Adjusting for Measurement Error in Retrospectively Reported Work Histories: An Analysis Using Swedish Register Data

Open access

Abstract

We use work histories retrospectively reported and matched to register data from the Swedish unemployment office to assess: 1) the prevalence of measurement error in reported spells of unemployment; 2) the impact of using such spells as the response variable of an exponential model; and 3) strategies for the adjustment of the measurement error. Due to the omission or misclassification of spells in work histories we cannot carry out typical adjustments for memory failures based on multiplicative models. Instead we suggest an adjustment method based on a mixture Bayesian model capable of differentiating between misdated spells and those for which the observed and true durations are unrelated. This adjustment is applied in two manners, one assuming access to a validation subsample and another relying on a strong prior for the mixture mechanism. Both solutions demonstrate a substantial reduction in the vast biases observed in the regression coefficients of the exponential model when survey data is used.

Augustin, T. 1999. Correcting for Measurement Error in Parametric Duration Models By Quasi-likelihood. Technical Report, Max Plank Institute.

Berkson, J. 1950. “Are There Two Regressions?” Journal of the American Statistical Association 45(250): 164–180. Doi: https://doi.org/10.2307/2280676.

Biemer, P.P. 2011. Latent Class Analysis of Survey Error. Wiley.

Biewen, E., S. Nolte, and M. Rosemann. 2008. “Perturbation by Multiplicative Noise and the Simulation Extrapolation Method.” Advances in Statistical Analysis 92: 375–389. Doi: https://doi.org/10.1007/s10182-008-0089-7.

Black, D.A., M.C. Berger, and S.A. Scott. 2000. “Bounding Parameter Estimates with Nonclassical Measurement Error.” Journal of the American Statistical Association 95(451): 739–748. Doi: https://doi.org/10.2307/2669454.

Bound, J., C. Brown, and N.A. Mathiowetz. 2001. “Measurement Error in Survey Data.” In Handbook of Econometrics, edited by J. Heckman and E. Leamer. Vol. 5: 3705–3843. New York: Elsevier.

Box-Steffensmeier, J.M. and B.S. Jones. 2004. Event History Modeling: A Guide for Social Scientists. Cambridge: Cambridge University Press.

Bradburn, N.M., J. Huttenlocher, and L. Hedges. 1994. “Telescoping and Temporal Memory.” In Autobiographical Memory and The Validity of Retrospective Reports, edited by N. Schwarz and S. Seymour, 203–215. New York: Springer.

Brownstone, D. and R.G. Valletta. 1996. “Modelling Earnings Measurement Error: A Multiple Imputation Approach.” The Review of Economics and Statistics 78(4): 705–717. Doi: https://doi.org/10.2307/2109957.

Butts, C.T. 2003. “Network Inference, Error, and Informant (in) Accuracy: A Bayesian Approach.” Social Networks 25(2): 103–140. Doi: https://doi.org/10.1016/S0378-8733(02)00038-2.

Carpenter, B., A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M.A. Brubaker, J. Guo, P. Li, and A. Riddell. 2017. “Stan: A Probabilistic Programming Language.” Journal of Statistical Software 76(1): 1–32. Doi: https://doi.org/10.18637/jss.v076.i01.

Carroll, R.J. and L.A. Stefanski. 1990. “Approximate Quasilikelihood Estimation in Models with Surrogate Predictors.” Journal of the American Statistical Association 91: 242–250. Doi: https://doi.org/10.2307/2290000.

Chen, M.H. and J.G. Ibrahim. 2003. “Conjugate Priors for Generalized Linear Models.” Statistica Sinica 13: 461–476. Available at: http://www3.stat.sinica.edu.tw/statistica/oldpdf/a13n212.pdf (accessed February 2019).

Clayton, D.G. 1992. “Models for the Analysis of Cohort and Case-control Studies with Inaccurately Measured Exposures.” Statistical Models for Longitudinal Studies of Health: 301–331.

Cole, S., H. Chu, and S. Greenland. 2006. “Multiple-imputation for Measurement-error Correction.” International Journal of Epidemiology 35: 1074–1081. Doi: https://doi. org/10.1093/ije/dyl097.

Cook, J. and L. Stefanski. 1994. “A Simulation Extrapolation Method for Parametric Measurement Error Models.” Journal of the American Statistical Association 89: 1314–1328. Doi: https://doi.org/10.2307/2290994.

Crowder, R.G. 1976. “The Interference Theory of Forgetting in Long-term Memory.” In Principles of Learning and Memory, edited by R.G. Crowder. Oxford: Lawrence Erlbaum.

Dellaportas, P. and D.A. Stephens. 1995. “Bayesian Analysis of Errors-in-variables Regression Models.” Biometrics 51(3): 1085–1095. Doi: https://doi.org/10.2307/2533007.

Dumangane, M. 2007. Measurement error bias reduction in unemployment durations. Technical report, CEMMAP. Doi: https://doi.org/10.1920/wp.cem.2006.0306.

Freedman, L.S., D. Midthune, R.J. Carroll, and V. Kipnis. 2008. “A Comparison of Regression Calibration, Moment Reconstruction and Imputation for Adjusting for Covariate Measurement Error in Regression.” Statistics in Medicine 27: 5195–5216. Doi: https://doi.org/10.1002/sim.3361.

Fuller, W. 1987. Measurement Error Models. New York: John Wiley and Sons.

Gelman, A. et al. 2006. “Prior Distributions for Variance Parameters in Hierarchical Models (Comment on Article by Browne and Draper).” Bayesian Analysis 1(3): 515–534. Doi: https://doi.org/10.1214/06-BA117A.

Geman, S. and D. Geman. 1984. “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images.” IEEE Transactions On Pattern Analysis and Machine Intelligence 6: 721–741. Doi: https://doi.org/10.1109/TPAMI.1984.4767596.

Ghilagaber, G. and J. Koskinen. 2009. “Bayesian Adjustment of Anticipatory Covariates in the Analysis of Retrospective Data.” Mathematical Population Studies 16(2): 105–130. Doi: https://doi.org/10.1080/08898480902790171.

Gilks, W., S. Richardson, and D. Spiegelhalter. 1996. Markov Chain Monte Carlo in Practice. Chapman and Hall.

Glesjer, L. 1990. “Improvements of the Naive Approach to Estimation in Nonlinear Errors-in-variables Regression Models.” In Statistical Analysis of Error Measurement Models and Application, edited by P. Brown and W. Fuller, 99–114. Providence: American Mathematics Society. Doi: https://doi.org/10.1090/conm/112.

Glewwe, P. 2007. “Measurement Error Bias in Estimates of Income and Income Growth Among the Poor: Analytical Results and a Correction Formula.” Economic Development and Cultural Change 56: 163–189. Doi: https://doi.org/10.1086/520559.

Golub, A., B.D. Johnson, and E. Labouvie. 2000. “On Correcting Biases in Self-reports of Age at First Substance use with Repeated Cross-section Analysis.” Journal of Quantitative Criminology 16: 45–68. Doi: https://doi.org/10.1023/A:1007573411129.

Gustafson, P. 2003. Measurement Error and Misclassification in Statistics and Epidemiology. Boca Raton: Chapman and Hall.

Holt, D., J.W. McDonald, and C.J. Skinner. 2011. “The Effect of Measurement Error on Event History Analysis.” In Measurement Error in Surveys, edited by P. Biemer, 665–685. New York: John Wiley.

Huttenlocher, J., L. Hedges, and V. Prohaska. 1988. “Hierarchical Organization in Ordered Domains: Estimating the Dates of Events.” Psychological Review 95: 471–484.

Ibrahim, J.G. and P.W. Laud. 1991. “On Bayesian Analysis of Generalized Linear Models using Jeffreys’s Prior.” Journal of the American Statistical Association 86(416): 981–986. Doi: https://doi.org/10.1037/0033-295X.95.4.471.

Jäckle, A. 2008. Measurement error and data collection methods: Effects on estimates from event history data. Technical report, Institute for Social and Economic Research, ISER. Available at: https://www.iser.essex.ac.uk/research/publications/working-papers/iser/2008-13.pdf (accessed February 2019).

Jeffreys, H. 1946. “An Invariant Form for the Prior Probability in Estimation Problems.” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 24: 453–461. Doi: https://doi.org/10.1098/rspa.1946.0056.

Jenkins, S.P. and P. Lynn. 2005. Improving Survey Measurement of Income and Employment, 2001–2003 (2nd ed.). UK Data Service. Doi: https://doi.org/10.5255/UKDA-SN-5157-1.

Johnson, E.O. and L. Schultz. 2005. “Forward Telescoping Bias in Reported Age of Onset: An Example From Cigarette Smoking.” International Journal of Methods in Psychiatric Research 14: 119–129. Doi: https://doi.org/10.1002/mpr.2.

Jürges, H. 2007. “Unemployment, Life Satisfaction and Retrospective Error.” Journal of the Royal Statistical Society, Series A 170(1): 43–61. Doi: https://doi.org/10.1111/j. 1467-985X.2006.00441.x.

Kapteyn, A. and J.Y. Ypma. 2007. “Measurement Error and Misclassification: A Comparison of Survey and Administrative Data.” Journal of Labour Economics 25(3): 513–551. Doi: https://doi.org/10.1086/513298.

Kettunen, J. 1997. “Education and Unemployment Duration.” Economics of Education Review 16(2): 163–170. Doi: https://doi.org/10.1016/S0272-7757(96)00057-X.

Kreuter, F., G. Mller, and M. Trappman. 2010. “Nonresponse and Measurement Error in Employment Research: Making Use of Administrative Data.” Public Opinion Quarterly 74(5): 880–906. Doi: https://doi.org/10.1093/poq/nfq060.

Lancaster, T. 1979. “Econometric Methods for the Duration of Unemployment.” Econometrica 47(4): 939–956. Doi: https://doi.org/10.2307/1914140.

Levine, P. 1993. “CPS Contemporaneous and Retrospective Unemployment Compared.” Monthly Labor Review 116: 33–39. Available at: https://heinonline.org/HOL/Page? handle=hein.journals/month116&div=89&g_sent=1&casa_token=pTR6IZj22XsAA AAA:xq9wIH0hhVt7hMJgw6ViXuW_gWKx8-EARBvTPW32LcaWEKxYad-v0O53 OauyAW25tklO5TD6&collection=journals (accessed February 2019).

Lunn, D.J., A. Thomas, N. Best, and D. Spiegelhalter. 2000. “Winbugs a Bayesian Modelling Framework: Concepts, Structure, and Extensibility.” Statistics and Computing 10: 325–337. Doi: https://doi.org/10.1023/A:1008929526011.

Manzoni, A., R. Luijkx, and R. Muffels. 2011. “Explaining Differences in Labour Market Transitions between Panel and Life-course Data in West-Germany.” Quality and Quantity 45: 241–261. Doi: https://doi.org/10.1007/s11135-009-9292-1.

Manzoni, A., J.K. Vermunt, R. Luijkx, and R. Muffels. 2010. “Memory Bias in Retrospectively Collected Employment Careers: A Model-based Approach to Correct for Measurement Error.” Sociological Methodology 40: 39–73. Doi: https://doi.org/10. 1111/j.1467-9531.2010.01230.x.

Mathiowetz, N. and G. Duncan. 1988. “Out of Work, Out of Mind: Response Errors in Retrospective Reports of Unemployment.” Journal of Business and Economic Statistics 6(2): 221–229. Doi: https://doi.org/10.1080/07350015.1988.10509656.

Messer, K. and L. Natarajan. 2008. “Maximum Likelihood, Multiple Imputation and Regression Calibration for Measurement Error Adjustment.” Statistics in Medicine 27(30): 6332–6350. Doi: https://doi.org/10.1002/sim.3458.

Morgenstern, R. and N. Barrett. 1974. “The Retrospective Bias in Unemployment Reporting By Sex, Race and Age.” Journal of the American Statistical Association 69(346): 355–357. Doi: https://doi.org/10.2307/2285657.

Neter, J. and J. Waksberg. 1964. “A Study of Response Errors in Expenditures Data From Household Interviews.” Journal of the American Statistical Association 59: 18–55. Doi: https://doi.org/10.1080/01621459.1964.10480699.

Neuhaus, J.M. 1999. “Bias and Efficiency Loss Due to Misclassified Responses in Binary Regression.” Biometrika 86(4): 843–855. Doi: https://doi.org/10.1093/biomet/86.4.843.

Novick, M.R. 1966. “The Axioms and Principal Results of Classical Test Theory.” Journal of Mathematical Psychology 3: 1–18. Doi: https://doi.org/10.1016/0022-2496 (66)90002-2.

Office for National Statistics. Social and Vital Statistics Division. 2006. General Household Survey, 2003–2004. [data collection]. 2nd Edition. UK Data Service. SN: 5150. Available at: http://doi.org/10.5255/UKDA-SN-5150-1.

Office for National Statistics. 2008. Social and Vital Statistics Division. ONS Omnibus Survey, April 2006. [data collection]. UK Data Service. SN: 5997. Available at: http://doi.org/10.5255/UKDA-SN-5997-1.

Paull, G. 2002. Biases in the reporting of labour market dynamics. Technical report, Institute for Fiscal Studies. Doi: https://doi.org/10.1920/wp.ifs.2002.0210.

Pavlopoulos, D. and J.K. Vermunt. 2015. Measuring temporary employment. do survey or register data tell the truth? Technical report, Vrije Universiteit Amsterdam. Available at: https://www150.statcan.gc.ca/n1/pub/12-001-x/2015001/article/14151-eng.htm (accessed February 2019).

Peytchev, A. 2012. “Multiple Imputation for Unit Nonresponse and Measurement Error.” Public Opinion Quarterly 76(2): 214–237. Doi: https://doi.org/10.1093/poq/nfr065.

Pickles, A., K. Pickering, E. Simonoff, J. Silberg, J. Meyer, and H. Maes. 1998. “Genetic Clocks and Soft Events: A Twin Model for Pubertal Development and Other Recalled Sequences of Developmental Milestones, Transitions, or Ages At Onset.” Behavior Genetics 28: 243–253. Doi: https://doi.org/10.1023/A:102161522.

Pickles, A., K. Pickering, and C. Taylor. 1996. “Reconciling Recalled Dates of Developmental Milestones, Events and Transitions: A Mixed Generalized Linear Model with Random Mean and Variance Functions.” Journal of the Royal Statistical Society. Series A1: 225–234. Doi: https://doi.org/10.2307/2983170.

Pina-Sánchez, J. 2016. “Adjustment of Recall Errors in Duration Data using Simex.” Advances in Methodology and Statistics 12(1): 27–58. Available at: http://ibmi.mf. uni-lj.si/mz/2016/no-1/p3.pdf (accessed February 2019).

Pina-Sánchez, J., J. Koskinen, and I. Plewis. 2013. “Implications of Retrospective Measurement Error in Event History Analysis.” Metodología de Encuestas 15: 5–25. Available at: http://casus.usal.es/pkp/index.php/MdE/article/view/1032/pdf_2 (accessed February 2019).

Pina-Sánchez, J., J. Koskinen, and I. Plewis. 2014. “Measurement Error in Retrospective Work Histories.” Survey Research Methods 8: 43–55. Doi: https://doi.org/10.18148/srm/2014.v8i1.5144.

Plummer, M., N. Best, K. Cowles, and K. Vines. 2006. “Coda: Convergence Diagnosis and Output Analysis.” R News 6: 7–11. Available at: http://oro.open.ac.uk/22547/ (accessed February 2019).

Poterba, J. and L. Summers. 1995. “Unemployment Benefits and Labor Market Transitions: A Multinomial Logit Model with Errors in Classification.” Review of Economics and Statistics 77: 207–216. Doi: https://doi.org/10.2307/2109860.

Poterba, J.M. and L.H. Summers. 1984. “Response Variation in the CPS: Caveats for the Unemployment Analyst.” Monthly Labor Review 107: 37–43. Available at: https://stats.bls.gov/opub/mlr/1984/03/rpt1full.pdf (accessed February 2019).

Pyy-Martikainen, M. and U. Rendtel. 2009. “Measurement Errors in Retrospective Reports of Event Histories. A Validation Study with Finnish Register Data.” Survey Research Methods 3(3): 139–155. Doi: https://doi.org/10.1002/sim.4780121806.

Richardson, S. and W.R. Gilks. 1993. “Conditional Independence Models for Epidemiological Studies with Covariate Measurement Error.” Statistics in Medicine 12(18): 1703–1722. Doi: https://doi.org/10.1002/sim.4780121806.

Rubin, D.B. 1996. “Multiple Imputation After 18+ Years.” Journal of the American statistical Association 91(434): 473–489. Doi: https://doi.org/10.2307/2291635.

Rubin, D.C. 1987. Multiple Imputation for Nonresponse in Surveys. New York: John Wiley and Sons.

Rubin, D.C. and A.D. Baddeley. 1989. “Telescoping is Not Time Compression: A Model.” Memory & Cognition 17: 653–661. Doi: https://doi.org/10.3758/BF03202626. Shiffrin, R.M. and J.R. Cook. 1978. “Short-term Forgetting of Item and Order

Information.” Journal of Verbal Learning and Verbal Behavior 17(2): 189–218. Doi: https://doi.org/10.1016/S0022-5371(78)90146-9.

Skinner, C. and K. Humphreys. 1999. “Weibull Regression for Lifetimes Measured with Error.” Lifetime Data Analysis 5: 23–37. Doi: https://doi.org/10.1023/A:10096 74915476.

Solga, H. 2001. “Longitudinal Survey and the Study of Occupational Mobility: Panel and Retrospective Design in Comparison.” Quality and Quantity 35: 291–309. Doi: https://doi.org/10.1023/A:1010387414959.

Veronesi, G., M.M. Ferrario, and L.E. Chambless. 2011. “Comparing Measurement Error Correction Methods for Rate-of-change Exposure Variables in Survival Analysis.” Statistical Methods in Medical Research 22(6): 583–597. Doi: https://doi.org/10.1177/0962280210395742.

Wang, C.Y., L. Hsu, R.L. Feng, and Z.D. Prentice. 1997. “Regression Calibration in Failure Time Regression.” Biometrics 53: 131–145. Doi: https://doi.org/10.2307/2533103.

Journal of Official Statistics

The Journal of Statistics Sweden

Journal Information


IMPACT FACTOR 2017: 0.662
5-year IMPACT FACTOR: 1.113

CiteScore 2017: 0.74

SCImago Journal Rank (SJR) 2017: 1.158
Source Normalized Impact per Paper (SNIP) 2017: 0.860

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 130 130 130
PDF Downloads 85 85 85