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Data integration is now common practice in official statistics and involves an increasing
number of sources. When using multiple sources, an objective is to assess the unknown size
of the population. To this aim, capture-recapture methods are applied. Standard capture-
recapture methods are based on a number of strong assumptions, including the absence of
errors in the integration procedures. However, in particular when the integrated sources were
not originally collected for statistical purposes, this assumption is unlikely and linkage errors
(false links and missing links) may occur. In this article, the problem of adjusting population
estimates in the presence of linkage errors in multiple lists is tackled; under homogeneous
linkage error probabilities assumption, a solution is proposed in a realistic and practical
scenario of multiple lists linkage procedure.
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1. Introduction

The integration and combination of external sources with traditional statistical survey data

is a pressing challenge for National Statistical Institutes. Micro-level integration of

different sources is standard practice, generally performed by means of record linkage

techniques. However, the linkage process is not completely error-free and statisticians

must take linkage errors into account in subsequent analyses performed on integrated data

(Chambers 2009). Linkage errors appear particularly relevant when the goal is to measure

the size of a population (partially) enumerated in different lists, as shown in Di Consiglio

and Tuoto (2015). A widespread method for population size estimation in the presence of

two lists is the capture-recapture model (see Petersen 1896; Lincoln 1930; Pollock et al.

1990; Wolter 1986).

The capture-recapture method is subject to the following assumptions:

1. Perfect matching among lists,

2. Independence of lists,

3. Homogeneity of capture probabilities,

4. Closure of population, and

5. No out-of-scope units in the lists.
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When more than two lists are considered, say k, the observations from multiple captures

can be organized into a 2k table, with the presence/absence on the ith list defining the category

for the ith dimension. The cell count corresponding to no capture for all the k lists is unknown.

Therefore, the goal of estimating the number of units in the population corresponds to the

estimation of the unknown count of the missing cell in the 2k incomplete contingency table.

Several procedures using log-linear models have been proposed (Fienberg 1972;

Cormack 1989). When more than two lists are considered, the use of log-linear models

enables the independence assumption to be weakened, even if higher order interactions are

still subject to restrictions due to model identification. The original log-linear models

proposed in Fienberg (1972) rely on the other assumptions: perfect linkage, homogeneity

of capture probabilities, closed population, absence of over-coverage. Extensions to the

basic log-linear models are provided. Just to mention a few examples, Cormack (1989)

discusses the use of log-linear models for dependence and the detection of the presence of

heterogeneity in capture probabilities; Darroch et al. (1993) and Agresti (1994) introduce

models in the generalised class of Rasch models to explain the heterogeneity in capture

probabilities; Coull and Agresti (1999) introduce generalised mixture models. Evans et al.

(1994) suggest applying log-linear models when the heterogeneity effects can be

explained by the observable covariates. IWGDMF (1995) reviews these approaches, see

Chao (2001) for an overview. Zwane and van der Heijden (2005) propose conditional

multinomial logit models allowing the inclusion of covariates in the models; Bartolucci

and Forcina (2006) introduce latent class models that can be viewed as an extension of

conditional multinomial logit models. These models permit accounting for both the

observed heterogeneity using covariates and the unobserved heterogeneity, by assuming

units to belong to distinct latent classes. Finally, a Bayesian approach can be found in

Farcomeni and Tardella (2009).

When more than two lists are available, Di Cecco et al. (2017) discuss the use of a

generalisation of the Latent Class models that can be expressed as log-linear models with a

latent variable to deal with the problem of out-of-scope units.

Few contributions (Ding and Fienberg 1994, Lee et al. 2001; Di Consiglio and Tuoto

2015) have addressed the issue of matching errors in the population size estimation with

two lists. This article explores adjustments for linkage errors in population size estimators,

when k . 2 lists are considered. Extending the previous works of Di Consiglio and Tuoto

(2015) and Fienberg and Ding (1996), this article takes into account both erroneous links

and missing links in a realistic linkage error generation model.

The article is organised as follows: Section 2 briefly describes the linkage model and the

errors when more than two lists are integrated, Section 3 presents the effects of linkage

errors on the observed 2k incomplete contingency table, as well as a formulation that

relates the observed table with the true one, via the linkage errors. In Section 4, the

procedure to estimate the population size using the log-linear model is defined. Section 5

discusses the definition of linkage errors used in this framework and reviews a few

proposals for their estimation. In Section 6, the application of the proposed method is

illustrated in the context of census and administrative data, whereas simulated data are

used to analyse its statistical performance and to carry out a sensitivity analysis on the

misspecification of linkage errors. Finally, Section 7 provides some concluding remarks

and open issues to be tackled by future research.
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2. Multiple Lists and Record Linkage

Record linkage is the activity of recognising the same real word entity, even if differently

represented in the several data sources. When a common unique identifier is not available,

the record linkage techniques exploit common attributes, potentially affected by errors and

missing values, to identify the same unit. Therefore, at the end of a linkage procedure,

records referring to the same real world entity may emerge unlinked (false negative). In a

similar way, false matches may occur when the integration procedure links a pair of units

that do not actually relate to the same real-world entity (false positive).

To exemplify, let us consider the two-list case, as in the seminal article of Fellegi and

Sunter (1969), say L1 and L2, of size N1 and N2. Let V ¼ {(a, b), a [ L1 and b [ L2} be

the Cartesian product of all possible pairs, of size jVj ¼ N1 £ N2. The record linkage

between L1 and L2 is viewed as a classification problem, where the pairs in V have to be

assigned to two subsets M and U, independent and mutually exclusive, such that:

M is the link set (a ¼ b)

U is the non-link set (a – b).

Common identifiers (linking variables) are chosen and, for each pair, a comparison

vector, denoted by g, is obtained. Let r be the ratio between the conditional probability of

g given that the pair belongs to the set M and the conditional probability of g given that the

pair belongs to the set U. The ratio r is the likelihood ratio test statistic for testing the null

hypothesis H0: ða; bÞ [ M against the alternative hypothesis H1:ða; bÞ [ U, that is

r ¼
Pðgjða; bÞ [ MÞ

Pðgjða; bÞ [ UÞ
¼

mðgÞ

uðgÞ
: ð1Þ

The pairs for which r is greater than an upper threshold value Tm are assigned to the set

of linked pairs, M *; the pairs for which r is smaller than a lower threshold value Tu are

assigned to the set of unlinked pairs, U *; if r falls in the range ðTu;TmÞ, a no-decision is

made automatically and the pair is classified by a clerical review.

The previous thresholds are chosen to minimise the false link probability, denoted by b,

and the false non-link probability, denoted by 1 2 a, which are defined as follows:

b ¼
g[G

X
uðgÞPðM *jgÞ ¼

g[GM *

X
uðgÞ where GM * ¼ {g : Tm # mðgÞ=uðgÞ} ð2Þ

1 2 a ¼
g[G

X
mðgÞPðU *jgÞ ¼

g[GU *

X
mðgÞ where GU * ¼ {g : Tu $ mðgÞ=uðgÞ}: ð3Þ

In applications, the probabilities m and u can be estimated by treating the true link status

as a latent variable, and using the EM algorithm (Jaro 1989). Alternatively, Larsen (1996)

applies a Bayesian latent class and Bayesian log-linear models to fit the mixture models

(Larsen and Rubin 2001).

When more than two lists have to be linked, for instance, multiple administrative data

sets, there are different ways to proceed. Indeed, the standard record-linkage

methodologies in use at National Statistical Institutes deal mainly with pairs of lists.
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Some proposals for simultaneously linking more than two lists are given by Sadinle et al.

(2011); Sadinle and Fienberg (2013); Steorts et al. (2014); Ventura et al. (2014), and

Fienberg and Manrique-Vallier (2009). However, currently these methods still need to be

“industrialised”, so they are not yet suitable for applications in the official statistics

production systems due to their computational complexity (Fienberg 2015).

Alternatively, one can match all lists in pairs. A drawback of pairwise linkages is the

risk of discrepancies in the linkage decisions. For instance, considering three lists, one can

link the record of the individual a in list 1 and the record of an individual b in list 2 from a

bipartite record linkage. Then, from a second bipartite record linkage, one links the record

of b to the record of an individual c in list 3. Based on these two linkages, one might

conclude that a, b, and c are the same individual. However, one also links the first and third

lists, but the records a and c may emerge unmatched. If the records a, b, and c truly

correspond to the same individual (entity), a nonmatch may occur due to measurement

error or incomplete record information. On the other hand, if the records of a, b, and c do

not refer to the same individual, we have four possibilities: a and b refer to the same

individual but c refers to another one, a and c refer to the same individual but b refers to

another one, b and c refer to the same individual but a refers to another one, or a, b, and c

all refer to different individuals. By using bipartite record linkage for each pair of files, one

cannot resolve the matching pattern. While there are various ad hoc approaches to resolve

the results of multiple bipartite matchings, no formal methodology has appeared in the

statistical literature (Herzog et al. 2007).

To solve multiple linkage, a widespread practice in the National Statistical Institutes is

to consider a list as a master frame, and then to link each list sequentially into the master

frame. In this case, the linkage procedure involving three lists consists of linking firstly list

1 and list 2, and then the resulting frame with list 3. This procedure has the advantages of

needing only two linking operations, while the corresponding pairwise links involve three

linkage operations; in addition it does not require solving potential discrepancies.

In the following, we consider the latter multiple-list linkage scenario. In the next

session, we describe the linkage errors generated by these linkage operations and how they

affect the capture-recapture model.

3. Capture-Recapture Model and Transition Matrix

3.1. Capture-Recapture Model

To focus on the effect of linkage errors in the multiple-capture framework, we consider the

case of three captures (lists). In the absence of linkage errors, the capture-recapture data

can be classified in the following incomplete 23 table (Fienberg 1972):

where nijk is the cell count of the presence/absence in the lists, with i,j,k ¼ 1,0. Let pijk

denote the corresponding cell probability. The table is incomplete, due to the fact that the

count n000 is unobservable.

The linkage errors modify the counts in Table 1 in two ways: the number of

observations may increase in some cells and decrease in others; and the total number of

different individuals observed in the three lists may change, provided that the total number

of observations in each list, n1þþnþ1 þ , nþþ1, remains unchanged.
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Table 2 reports the observed counts, subject to linkage errors:

where n* ¼ {n*
ijk, i,j,k ¼ 1,0} denotes the observed counts after the linkage. Let

p* ¼ {p*
ijk, i,j,k ¼ 1,0} denote the corresponding probabilities. Finally, let n*

<L be the sum

of observed distinct units.

3.2. Error Model with Missing and False Links

Fienberg and Ding (1996) propose a correction of the log-linear model that considers the

possible transitions from the true configuration n to the observed one n*, taking into

account only the missing links. They assume that: (i) there are no erroneous matches in the

linkage process; (ii) a transition can only go downwards by at most one level, and (iii)

the probability of remaining at the original state (no missing error) equals a and the

probability of a transition to any of the possible states is equal to (1 2 a)/(m 2 1), where

m is the number of all possible states to which transitions are possible and allowed. For

example, an individual truly recorded in all the three lists (111) can produce the following

patterns {(110), (001)} or {(101), (010)} or {(110), (001)} with equal probability (1 2 a)/3.

In this article, we suppose that the transition probabilities are related to both the

probability of missing a true match and the probability of a false link. Moreover, we apply

a more realistic error model that mimics more closely a real three-list linkage process as

described in Section 2, that is, we first assume a linkage step of list 1 and 2 and then a

linkage to list 3, taking into account different linkage errors in the two linkage steps.

To this purpose, let 1 2 a1 be the probability of missing a match in the first linkage

and 1 2 a2 be the probability of missing a match in the second linkage; moreover let

b1 be the probability of a false link in step 1 and let b2 be the probability of a false link

in step 2.

Table 1. True table for cell counts, without linkage errors.

List 1

Present Absent

List 3 List 3

List 2 Present Absent Present Absent

Present n111 n110 n011 n010

Absent n101 n100 n001 n000

Table 2. Observed table for cell counts.

List 1

Present Absent

List 3 List 3

List 2 Present Absent Present Absent

Present n*
111 n*

110 n*
011 n*

010

Absent n*
101 n*

100 n*
001 n*

000
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We study the effect of linkage errors, introducing first the probability of missing a true

match. However, differently from Fienberg and Ding (1996), we aim at taking into

account the realistic linkage process in two phases. Then, if one only considers the

probability of missing a match, the possible alternative “decompositions” generated by a

real unit observed in all the three lists (111), counted in n111, result in the observed ones

(ijk)* counted in multiple cells, n*
ijk, as follows:

a. (111)* with probability a1a2,

b. (110)* and (001)* with probability a1ð1 2 a2Þ

c. (101)* and (010)* with probability ð12a1Þða2Þ
2

d. (011)* and (100)* with probability ð12a1Þða2Þ
2

and finally

e. (100)* and (010)* and (001)* with probability ð1 2 a1Þð1 2 a2Þ.

The five events above are complementary and mutually exclusive.

On the second line, for example, when we correctly link the first two lists but we miss the

link with the third one, the event b results in the “decomposition” of (111) in (110)* and

(001)* with probabilitya1ð1 2 a2Þ. On the contrary, when an error occurs at the first linkage

step, the individual is decomposed in two different units, then the third list is correctly linked

to either the first or the second one with the same probability ða2Þ
2

(event c or d).

For convenience, following the terminology of Fienberg and Ding (1996), we call such

a decomposition (or combination in case of false matches, discussed below) a “transition”.

A similar reasoning for the decomposition of the other true individual patterns allows

for a transition matrix M1 to be obtained. Table 3 reports the matrix with the transition

probabilities resulting from the different events that generate the observed patterns after

linkage. For instance, the (001)* is generated from (111) when either the event b or the

event e of the above example occur. The probability of the transition from (111) to (001)*

is then a1ð1 2 a2Þ þ ð1 2 a1Þ ð1 2 a2Þ ¼ 1 2 a2, as in Table 3.

It is worth noting that the columns of the transition matrix M1 do not necessarily add up

to one. The probabilities of the alternative events (missingness/unmissingness of matches

in one/two steps) obviously add up to one. However, when a linkage error occurs (e.g.,

a true match is missed) it affects more than one row of the matrix, generating

decomposition/combination of the true unit of the population. This property is consistent

with the observation that the sum of the distinct individuals enlisted in Table 1 differs from

the sum of the observed distinct units in Table 2.

Table 3. Transition matrix M1 from real to observed cells when only missing links occur.

111 110 101 100 011 010 001

(111)* a1a2 – – – – – –

(110)* a1ð1 2 a2Þ a1 – – – – –

(101)* ð12a1Þða2Þ
2

– a2 – – – –

(100)* ð12a1Þð22a2Þ
2

1 2 a1 1 2 a2 1 – – –

(011)* ð12a1Þða2Þ
2

– – – a2 – –

(010)* ð12a1Þð22a2Þ
2

1 2 a1 – – 1 2 a2 1 –

(001)* 1 2 a2 – 1 2 a2 – 1 2 a2 – 1
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The transition matrix M1 can be further extended to include the false linkage errors.

As before, different linkage errors are assumed for the first and the second phase. In

addition, we assume that whenever a true match is missed, the related records cannot be

involved in false matches in the same phase, because this event happens when at least two

errors occur: the records are incorrectly linked and the correct match is missed. Then, we

assume it has a negligible probability of occurrence, as in Ding and Fienberg (1994) and

in Di Consiglio and Tuoto (2015). Under the above assumptions, and, at the same time,

treating the transitions caused by false and missing linkage errors, we obtain the transition

matrix M2 in Table 4. It is worth noting that the matrix M2 can contain negative values due

to algebra on the probabilities of composition/decomposition generated by the false links.

4. Estimation of Population Size

The true counts in Table 1 can be estimated by a linear combination of the observed counts

via the inverse of the transition matrix:

n ¼ M 21n* ð4Þ

The transition matrix M can be either M1 or M2 (see Tables 3 or 4) according to the

adopted error model. Similarly, the cell probabilities can be estimated by p ¼ M 21p*.

Once the true cell counts are obtained by (4), in order to estimate the population size N,

one needs to estimate the unknown count of the missing cell in the 2k incomplete

contingency table, for example applying a suitable log-linear model. For instance, when

dealing with three lists, one can use the log-linear saturated model

log ðEðnijkÞÞ ¼ lþ lL1

i þ lL2

j þ lL3

k þ lL1L2

ij þ lL1L3

ik þ lL2L3

jk ð5Þ

where the sum of any l over any subscript is zero. The fitted count ~n000 from the log-linear

model is finally used to estimate the population size:

~N ¼ nþ ~n000: ð6Þ

Under the assumption of independence of each pair of lists, we have

~n000 ¼
n111n001n100n010

n101n011n101

ð7Þ

The assumption of independence of each pair of lists is equivalent to setting lLuLv ¼ 0

for each u and v. The use of log-linear model, however, enables list pair dependency

and its extensions to also take account of the heterogeneity of capture probabilities

(see Section 1).

In general, to obtain an estimation of the population size N, we first compute the

Maximum Likelihood (ML) estimates of the parameters from the conditional likelihood

associated with observed cell count n* given n*
<L, as suggested in Fienberg and Ding

(1996). Sanathanan (1972) shows that, under suitable regularity conditions, the

conditional maximum likelihood estimates and the unconditional ones are both consistent

and have the same asymptotic normal distribution. Once the conditional maximum

likelihood estimates of the log-linear model are obtained, we use the log-linear model

specified for the not-observed real values to compute the conditional maximum likelihood
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estimates of the expected cell counts ~nijk, including the one of the missing cell. Thus,
~N ¼

ijk

P
~nijk.

5. Focus on Linkage Errors

The linkage errors defined in Formulas (2) and (3) are based on the Fellegi and Sunter

(1969) theory for record linkage that is very effective for the link identification. Note that,

conceptually, in (2) and (3) the probabilities b and a are defined for each element of the

product space V ¼ L1 £ L2. However, as it is well known in practice, the Fellegi and

Sunter (1969) linkage procedure is not reliable for estimating the linkage errors. Tuoto

(2016) proposes a supervised learning method to predict both types of linkage errors,

without relying on strong distribution assumptions, as in Belin and Rubin (1995).

Alternatively, Chipperfield and Chambers (2015) apply a bootstrap method to the actual

linkage procedure to evaluate the mismatch probabilities.

On the other hand, in the population size estimation context, it may be necessary to

adopt alternative definitions of the linkage errors than (2) and (3). For instance, let us

consider the multiple capture counts in Table 2 and the two linkage steps that produced it.

At any of the linkage stages, if the true linkage status was known, the errors rates could be

defined comparing the links made with the true ones. At the first stage, the results of this

comparison could be reported as in Table 5.

Then to assess the quality of the linkage process, the following ratios could be defined:

False nonmatched ðmissed matchÞ rate: 1 2 a ¼
c

aþ c
¼

n11 > n*
11

n11

; ð8Þ

False match rate: b ¼
b

bþ d
¼

n*
11 2 n11 > n*

11

ðN1 2 n11Þ þ ðN2 2 n11Þ
: ð9Þ

Clearly, the definition of false match error b in (9) is more pragmatic than in (2),

because the set of all the unlinked pairs U ¼ ðN1 2 n11Þ £ ðN2 2 n11Þ is a much larger set

than ðN1 2 n11Þ þ ðN2 2 n11Þ, since the false matches in (9) are related to the unlinked

cases of both the lists, rather than to the cross-product of the lists, as in (2), where the

unlinked pairs set U is considered. Moreover, it is worth noting that one can expect

the number of false links involving the actually linked records to be much lower than the

number of false links between unlinked records, because the former implies two linkage

errors simultaneously, that is, missing the true match and erroneously linking the matched

record to a different record.

Finally, it should be pointed out that the false match rate defined by (9) is a different

quantity to the false match rate used for adjusting regression analysis (e.g., in Chambers,

2009), where the latter is defined in relation to the number of actual links n*
11. While both

Table 5. Comparison of true matches and assigned links.

True matches True non-matches

Links a – true positives b – false positives or false links

No links c – false negatives or missing links d – true negatives
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quantities target the same number of false links among the links made, the two rates are not

the same measure, because they have different denominators.

6. Applications

In this section, we present some applications of multiple capture estimation method in the

presence of linkage errors. Firstly, in Subsection 6.1, the adjusted estimator derived

applying transformation (4) with M2 is applied in a real-life context, the census, post-

enumeration survey and administrative data example already considered by Fienberg and

Ding (1996). In Subsection 6.2, we propose a simulation study to analyse the empirical

statistical properties of the suggested estimators; in Subsection 6.3, the simulation study

provides a sensitivity analysis to show the robustness of the population size estimates with

respect to the linkage error evaluation.

6.1. Example from Census, PES and Administrative Data

First, let us consider the data from the three lists previously used by Fienberg and Ding

(1996): the 1990 U.S. Census, the corresponding post-census survey (PES), and the

administrative list supplement (ALS). Data for sampling strata PES 11 at St. Louis are

given in Table 6.

For the evaluation of the matching errors, Fienberg and Ding (1996) use the Matching

Error study (see Mulry et al. 1989) to assess both the probability of missing a link in the

linking procedure between the Census and the PES, and the probability of missing a link in

the linkage involving the ALS, under the assumption of no errors in the rematch. The

results of the Matching Error Study for 1990 U.S. Census in St. Louis stratum are reported

in Table 7 (see Table 4, 562 in Fienberg and Ding, 1996).

Ignoring the unresolved cases, Fienberg and Ding (1996) estimate the probability of

missing a true link as ð1 2 â1Þ ¼ ð1 2 â2Þ ¼ 9/(2,667 þ 9) ¼ 0.3363%. Following the

same reasoning, we evaluate the probability of a false link as b̂1 ¼ b̂2 ¼ 7/(7 þ 427) ¼

1.6129%. It is worth noting that the false linkage error is much greater than the missing

linkage error, suggesting the need to correct also for false links.

For the estimation of the unknown size of the population, Fienberg and Ding (1996)

examine various log-linear models with different dependency structures in order to

better fit the data in Table 6. The model [CensusPes][PesALS] results to fit the data

Table 6. Three-sample data for stratum 11, St. Louis, 1990 U.S. Census.

Census ¼ List 1

Present Absent

PES ¼ List 2 PES ¼ List 2

ALS ¼ List 3 Present Absent Present Absent

Present 300 51 53 180

Absent 187 166 76 –
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much better. The corresponding naı̈ve estimate is N̂ ¼ 1; 599. Applying their

correction for missing links, Fienberg and Ding (1996) estimate ~NDF ¼ 1; 585: Instead,

including the false linkage errors as well, with the error matrix M2 specified in Table 4,

we get ~NMDF ¼ 1; 680. This value is within the confidence interval of both of the

previous estimates.

6.2. Results on Simulated Data

This section describes the results of a simulation on fictitious data. To simulate the linkage

process in a realistic way, we use person identifiers from the fictitious population census

data (McLeod et al. 2011) created for the ESSnet DI, which was a European project on

data integration (Record Linkage, Statistical Matching, Micro integration Processing)

running from 2009 to 2011.

The ESSnet DI provides three entirely fictitious data sources, which are supposed to

have captured details of persons at the same reference time. The first data set consists of

observations from the Patient Register Data of the National Health Service (PRD, in the

following); the second data set contains observations from the Customer Information

System (CIS), which combines administrative data from the tax and social security

systems; the third data set reports observations from a decennial Census (CEN). In these

data sets, which comprise over 26,000 records each, linking variables (names, dates of

birth, addresses) for individual identification may be distorted by missing values and

typos, to imitate real-life situations. These synthetic data reproduce the real data and the

actual observed errors that make the linkage procedure difficult. For details on the

generation of synthetic data and the perturbation of the key variables, see McLeod et al.

(2011). The simulation setting lets us know the true match status to benchmark the linkage

results. In the simulation, 500 populations of the size 1,000 were generated, sampling the

data independently and randomly without replacement.

For each replicate, the three lists were randomly drawn by the PRD, CIS and CEN

on the basis of the following capture probabilities: p1þþ ¼ 0:65, pþ1þ ¼ 0:53 and

pþþ1 ¼ 0:57, respectively.

At each replicate, the linkage was made as illustrated in Section 2: in the first phase, the

PRD and CIS lists were linked; in the second phase, the linked and un-linked records of the

first phase were linked to the third list (CEN).

Table 7. St. Louis rematch study.

Original match
Rematch classification

classification Matched Not matched Unresolved Total

Matched 2,667 7 8 2,682

Not matched 9 427 30 466

Unresolved 0 7 20 27

Total 2,676 441 58 3,175
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In both steps, the linkage variables were Name, Surname, Day, Month and Year of

Birth, and the probabilistic record linkage model (Fellegi and Sunter 1969, Jaro 1989) was

implemented by the batch version of the software RELAIS (RELAIS, 2015).

Table 8 summarises the results of the linkage procedure in terms of realised linkage

error rates, reporting the probability of missing a true match 1-a and the probability of a

false match b for both steps, as defined in Section 5 (see Formulas 8 and 9 for step 1). The

realised 1-a and b can be evaluated in light of the known true linkage status.

At each replicate, we compute the naı̈ve log-linear estimator and the adjusted

estimators, applying the transformation (4) with M1 or M2 as described in Section 4.

Having generated the three lists independently, the log-linear model assumes the

independency of the lists. The adjusted estimator was computed using the true values of

the probability of nonmissing true matches a and the probability of false match b obtained

in each replicate. The use of the true values of a and b allows us to compare the estimators

without the effect of the linkage error estimation, hence focusing on the performance of

the adjusted estimator.

Figure 1 shows the distributions over the 500 replicates of the several estimators: the naı̈ve

estimator, the adjusted estimator taking account of missing links only (DF as Ding and

Fienberg) according to the matrix M1 and the adjusted estimator taking account of the two

types of linkage errors (MDF, modified DF) according to the matrix M2 in Table 4. For

comparison, the figure shows the estimates that can be obtained with the true counts unaffected

by linkage errors.

The relative percentage errors of the estimators are summarised in Table 9. The table

shows the minimum value, the first quartile, the median, the average, the third quartile

Table 8. Distribution of the linkage error rates over the 500 replicates.

Linkage errors% Min Median Mean Max

First step
1-a1 0.00 2.39 2.51 7.33
b1 0.00 4.58 4.31 7.63

Second step
1 2 a2 0.90 2.86 2.91 5.93
b2 0.20 4.53 4.10 8.56
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Fig. 1. Empirical density of the alternative estimates of the population size over the replicates (true N ¼ 1,000).
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and the maximum value of the relative percentage of error calculated over the 500

replicates.

The results in Figure 1 and Table 9 show that the proposed adjustment reduces the bias

of the naı̈ve estimator without side effects on the variability of the estimator, even if the

bias is not entirely removed due to the non-linear nature of the population size estimator.

Likewise, the residual bias may be due to the misspecification of the linkage error model: it

is observed in this simulation, as well as in other real applications (Tuoto et al. 2017) that

the probability of double errors (i.e., missing a true link and false link of the records at the

same time) may be not negligible, as assumed in the proposed transition matrix M2.

6.3. A Sensitivity Analysis

The simulation setting is exploited for a sensitivity analysis of the proposed estimator with

respect to the misspecification of the linkage errors. In the previous subsection, the MDF

estimator was calculated under optimal conditions, that is, knowing the values of the

linkage errors made. In this section, several values of a1, a2, b1 and b2 are tested to

evaluate the statistical properties of the MDF estimator in different nonoptimal scenarios.

First, we apply the MDF estimator with the four average linkage errors over the 500

replicates – we denote the estimator as MDFmmmm in the following. Moreover, the

variability of the linkage errors is accounted for in MDF estimates by evaluating the matrix

M2 with several combinations of the lower and upper bounds of the confidence intervals

over the 500 replicates. We denote MDFa1b1a2b2
where the subscripts take values in

{o, m, l, u}, standing for “observed”, “mean”, “lower bound of the confidence interval”,

“upper bound of the confidence interval” respectively.

Figure 2 compares the true values, the naı̈ve estimates and the adjusted estimators

MDFa1b1a2b2
.

As expected, the MDF estimator with true observed linkage errors outperforms the

MDF estimators with different values (m, l, u) of the linkage errors, both in terms of bias

and variability. However, when we compare the naı̈ve estimator and the MDF estimators

with inaccurate values of the linkage errors, the results are diverse. Figure 2 shows that the

MDF estimate still improves the naı̈ve one, at a cost of a slight increase in variability,

when using the linkage error averages. As expected, when using the lower bound of the

confidence intervals of the errors, the MDF estimates tend to the naı̈ve one. On the

contrary, when applying the upper bound of the confidence intervals (i.e., on average

Table 9. Distribution of percentage relative error.

Percentage relative error

Estimator Min Q1 Median Mean Q3 Max

Naı̈ve 28.70 24.90 23.70 23.19 21.70 3.90

DF 211.70 28.11 26.70 26.67 25.40 21.60

MDF 25.90 22.70 21.75 21.74 20.90 3.50

True values 24.80 21.82 21.00 21.05 20.20 2.30
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applying an over-correction), there is a tendency to overestimate. Finally, the MDF

correction is ineffective when the missing linkage errors are overestimated and the false

linkage errors are underestimated, or viceversa.

This analysis also shows that the adjustment with an inaccurate evaluation of the second

step linkage errors causes an increase in the variability but produces less bias in the

estimates compared to the bias caused by an inaccurate evaluation of the first step errors,

that is, once the linkage errors at the first step are misspecified we cannot adjust only with

the second step error probabilities. On the other hand, this sensitivity analysis indicates

that the independence assumption on linkage errors may not hold, as anticipated at the end

of the previous section: in fact, the MDFuuoo and MDFuuuu are on average closer to the true

values than MDF estimates.

7. Discussion and Concluding Remarks

This article proposes an extension of the Fienberg and Ding (1996) approach in order to

take account of linkage errors in the evaluation of the population size when more than two

lists are considered in a multiple system estimation framework.

However, the proposed estimator presents some open issues that need further

investigation, partially inherited from the general context of multiple captures. Some

reflections are briefly discussed in the next subsections.

7.1. A Note on Variance Estimation

In the estimation of the population size, it is assumed that the counts are distributed

according to a log-linear model; using the delta method, Darroch (1958) derives an

estimator of the variance of the population size estimator. For instance, when the three lists

Without errors
Naïve
MDF

MDF

MDF
MDF
MDF

lloo

MDF

MDF

uloo
MDFooul

uuoo
MDFoouu
MDFuuuu

MDFluoo
MDFoolu

ooll
llll

mmmm

1000 1050
Population size

950

Mean without errors
Mean MDF

Fig. 2. Simulated alternative estimates of the population size (true N ¼ 1,000) with different values of linkage errors.
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are independent, the estimator proposed by Darroch (1958) is as follows

dVarVarð ~NÞ ¼ ~N~n000

{ijk}[ S

X
~nijk

0
@

1
A

21

ð10Þ

where S contains all cells corresponding to individuals caught more than once.

However, in our context, a straightforward application of Formula (10) on the estimated

counts would omit the additional source of variability introduced by the linkage errors

process. In fact, when encountering linkage errors, the observations are subject to the

multinomial process generating the true captures plus the additional probabilistic process

of linking the lists. Then the variance evaluation needs to consider this additional

probabilistic process generating the linkage errors. Simply replacing the counts in Formula

(10) with their estimates obtained via the transformation (4) would not take into account

the latter source of variation. Moreover, in practice, the linkage errors are not known and

their estimation will introduce an additional source of error that should be considered.

As an alternative to analytical variance analysis, one can explore a bootstrap approach.

The variance estimation of the adjusted estimator is an open issue for future research.

7.2. Scalability

This article explicitly evaluates a general adjustment for linkage errors when the

population size is based on three sources. The method is readily applicable to the multiple

list case; however, a generalisation to k . 3 lists requires the evaluation of the transition

matrix M and the knowledge of the multiple step linkage mechanism. Considering only the

missing link error a, the transition matrix for k ¼ 5 is implemented in Link et al. (2010) –

see below in Subsection 7.3 for more details. Obviously, when the false link errors are

introduced into the analysis, the evaluation of the transition matrix is not straightforward.

It is worth noting that the trade-off between the risk of potential linkage errors and the

advantages of increasing the number of lists for the population size estimation should be

further investigated by means of case studies.

7.3. A Bayesian Perspective on the Population Size Estimation

Alternative approaches to record linkage are based on Bayesian methods. For instance, in

Fortini et al. (2001) and Liseo and Tancredi (2011), the interest is focused on a matrix-

valued parameter C, which represents the true pattern of matches between the two lists. The

sum of the elements of C is an estimate of the number of true matches between the two lists,

given the following constraints on the parameter space of C that avoid multiple matches:

Cij ¼ {0; 1};
L1

X
Cij # 1;

L2

X
Cij # 1:

The Bayesian approach enables the propagation of the uncertainty of the linkage

process to subsequent analysis of the linkage data in a natural way. According to the

knowledge of the authors, this method is only described in the two-list case, but similarly to

the Fellegi-Sunter approach, it could be applied by incremental steps that consider an
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augmented number of lists. A practical difficulty with the Bayesian approach is the lack of

scalability to large data sets, which is the case of the population size estimation in official

statistics.

Steorts et al. (2015) propose an alternative Bayesian approach that allows linking

records from multiple lists simultaneously while de-duplicating the lists. Similarly to

Parag and Domingos (2004), the linkage is considered as a process of recognising latent

“entities” with a graphical representation, that is, each record in the lists can be linked to a

latent unit from 1 to Nmax, where Nmax is the total number of units in all the lists, if no unit

is present in more than one. A uniform prior is assumed on the linkage structure, that is,

any observed unit is equally assigned to any of the latent individual. A hybrid MCMC

algorithm is used to improve the computing performances. However, Steorts et al. (2015)

do not utilise their model for the estimation of the population size in the presence of

undercoverage. Further research is needed to apply their method in such setting.

Finally, we mention the linkage errors adjustment proposed by Link et al. (2010). They

assume only missing matches and no erroneous links; they model the capture-recapture

history with a vector where the components are indicators of:

(i) Presence in the given capture and correct identification of the individual,

(ii) Presence in the given capture but missing identification, and

(iii) Absence in the given capture.

However, this model is still subject to the specification of a matrix M. They define the

recorded frequency vector n* as a linear combination of true history n, which is considered

as a latent variable. So, the application of the method still requires the actual specification

of the M matrix that connects the observed values to the true one, similarly to what is

described in this article.

7.4. Concluding Remarks

To summarise, this article first defines a realistic and widely used linkage setting for

multiple sources, then the errors caused by both missing and erroneous links are included

in the contingency table of the presence/absence of the units in the various sources. The

originality of the proposal consists in adjusting for false matches in addition to missing

matches, extending the previous works of Fienberg and Ding (1996) and Link et al. (2010).

Indeed, the false matches are frequent, as well as missing matches; this fact is also

observed in the Matching Error Study (Mulry et al. 1989) on the linkage between 1990

U.S. Census and PES, which is used to apply the proposed adjustment.

The suggested estimator allows reducing the bias of the naı̈ve estimator without relevant

effects on variability, even if the bias is not entirely cancelled out due to the nonlinear

nature of the estimator. It is worth recalling the assumptions underlying the estimator (6):

a. the linkage procedure acts in sequential steps, for instance, two steps in the description

of the three-list case provided in Subsection 3.2; b. linkage errors are independent in

different steps; c. at each step, the probability of missing a true match and erroneously

linking the related records in false matches is negligible, as in Fienberg and Ding (1996);

d. the linkage errors are either known or accurately estimated; and e. the linkage errors are

homogeneous, at least in sub-groups.
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The independence assumption b should be verified as, linkage errors are caused by

errors in the matching variables, one can, given the occurrence of these errors, assume that

linkage errors in different step are independent. However, the linkage mechanism can be

such that if a link is missed (or a false link is introduced) in the first step, this may increase

the probability of a linkage error in the second step. In our simulation setup, we tested the

adjustment with known linkage errors, evaluating them by means of the known actual

matches. The sensitivity analysis shows that the adjusted estimator outperforms the naı̈ve

one in several cases, even if the linkage errors are unknown. However, when the missing

linkage errors are overestimated and the false linkage errors are underestimated, and

viceversa, both at the first and the second step, the MDF correction is ineffective.

The simulation and the sensitivity analyses are restricted to one population framework

(i.e., Census and administrative data) and one linkage scenario. Other applications or

simulation settings can provide further insights and prove the generalisability of the

observed results. Moreover, the evaluation of linkage errors and the effect of these errors

on the variability of the population size estimates are still open issues.

The proposed estimator is developed assuming constant linkage errors across the entire

population. This may not always hold in practice; in those cases, the adjustment can still be

applied considering strata in which homogeneous linkage errors occur. As linkage errors

depend on errors in the key variables, then homogeneous groups can be built on the basis

of them. The gain of the adjusted estimator in the presence of homogeneous strata

compared to the use of average values of the errors over the entire population could be

examined; this is an aspect to be tackled in future research. However, the sensitivity

analysis already provides the insight that the adjustment can still be valuable compared to

the naı̈ve estimator, even with error values not corresponding to the true ones.

Finally, additional case studies should be carried out to analyse the statistical properties

of the suggested adjustment when considering extensions to basic log-linear models.
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