ 1:3 and the mode of 1.

h*
i has mean E h*

i

� �
¼ 1 and variance Var h*

i

� �
¼ b2=12 which, with b ¼ 0.3, is

equal to 0.075. The bimodal distribution generated by d*
i h*

i is symmetric round zero,

s 2
*
¼ Var d*

i h*
i

� �
¼ 1þ b2=12 and has little mass around 0. This avoids unacceptable

small values while also ensuring that the perturbation has mean zero. Exploring other

distributions would likely be a fruitful line of research (Krsinich and Piesse 2002;

Evans et al. 1998; Tambay 2017).
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The form of P* is intuitive in the sense that its magnitude is in proportion to the size of

the K largest, and most at risk, contributors. Allowing K . 1 allows more degrees of

freedom to specify the perturbation distribution, P*, and so will allow it to better

approximate the optimum distribution.

There is no constraint in this procedure to ensure consistency between the perturbed

estimates. This means a perturbed total for Australia will not exactly equal the perturbed

totals for each state summed over all states.

The current functionality of TableBuilder is such that K, the mis and the distributions of

d*
i and h*

i are essentially fixed for a given business collection. This means, for instance,

that it is not possible to allow P* to depend upon whether or not a cell is known to be

sensitive and that it is not possible to allow the value of K to vary across cells. In Section 7

we discuss the benefits of relaxing this constraint.

We can see that E *ðP*Þ ¼ 0, where ‘*’ represents the perturbation process. We did

consider generating P* from the Laplace distribution so as to achieve 1-differential privacy

(Dwork et al. 2006), but the utility loss was far too great.

Table 1 gives an example of the perturbation of a cell total. We set K ¼ 4, m ¼

ðm1;m2;m3;m4Þ ¼ ð0:6; 0:4; 0:3; 0:2Þ and there are n ¼ 8 businesses in this cell. The

estimator of total Ŷ ¼ USD 263,719 is perturbed by P* ¼ 2 USD 18,278 so that the

released estimate is Ŷ* ¼ USD 245,441. The particular choice of values for K and m in

Table 1 are for illustration only.

A Unit Key is a positive integer less than 232 that is permanently and randomly assigned

to each unit. The Unit Key is the random seed used to generate the value of d*
i for

i ¼ 1, : : : , n. This means, once generated, all d*
i s are fixed in all calculations of P*. It also

means that a unit’s contribution to P*, when applicable, is either always positive or always

negative – this was to reduce the perturbation variance of differences between cell totals,

where the cells had some units in common (for more discussion on this see Subsection 3.4

and in Section 7).

A Cell Key is calculated by summing the Unit Keys for all the units contributing to the

cell and then dividing by a large prime number. This essentially means that the Cell Key

depends upon the exact set of n records that belong to the cell. The random seed for h*
i

Table 1. Example of perturbation (K ¼ 4).

ID

Turnover

(USD)

yi

Estimation

weight

wi

Magnitude

mi

Direction

d*
i

Noise

h*
i

Weighted

turnover

yiwi

Perturbation

amount

P*
i ¼ mid

*
i h*

i yiwi

1 72.1 458.2 0.6 1 0.95 33,036 18,831

2 65.3 185.7 0.4 21 1.02 12,126 24,947

3 65.3 752.7 0.3 21 1.54 49,151 222,708

4 50.1 612.6 0.2 21 1.54 30,691 29,453

5 49.2 977.5 48,093

6 45.4 458.7 20,825

7 36.9 896.3 33,073

8 36.9 995.2 36,723

Sum Ŷ ¼ 263,719 P * ¼ 218,278
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depends upon the Unit Key for unit i and its associated Cell Key – this means adding a unit

to a cell will generate a new and independent value of h*
i for each unit in the cell.

It follows that P* and so Ŷ* will take the same value for any cell containing the same set

of n units,- that is, TableBuilder will release the same estimate for logically equivalent

cells because they will have the same set of contributors. This means that it is not possible

to average over the effect of perturbation by requesting the same logically defined cell

count in different tables.

Cells with a small number, say fewer than H, of contributing businesses are typically

suppressed in the publications of many statistical agencies. TableBuilder effectively does

the same thing. If n # H then Ŷ* ¼ 0. If H ¼ 2 then this provides protection against

attacks on cells with sample counts of ‘1’ or ‘2’.

The estimate of the count of units in the population belonging to a cell is N̂ ¼
Pn

i¼1wi.

Instead of releasing the ratio, T̂ ¼ Ŷ=N̂, TableBuilder releases T̂* ¼ Ŷ*=N̂. (We do not

discuss the perturbation of N̂ here. For details see Chipperfield et al. 2016.)

2.2. Confidence Intervals

It is straightforward to derive 95% confidence intervals around each cell estimate, Ŷ*.

It would be slightly more difficult to derive confidence intervals for a linear combination

(e.g., the difference) of perturbed cell estimates. TableBuilder does not release confidence

intervals. Instead TableBuilder releases the variance of Ŷ*, given by

s2 ¼ Vars * ðŶ*Þ ¼ Vars½E*ðŶ
* j sÞ� þ Es½Var*ðŶ

* j sÞ�;

where the first term represents the variation due to the sampling process, denoted by s, and

the second term is the variation due to perturbation process, denoted by ‘*’. TableBuilder

estimates the first term using the standard Jackknife. TableBuilder calculates the second

term by
PK

i¼1m2
i s

2
*

w 2
i y2

i , where s 2
*

is defined earlier. As mentioned, the variance cannot

be used to construct 95% confidence intervals confidence intervals using (^1:96s2)

because the perturbations are not approximately normally distributed. As the ratio of

the perturbation variance to the sampling variance increases, the more inaccurate the

coverage rates based on the normality assumption would become. One option would be to

suppress a cell estimate if this ratio is above some threshold value. This is a topic for

further research.

3. Measuring Disclosure Risk and Utility

3.1. Attack Scenarios

We measure the disclosure risk with respect to three ‘attack scenarios’. In each scenario,

the target is the largest contributor to the cell (i ¼ 1), the target value is therefore y1, and

the attacker knows that the weight of the largest and second largest contributors is equal to

one (w1 ¼ w2 ¼ 1). The largest contributor is chosen to be the target because it, of all the

units in the cell, has the highest associated risk of disclosure. In Scenario 1 and 2, the

attacker does not know the value of y for any of the contributors to the cell. However, in

Scenario 3, the attacker is the second largest contributor to the cell (i ¼ 2) and so is able to
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use its known contribution, y2, to improve upon the accuracy of Attack 1. This means that

the disclosure risk of Scenario 3 will always be at least as high as Scenario 1.

Attack Scenario 1: The value of Ŷ* is used as an estimate of y1. The attacker’s estimate

of y1 under this scenario is ŷð1Þ1 ¼ Ŷ*

Attack Scenario 2: The attacker uses the difference between two cell estimates, ŷð2Þ1 ¼

Ŷ* 2 Ŷ*ði ¼ 1Þ as an estimate of y1, where Ŷ*ði ¼ 1Þ is the same as Ŷ* except that

the largest contributor, i ¼ 1, is dropped from the cell.

Attack Scenario 3: This is the same as Attack Scenario 1 except that the attacker is also

the second highest contributor to the cell (i ¼ 2). The attacker can use its known

contribution, y2, to improve its estimate of y1. The estimate of y1 under this scenario

is ŷð3Þ1 ¼ Ŷ* 2 y2.

Scenario 2 is an example of a differencing attack. Differencing attacks can be effective

because any two tables on their own may have low disclosure risk but, when differenced,

may have a high disclosure risk. They can be particularly effective when used via a remote

server since, at least in the case of TableBuilder, the attacker is relatively free to request

tables of their choice (Thompson et al. 2013). More detailed discussions about differencing

attacks using remote servers can be found in O’Keefe and Chipperfield (2013).

In order for an attack to succeed the attacker needs:

1. To know that the target is in the sample. It is well known that statistical agencies typically

select large businesses with a higher probability than smaller businesses. For smaller

businesses, sampling may provide some protection since an attacker will not know if a

particular business is selected in the sample. Since the underlying micro-data are not

observed, it would be necessary to conduct a series of attacks in order to confirm whether

or not a small business is actually in the sample (Chipperfield and O’Keefe 2014).

2. In the case of Attack Scenario 2, to know how to uniquely identify the target in terms

of a set of quasi-identifiers. This allows the attacker to “drop” the target business

from the cell in a table. To conduct Attack Scenario 1 and 3, the business does not

have to be uniquely identified, often referred to as identification, only that the target

business dominates the cell.

3. To circumvent TableBuilder’s confidentiality protections and disclosing an attribute

of the business.

TableBuilder gives users a high degree of flexibility in choosing a table’s dimensions

and scope. There is often considerable information about large businesses in the public

domain which may in turn make identification likely (e.g., there may only be one private

hospital in a small area). Accordingly, we conservatively assume that 1. and 2. occur with

certainty. So for large businesses at least, the only protection available in TableBuilder is

perturbation. Consequently, perturbation is the focus of how disclosure risk is measured (see

Subsection 3.2).

3.2. What is Disclosure

In many organisations, disclosure is considered to occur for a business if published

estimates can be used to accurately infer an attribute (e.g., total turnover) of a business.
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It is not necessary for the attribute to be inferred exactly – the degree of (or threshold for)

accuracy required for disclosure must be determined by the Statistical Agency.

We say that the disclosure risk from Attack Scenario s, ts, is acceptable if the

probability that the estimate ŷðsÞ1 is within Vs% of the true value y1 is less than Rs. This is a

stochastic generalisation of the P% Rule (Tambay and Fillion, 2013). Therefore the

disclosure risk from Attack s, ts, is acceptable if,

ts ¼ Pr
ŷðsÞ1 2 y1

�
�

�
�

y1

# Vs%

 !

# Rs ð1Þ

We can say that for attack s, Vs is the threshold value that draws the line between what does

and what does not constitute a disclosure and Rs is the acceptable disclosure risk. Different

values of (Rs,Vs) in different scenarios could be justified on the basis of whether the attack

scenario is likely to occur in the first place (e.g., level of sophistication and prior

knowledge required to carry out the attack) and the level of the business structure (e.g.,

business, enterprise, employee) that is attacked.

To illustrate the rule, consider the following example. Consider three businesses in a

cell that have weights of 1 and Income USD 98, USD 1 and USD 1. Following Attack 1, a

user could guess that the Income of the largest contributor is equal to the cell estimate

of USD 100. This guess would be wrong by only 2% (USD 100–USD 98)/USD 98.

TableBuilder would not release the unperturbed estimate of USD 100; it would instead

release a perturbed estimate. Consider if the possible perturbed estimates (each equally

likely) were 60, 70, 100, 130, 140, 150, 160. Again following Attack 1, if a user now

guessed that the Income of the largest respondent (USD 98) is equal to the cell’s perturbed

estimate, the guesses would be wrong by 239, 229%, 22%, 33%, 43%, 53%, and 63%.

The guesses using perturbed estimates would be within 18% about 15% of the time. The

risk associated with Attack 1 would be acceptable if disclosure and the disclosure risk

were V1 ¼ 18 and R1 ¼ 0.15, respectively.

3.3. Defining Utility Loss

We measure utility loss associated with the perturbed estimate Ŷ* by

L ¼ jP*j=Ŷ: ð2Þ

The magnitude of the perturbation, jP*j, depends upon K and the ‘magnitude values’ mi

for i ¼ 1, : : : , K. The utility loss measure is also used by Yancey et al. (2002) in assessing

utility loss of a sample mean. There are other useful measures of utility loss, including the

mean square error and the mean absolute error (Domingo-Ferrer and Torra 2001).

3.4. Optimal Magnitude Values

The optimal value of m minimises L, given by (2), subject to the constraint given by (1) for

s ¼ 1, 2, and 3, where (R1,V1) ¼ (0.15,18), (R2,V2) ¼ (0.15, 11) and (R3,V3) ¼ (0.15,11).

That is, the optimal value of m minimises utility loss subject to having an acceptable

disclosure risk from Attacks 1, 2 and 3. Below we describe how the optimal values of m

were obtained.
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It is important to note that the scale of the distribution of y in the cell does not affect the

optimal value of m – what is important is the relative size of y for the contributors to

the cell. Table 2 shows a variety of distributions for y. The distributions are made up of

between two and four units (other units could well belong to cell but, if they do, we assume

they make a negligible contribution). For each of these distributions, we had to choose a

value of K. We found limited additional benefit from allowing K ¼ 4 and so we decided to

set K ¼ 3 for all distributions. This means where a distribution was made up of four units,

only the top three contributing units were used in calculating the perturbation, P *. The

exception to this was Distribution 5, which was made up of only two contributors (of

relative size 60 and 40), and so we set K ¼ 2.

For each distribution of y, Table 2 gives the optimal value of m for K ¼ 3. For a given

distribution of y, the optimal value was found by:

(i) measuring the average value of L and measuring the disclosure risks, ts for s ¼ 1, 2

and 3, for a range of different values of m. For a given value of m, these measures

were calculated by simulating the perturbation distribution, P *, 500 times and

conducting Attacks 1, 2 and 3.

(ii) identifying the value of m from (i) that minimised L while also meeting the

constraint on the risk from Attacks 1, 2 and 3 as described in the first sentence of

Subection 3.4.

Table 2 shows that, as the distribution of y becomes more uniform, the optimal values in

the vector m increase in size.

Figure 1 illustrates the risk-utility trade-off with respect to only Attack 2. Utility Loss is

the average value of L and Risk ¼ t2 is the proportion of times condition (1) was met from

Attack 2, over 500 independently generated values of P*. Figure 1 plots Utility Loss by Risk

for Attack Scenario 2 for a range of values of m and for two disclosure thresholds (V2 ¼ 11,

18). Recall that V2 ¼ 11 means that disclosure occurs when ŷð2Þ1 is within 11% of y1.

Table 2. Magnitude values that meet constraints on the disclosure risk* and maximise utility for different

contributor values.

Distribution
number

Distribution of y
(relative size of contributors)

Optimal values
(K ¼ 3)

1st 2nd 3rd 4th m1 m2 m3

1 90 5 5 0 0.15 0.1 0.1

2 80 10 5 5 0.15 0.1 0.1

3 70 20 10 0 0.15 0.1 0.1

4 60 20 10 10 0.2 0.1 0.1

5 60 40 0 0 0.25 0.15 n/a

6 50 20 20 10 0.25 0.15 0.1

7 40 30 30 0 0.3 0.2 0.1

8 30 30 30 10 0.4 0.3 0.2

9 25 25 25 25 0.5 0.4 0.3

*The constraints on the disclosure risk that are imposed by Attacks 1, 2 and 3 are (R1, V1) ¼ (0.15, 18), (R2,

V2) ¼ (0.15, 11) and (R3, V3) ¼ (0.15, 11).
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Figure 1A shows if the (relative) y values were (90, 5, 5), m ¼ (0.15, 0.1, 0.1) and the

disclosure threshold was V2 ¼ 11, that Utility Loss ¼ 13% and Risk ¼ 10%. Figure 1B

shows that if disclosure was instead defined by V2 ¼ 18, Risk would ris dramatically

to 90%.

Figure 1C shows that if the relative y values were (30, 30, 30, 10), m ¼ (0.15, 0.1, 0.1)

and the disclosure threshold V2 ¼ 11 that Utility Loss ¼ 5% and Risk ¼ 30%. Figure 1D

shows that if the disclosure threshold was instead V2 ¼ 18 that Risk ¼ 64%.

Ideally, TableBuilder would allow the choice of m to depend upon on the actual

distribution of y in each cell (as per Table 2). As TableBuilder does not have this

capability, we must choose a single value of m that guarantees an acceptable disclosure

risk for all distributions of y in Table 2. The resulting optimal value would be m ¼ (0.5,

0.4, 0.3). However, we did not use m ¼ (0.5, 0.4, 0.3) because the utility loss was too high.

The compromise value of m ¼ (0.4, 0.3, 0.2), that we used in all empirical studies below,

does not strictly have an acceptable disclosure risk for Distribution 9 in Table 2. (Note:

because the disclosure risk is somewhat contextually free in the way it is defined here, we

focus on measuring utility loss in the empirical studies).

Work on the optimal distribution for d*
i is currently being investigated by some of

the authors of this article. Consider using q*d*
i instead of d*

i , where q* ¼ 1 if n is odd and

is equal to 21 if n is even. This change would reduce the disclosure risk of a differencing

attack (Attack Scenario 2) while having no effect on the disclosure risk for other attacks.

We see that, for any two cells that differ by a single target unit, the direction of the

perturbation, q*d*
i , will be positive for one of the cells and will be negative for the other

cell. This change would increase the perturbation variance of the difference,

Ŷ* 2 Ŷ*ði ¼ 1Þ, while having no impact on the perturbation variance of the individual

totals, Ŷ*ði ¼ 1Þ or Ŷ*.
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Fig. 1. Risk vs utility loss under attack scenario 2. Figures A and B have y values of (90, 5, 5, 0), Figures C and

D have y values of (30, 30, 30, 10). Figures A and C define disclosure by V2 ¼ 11, Figures B and D define

disclosure by V2 ¼ 18.
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4. Evaluation of Employees Earnings and Hours

Employee Earnings and Hours (EEH) is a two-yearly survey of employing organisations

in Australia. EEH uses a two-stage sample selection approach. The first stage involves

selecting a probability sample of employer units, from the ABS Business Register. The

statistical unit for the first stage comprises all activities of an employer in a particular state

or territory based on the Type of Activity Unit (TAU). The sampling unit for the second

stage is employee. Employees are in scope of the second stage selection if they earned

pay during the reference period. Data collected in the survey are used to estimate the

composition and distribution of average weekly earnings, hours worked, and the methods

of setting pay (e.g., award only, collective agreement, and individual agreement). EEH

currently applies suppression to protect respondents against disclosure where a

‘respondent’ can be an employee, TAU, or at the highest level of Enterprise Group.

4.1. Utility at Employee Level

Tables 3 and 4 summarise the utility loss resulting from perturbing estimates with

m ¼ (0.4, 0.3, 0.2). Here we measure the utility of typical EEH estimates.

Table 3 shows, in most cases, that perturbation changes the estimates by less than 1%.

When perturbation makes larger changes (6–7%) to estimates, the associated sampling

errors (not provided in Table 3) are also high, due to small sample sizes. For example, the

estimate for Community and Personal Service Workers in Owner Manager of Incorporated

Enterprises was perturbed by 7.3% and has a Relative Standard Error (RSE) in the range

25–50%.

Table 4 shows, again, that the percentage impact of perturbation is often less than 1%. As

in Table 3, the larger differences are for estimates with RSEs between 25% and 50% (RSEs

not provided in Table 4). For example, on the one hand, the estimate for Mining and Award

Only is perturbed by–9.7% and has a standard error of 10–25%, whereas the estimate for

Manufacturing and Award Only is perturbed by only 0.1% and has a standard error of 5%.

Since these changes are significantly less than the RSEs the loss of utility would be

minimal. Feedback from users of the EEH is that this level of utility loss is acceptable.

4.2. Protection of TAUs

The three attack scenarios are also possible at the TAU level. TableBuilder does not

recognise the TAU hierarchy in any way and so its perturbation settings cannot manage

disclosure risk at the TAU level. For example, TableBuilder does not recognise if all

employees in a cell belong to one TAU. The question is whether, nevertheless, there is

acceptable disclosure risk at the TAU level given perturbation is only designed to have

acceptable disclosure risk at the employee level.

To illustrate, Table 5 summarises the data collected from a realistic but hypothetical

sample of 25 employees who were themselves selected from three different TAUs and

who all belong to a single cell of a table. We assume the attacker knows that the cell

contains only the three selected TAUs and that the TAUs were selected with certainty. The

inverse of the within-TAU employee sampling fraction is used to weight its sample of

employees, thus giving the TAU contribution to the cell estimate. Table 5 shows the
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unperturbed estimates of Total Earnings of USD 3,834,000. Given that TAU 1 and 2

dominate the cell, it is likely that such a cell would be suppressed.

Consider if the unperturbed estimate of the cell was released. Under Attack Scenario 3,

TAU 2 subtracts their contribution to the unperturbed estimate in order to estimate TAU

1’s contribution to Total Earnings. The estimate would be ŷð3Þ1 ¼ 3,834,000–996,000 ¼

2,838,000 or 7% higher than the actual contribution of TAU 1.

By way of an aside, it is important to note that disclosing TAU 1’s contribution to the

cell estimate is not by itself disclosure. TAU 1’s contribution to the cell estimate, which

is based on only 11 out of 1700 of its employees, will differ from TAU 1’s true Total

Earnings (obtained by summing the Total Earnings of each of its 1700 employees) due to

sample error. Based on the sample of eleven of its employees, the RSEs of TAU 1’s Total

Earnings is 13%. Within the framework of Section 3 we can say, assuming a normal

distribution, that there is a 95% chance that TAU 1’s contribution to the cell estimate

is within 26% of TAU 1’s true Total Earnings; or equally we could say that TAU 1’s

contribution to the estimate is within 18% of its true Total Earnings about 83% of the time.

So even if the attacker was able to exactly calculate TAU 1’s contribution to the estimate,

the sampling of employees provides some protection against disclosing TAU 1’s true Total

Earnings. Here we conservatively assume that a TAU’s contribution to Total Earnings and

its true Total Earnings are the same.

If we repeat Attack Scenario 3 using perturbed, rather than unperturbed, estimates we

see that the estimate of TAU 1’s contribution would be ŷð3Þ1 ¼ 3,925,000–996,000 ¼ 2,929,000

and would be 11.5% larger than the actual contribution of TAU 1. Over repeated perturbations,

we showed (details not given) for this example that TableBuilder would not provide

sufficient protection (using R3 ¼ 11, V3 ¼ 18%) of ‘TAU 1’s contribution’ from Attack 3.

Furthermore, we could equally have constructed an alternative example whereby a cell only

contains the eleven employees from TAU 1. In this alternative example, the risk from

disclosing TAU 1’s contribution to the cell estimate would be higher still.

In conclusion, while the TableBuilder perturbation settings guarantee a minimum level

of disclosure risk at the employee level, they have little control over the disclosure risk for

TAUs that are selected with certainty (typically TAUs with more than 50 employees).

However, TAUs that are sampled without certainty may well have sufficient protection

if the protections of sample error were to be taken into account.

Table 5. Perturbation of weekly earnings.

Total number
of employees

Number of
sampled

employees

Contribution to
unperturbed

estimate
Sample

RSE (%)

TAU 1 1700 11 2,639,240 13.1

TAU 2 630 8 996,000 4.4

TAU 3 140 6 198,660 14.3

Total unperturbed
estimate

2480 25 3,834,000 9.1

Total perturbed
estimate

2700 23 3,925,000 9.1
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5. Utility of Releasing International Trade in Goods via TableBuilder

International Trade in Goods is a monthly administrative by-product collection of all in-

scope imports and exports to/from Australia. ABS policy is that these commodity values

must be protected only if that business officially requests (i.e., ‘self-select’) to be protected

against disclosure. When such a ‘self-selected’ business contributes to a cell, it is

determined whether or not the value of the commodity associated with that business breaks

confidentiality rules – if it does then the cell is suppressed. Staff who work on this

collection describe the current process of suppression as “involved and time-consuming”.

Possible alternative approaches to managing disclosure risk:

i. Perturb the commodity values for only self-selected businesses prior to releasing the

data as a public use file. In the Australian context, there is a certain level of public

sensitivity to releasing even a perturbed commodity amount for a self-selected

business. For this reason, this option was not considered further.

ii. Perturb all cell estimates as described in Section 3. This assumes that all businesses

self-select and so will result in more perturbation than is strictly required.

iii. Perturb commodity values for self-selected businesses so that, even if they belonged

to a cell on their own, the disclosure risk from Attack 1 is acceptable (using the

criteria (R1,V1) ¼ (0.15,18)). The values for businesses that do not ‘self-select’ are

not perturbed. Users can access the micro-data via TableBuilder with all its

perturbation routines turned off. In theory, this would give the same estimates as

Approach I, but avoids releasing business-level micro-data.

Tables 6 gives published estimates for merchandise exports by state and from the

International Trade in Goods and Services, Australia (ABS cat. No 5368.0). We see that

under approach II, some estimates are significantly changed by perturbation. A large

perturbation is always due to a small number of dominant businesses in a cell. Table 6

Table 6. Merchandise exports (USD M) by state/territory.

Published
estimate

Perturbed
estimates-protect

all businesses
under approach II

(percentage impact
of perturbation %)

Perturbed
estimates-protect
only self-selected
businesses under

approach I and III
(percentage impact
of perturbation %)

NSW 2822 2910 (3.1) 2837 (0.5)

VIC 1406 1409 (0.2) 1400 (20.4)

QLD 2927 2971 (1.5) 2927 (0.0)

SA 728 765 (5.1) 724 (20.6)

WA 9205 8877 (23.6) 9253 (0.5)

TAS 207 192 (27.4) 207 (0.0)

NT 444 512 (15.4) 444 (0.0)

ACT 4 6 (35.4) 4 (0.0)

AUS 17743 17642 (20.6) 17796 (0.3)
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shows that the utility loss under the approach III is quite small by comparison. This is

because, at least in the estimates of Table 6, large dominant businesses often do not self-

select. Feedback from users is that the loss of utility under approach III is acceptable at

a high level and further work is planned to consider whether this would also be the case

for estimates at fine levels. For cells in which dominating businesses self-select, the

perturbation applied by TableBuilder may be unacceptably high. In the next section we see

a situation where the perturbation is, in fact, unacceptably high.

6. Utility of Releasing Land Management Practices via Tablebuilder

Land Management Practices Survey (LaMPS) estimates are released every financial year.

LaMPS selects a sample of agricultural businesses in Australia above a minimum cut-off

size. LaMPS aggregates are released in the form of tables. Suppression is then applied to

table cells that are considered to have an unacceptable disclosure risk. Often, estimates in

the cell of a LaMPS table will contain a small number of dominant contributors. Next we

briefly show the utility of key estimates after they have been perturbed via TableBuilder.

For eight Australian states and territories, Table 7 shows the (RSE) of the published

estimate of Total Nitrogen Fertiliser and the impact of perturbation. Using the magnitude

values (0.4, 0.3, 0.2), the impact of perturbation is under 5%, with the exception of the

Australian Capital Territory (ACT). In a few cases, the impact of perturbation is

comparable to the RSE associated with the estimate (e.g., in NT, the RSE was 3.7% and

the impact of perturbation was 3.2%).

For the ACT, the impact of perturbation was 42%. This estimate has low utility after

perturbation. The impact of perturbation is high because the ACT has a comparatively low

number of contributing businesses and some dominant contributors. While LaMPS would not

appear to be suitable for release via TableBuilder, the next section discusses some ways forward.

7. Final Remarks

The three case studies in this article discuss the challenges of allowing access to business

data via TableBuilder. For some estimates, TableBuilder can provide an effective level

Table 7. RSE and percentage impact of perturbation: Total nitrogen fertiliser applied by state/territory.

State RSE (%) Impact of perturbation (%)

NSW 2.7 0.6

Vic 5.6 0.6

Qld 2.9 0.3

SA 4.1 1.8

WA 2.1 0.3

Tas 4.8 3.4

NT 3.7 3.2

ACT* 42.4

Australia 1.4 20.1

*Published value for ACT was incorporated into NSW.
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of protection against disclosure without noticeably affecting utility of the estimates.

However, there are certain cell estimates that would not seem to be suitable for release

using TableBuilder – these include cells containing a small numbers of businesses that are

dominant contributors. More work would be required before the ABS would consider

allowing access to its business data via TableBuilder.

However, we believe that the work and findings here will be applicable to other

statistical agencies. This is because the features of the business data considered in this

paper are common across the world: dominating businesses (e.g., monopoly and

duopolies); the need to protect against disclosure at multiple levels of a business hierarchy;

and data collected from samples and from administrative sources. Below, we discuss

possible applications our work and future work that will improve the disclosure risk-

utility trade-off of a remote server approach.

A practical application of our work would be to release as much data as possible through

TableBuilder, but to exclude certain subsets of businesses (large businesses). Other

methods could be explored for releasing these data subsets – for example, users with a

particular research need for the excluded data could apply for access through a special user

request, and other methods (such as suppression) could be applied to protect the data. This

approach would allow the release of a wide range of business data in a cost-effective way,

while still retaining the flexibility to release specific estimates via means other than

TableBuilder.

There are some interesting areas for further work:

1. The attacker does not know the target’s estimation weight (i.e., it is always assumed

to be equal to one). The extent to which this reduces the disclosure risk has not been

measured here. A way of taking this into account would be to allow the magnitude

values mi in P * to depend upon the weight of the K largest contributors, wi, for

i ¼ 1, : : : , K. It is likely that a unit with a high weight would require a much smaller

(possibly equal to zero) magnitude value than a unit with a small weight.

2. Sampling (e.g., sampling of employees in Section 4) reduces the risk of disclosure

because the attacker does not know if the target unit is selected in the sample. This is

important since a benefit of the remote server is that, unlike the release of micro-data,

attacks may be required to even establish whether the target is selected in the sample.

Chipperfield and O’Keefe (2014) showed even establishing whether or not a target is

in the sample can require a significant number of attacks. The reduction in disclosure

risk due to sampling could be off-set by a reduction in the degree of perturbation,

leading to an increase in utility.

3. Sampling error can reduce the disclosure risk (e.g., in Section 4 we ignored the

protection provided to a TAU due to selecting only a sample, rather than all, of its

employees). It would be interesting to allow the magnitude of the perturbation to

depend upon the degree of protection already provided by sample error (e.g., if

sampling employees within a TAU provides sufficient protection, is there a need to

perturb the TAU’s contribution to estimates)?

4. Preventing a differencing attack from occurring in the first place. This would mean

supressing a cell if it, together with a previously released cell, met the condition of a

differencing attack.
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5. The optimal magnitude parameters (Subsection 3.4) assumed y took only positive

values. This could be extended to allow for negative values of y.

6. As mentioned, the current functionality of TableBuilder fixes K, mi for i ¼ 1, : : : , K

and the distributions of d*
i and h*

i . Further work could consider allowing these

to depend upon the perceived sensitivity of y and the distribution of y in the cell

(e.g., if the top three contributors’ relative values of y were approximately 210, 20

and 90).

7. Should the agency release the perturbation parameters underlying P*? Releasing the

parameters would, under any attack scenario, allow an attacker to put a bound on y1

for each cell total that contained unit 1. The risk and the utility of releasing the

parameters would need to be measured. Instead, an indication (perhaps in ranges) of

the size of the perturbation or the MSE of the perturbation would be released but,

again, any impact on risk and utility should be measured.
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