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Administrative data sources are increasingly used by National Statistical Institutes to compile
statistics. These sources may be based on decentralised autonomous administrations, for
instance municipalities that deliver data on their inhabitants. One issue that may arise when
using these decentralised administrative data is that categorical variables are underreported
by some of the data suppliers, for instance to avoid administrative burden. Under certain
conditions overreporting may also occur.

When statistical output on changes is estimated from decentralised administrative data, the
question may arise whether those changes are affected by shifts in reporting frequencies. For
instance, in a case study on hospital data, the values from certain data suppliers may have been
affected by changes in reporting frequencies. We present an automatic procedure to detect
suspicious data suppliers in decentralised administrative data in which shifts in reporting
behaviour are likely to have affected the estimated output. The procedure is based on a
predictive mean matching approach, where part of the original data values are replaced by
imputed values obtained from a selected reference group. The method is successfully applied
to a case study with administrative hospital data.

Key words: Administrative data; measurement errors; predictive mean matching; reporting
errors; selective editing.

1. Introduction

Use of administrative data in official statistics offers several advantages over survey data,

such as observations for a larger fraction of the target population, reduced data collection

costs and lower response burden. Therefore, administrative data is increasingly used by

National Statistical Institutes (NSIs) to compile statistics, either as a sole data source or in

combination with other sources. Administrative data here refers to data collected by an

organisation external to the statistical office for administrative purposes, thus not targeted

for use in official statistics (UNECE 2011). When the statistical population, unit and

variable definitions coincide with those for the administrative data source, estimation of

the statistical output is straightforward. For instance, the total number of persons receiving
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an unemployment benefit is easily derived from the corresponding administrative data.

However, when population, unit or variable definitions do not coincide, or when the

purpose of the register holder clearly differs from the intended statistical use,

methodological issues may arise (Bakker and Daas 2012; Wallgren and Wallgren 2014).

One of the issues that might occur with administrative data is that the registered values

differ from the true ones (as defined by the statistical office), resulting in measurement

errors. This happens especially with variables that are not of crucial importance to the

owner of the data set. For instance, enterprises might register their reported value added

tax data as being monthly, whereas in fact it concerns four-week values (Van Delden and

Scholtus 2017). The tax office tolerates deviations in monthly values, especially for

smaller enterprises, as long as the yearly amount of tax paid is correct. Also, Statistics

Netherlands (CBS) uses administrative fire brigade data. Fire brigades need to register the

variable “did the fire cause any environmental damage”. They underreport any occurrence

of environmental damage, because this way they avoid having to register a number of

subsequent variables, such as an estimated cost of the environmental damage (Berenschot

2012). From research on questionnaires, it is also known that respondents learn to shorten

questionnaire duration by underreporting events (Backor et al. 2007; Shields and To, 2005;

Silberstein and Jacobs, 1989). In the case of surveys, there is a lot of literature available on

reporting errors, for instance reporting errors might occur when asking sensitive questions,

or as a result of socially desirable behaviour (Tourangeau et al. 2010; Tourangeau and Yan

2007). In the case of administrative data, numerous studies on measurement errors have

been done (e.g., Groen 2012; Oberski et al. 2017 and references therein), but to the best of

our knowledge, the role of the administrative practice of data suppliers on these

measurement errors has hardly been given any attention.

Some of the administrative data sets used in official statistics are obtained through

decentralised data collection. For example, population data and social benefit data are

registered by municipalities. Similar examples concern administrative data sets provided

by fire brigades (on fires), by schools (on pupils), by hospitals (on patients), by local

authorities (on building activities), by employers (on salary information of employees) and

by courts (on legal proceedings). These decentralised administrations will be referred to as

“data suppliers” in this article and the corresponding administrative data will be referred to

as “decentralised administrative data”. Each of these decentralised administrations may

have their own administrative practices (Brackstone 1987), resulting in measurement

errors that vary with the data supplier. For instance, employers in the Netherlands vary in

the intensity of reporting employees’ overtime. In surveys, a similar phenomenon occurs

with personal interviewing, where interviewer-dependent measurement errors may occur

(West and Blom 2017). For instance, homeless respondents reported drug use more

frequently in the presence of male interviewers (see West and Blom 2017, 189 and

references therein).

From an official statistics point of view, preventing measurement errors in

administrative data is desirable, for instance by unifying and improving the “fields” that

the administrators have to fill in, or the questions that they have to respond to. Nonetheless,

there are at least two obstacles to achieving such improvements in practice. The first

obstacle is that local administrations may have different administrative systems

(software). This is, for instance, the case with employers reporting salary data for
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employees, with hospital data (see Section 2) and with financial administrative data of

municipalities. A second obstacle is that local administrations are autonomous and act

rather independently of the statistical offices that receive the data. The best that the NSIs

can do is to discuss quality issues with them and request improvements; the NSI cannot

prescribe any changes to the administrative systems. Before such a discussion can be held,

the NSI should have serious indications that measurement errors occur. The present article

therefore focusses on the detection of reporting errors in data of decentralised, autonomous

administrations.

In order to avoid biased outcomes, NSIs usually correct influential measurement errors

in a data editing process. Automatic error correction methods are applied when correct

values can be deduced from other variables, or when records are not influential (De Waal

et al. 2011). Otherwise, selective manual data editing will be used, and, if needed,

respondents are contacted. Selective editing methods aim to identify units with a high risk

of influential errors, where an “influential error” is defined as one “that has a considerable

effect on the publication figures” (De Waal et al. 2011). Our approach resembles that of

selective editing. However, when under- or overreporting of one or more variables occurs

in decentralised administrative data, correcting those data may not always be easy.

Applying the methodology described in the current article, we are able to detect the data

suppliers with measurement errors, but we cannot precisely detect which of the units

within a data supplier contain errors.

The data suppliers responsible for those decentralised administrative data will not be

able to determine which of the values are incorrect, nor to provide the “correct” values for

individual records in the data. The problem is that the correct data either have not been

registered, or can only be obtained with considerable effort. Municipalities, for instance,

might not be able to identify which students have moved out of their parents’ homes and

which have not. Hospitals may not be able to see the complete set of diseases of their

patients, if not all of them have been registered. In such a situation, the best option is

to analyse which of the data suppliers have relatively many measurement errors.

Subsequently, one can contact “suspicious” data suppliers and motivate them to improve

their administrative processes in order to reduce the number of errors in future data

deliveries.

Detecting under- or overreporting in a large number of variables in decentralised

administrative data may be especially difficult in the case of level estimates. An option to

analyse reporting behaviour in the case of level estimates makes use of a second

independent source. In the present article, we aim to detect changes in reporting behaviour

between two time periods. More specifically, we aim to develop an automatic procedure to

detect suspicious data suppliers in decentralised administrative data in which shifts in

reporting behaviour are likely to have affected a targeted change estimate. We apply our

method to hospital data.

The remainder of the article is organised as follows. Section 2 gives some

background information on the hospital data and the potential reporting errors therein.

Section 3 describes the methodology used to select data suppliers with deviating

reporting behaviour. How this methodology is applied to the case study is described in

Section 4. Section 5 presents the results of the case study. Finally, Section 6 discusses

the outcomes.
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2. Background of the Case Study

At CBS, Dutch Medical Registration data (LBZ) is used concerning hospital stays of

patients. This data set contains patient-related information, such as age and sex, and

diagnosis-related variables, such as main diagnosis and comorbidities, which are other

diagnoses describing the medical condition of the patient (Elixhauser et al. 1998). These

data are compiled by the hospitals to provide a clinical data set that can be used by medical

researchers. At each hospital, LBZ data is registered by coders using the administrative

data system of the hospital and patient files (Van den Bosch et al. 2010). The LBZ data set

is not targeted for use in official statistics, and fulfils the UNECE (2011) description of

administrative data. We therefore refer to LBZ data as administrative data in the remainder

of this article.

Since 2011, CBS has been responsible for computing the yearly Hospital Standardised

Mortality Ratio (HSMR) for Dutch hospitals using LBZ data. The HSMR aims to measure

differences in quality of hospital care and its computation was initiated in the United

Kingdom by Jarman et al. (1999). Nowadays, it is being computed in a number of

countries, such as the United States, Canada, the United Kingdom (Bottle et al. 2011),

Australia and the Netherlands. Mortality is taken as a measure of hospital care, since

several studies have shown that mortality correlates with quality of hospital care (e.g.,

Pitches et al. 2007). The HSMR of a hospital is computed as the ratio of observed to

expected mortality, normalised to 100 (over all hospitals in a year). The HSMR includes an

expected mortality to remove differences between hospitals that are caused by differences

in patient populations. The expected mortality is estimated from a logistic regression

model that includes a large number of background variables (Israëls et al. 2012).

In the hypothetical situation that we send the same patient to all Dutch hospitals, we

would like the hospitals to register the same values for all patient- and disease-related

variables. In practice, this is indeed the case in the Netherlands for variables such as age

and sex. However, for a number of other variables, differences in reporting frequency were

found among hospitals. The largest differences were found for the variables comorbidity

and urgency of admission (Jarman, 2008; Pieter et al. 2010; Van der Laan 2013).

According to Van den Bosch et al. (2010), reasons for these differences in reporting

frequency are time pressure due to a limited number of coders, interpretation differences

of the coding rules, and late delivery of patient files. Furthermore, the average number of

coders per admission, and consequently, the time typically spent on LBZ registration (Van

den Bosch et al. 2010) varies between hospitals. Van der Laan (2013) showed a sharp

increase in the average number of reported comorbidities in some hospitals in 2008–2010,

where 2010 was the year when the HSMR would become publicly available. Since such a

large shift in the patient population of the hospitals in such a short time seems unlikely,

this suggests that some hospitals changed their comorbidity reporting (Van der Laan

2013). Note that increased comorbidity reporting – everything else being the same – leads

to a decreased HSMR. An increase in the average number of comorbidities by 0.1 led to an

estimated HSMR decrease of five points (Van der Laan 2013), implying improved hospital

care. This makes the data interesting as a case study. Another quality issue in the hospital

data is that hospitals sometimes use the wrong codes (misclassifications) when reporting

the main diagnosis or the comorbidities of patients, see for instance Harteloh et al. (2010)
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and Quan et al. (2008). Although this is an important quality issue, estimating these

misclassifications is beyond the scope of the present article.

In the present study, we focus on the effect of reporting behaviour on estimated changes.

In the HSMR case study, for instance, many hours of manual analysis are being spent to

clarify whether some hospitals with a changed HSMR have been affected by changes in

intensity of comorbidity reporting. Cases of “suspicious results”, such as a large change in

the average number of comorbidities per hospital stay, are reported by the staff to the data

holder, Dutch Hospital Data, which releases the outcomes. Currently, the average number

of comorbidities per hospital stay is used as a first simple quality indicator for reporting

differences between hospitals. However, applying this simple indicator on previous years

showed two serious shortcomings. The first one is that it does not correct for the trend, over

all hospitals, in the number of reported comorbidities over time. The second, most serious

shortcoming is that it is unclear to what extent changes in the average number of

comorbidities per hospital stay affect the estimated HSMR changes of that hospital. The

reason is that this effect depends on the patient composition of the hospital. We therefore

aim to develop a detection method that overcomes these current shortcomings.

3. Methodology

3.1. Basic Approach

Consider a population Uh of units i ði ¼ 1; : : : ; NhÞ that are reported in a decentralised

administrative data source by data supplier h. Let Y ¼ {y1; : : : ; ym; : : : ; yM} be a set of

M binary variables that are prone to under- or overreporting. Further, let the obtained

values for the variables ym for unit i of data supplier h be contained in the vector

yhi ¼ ð y1hi; : : : ; ymhi; : : : ; yMhiÞ
T . Also, let Z¼ {z1; : : : ; zl; : : : ; zL} be a set of L

covariates (continuous or categorical) for which it is reasonable to assume that they are

error-free. Further, let zhi ¼ ðz1hi; : : : ; zlhi; : : : ; zLhiÞ
T be the corresponding vector with

the obtained values for unit i of data supplier h. For instance, in the case study, the

variables age, sex, socio-economic status and mortality for admissions i of hospital h were

considered to be error-free. Further, let u be the target parameter of interest. In our case

study, we have the special situation that we publish a target parameter for each data

supplier, denoted by uh, but with some minor adaptations our method can also be applied

when there is one common target parameter. The target parameter is estimated as ûh,

which is a function of the variables ym and zl. Throughout the article a hat is used to

indicate an estimate.

We aim to compute the effect of under- and overreporting on ûh for the variables ym with

m ¼ 1, : : : , M. We apply the following four steps to estimate the effect of under- and

overreporting (the exact description is given in the next sections):

1. Select a group r of reference suppliers with similar reporting behaviour for the

variables ym. One might use multiple reference groups to analyse the sensitivity of

the outcomes to the selected reference group;

2. For the units in the reference group, predict the probability that ymhi ¼ 1 given a set

of covariates. Use the regression coefficients to predict the probabilities for the

nonreference suppliers;
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3. Use the predictions of 2) in a predictive mean matching imputation algorithm. If the

observed ymhi values of the nonreference suppliers differ significantly from the

expected ones, replace them with the reference suppliers’ values;

4. Compute the change in the target parameter between two periods for data supplier h

as a function of the original yhi and zhi values and recompute this change using the

imputed values. The difference between those two changes is a measure for the effect

of the reporting behaviour of data supplier h on the outcomes.

The four steps are schematically represented in a flow chart, see Figure 1. The details of

the steps, for instance the loop over units i in step 3, are explained in the next sections.

3.2. Select a Reference Group

We define a model for the variables ym (m ¼ 1, : : : , M ) to describe the reporting

behaviour of the data suppliers. This will be used to select data suppliers with a

comparable reporting behaviour. When the intensity of reporting behaviour is expected to

be the same for the set of variables ym one can combine these variables into a single

Pr
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covariables and
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Derive P(ym=1)
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target param
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target param
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Fig. 1. Flow chart of the four steps of our methodology. The symbols in the chart are simplified compared to the

main text; CI stands for confidence interval; the meaning of stratum s is explained in Subsection 3.4.
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summary measure. We denote this summary measure as:

y†hi ¼ g ð yhiÞ

where subscript “z” denotes that it summarises over a set of variables. A summary variable

can be

yð1Þ†hi ¼ 1 2
YM

m¼1

ð1 2 ymhiÞ: ð1Þ

Thus yð1Þ†hi equals 0 when ymhi ¼ 0 for all ym variables and it equals 1 otherwise.

Alternatively, one might use yð2Þ†hi ¼
PM

m¼1 ymhi, which stands for the number of variables

with a score of 1. When the variables ym are not related to each other or when the reporting

intensity is expected to vary considerably among the ym variables, it is better to analyse the

effect of reporting behaviour for one variable at a time. In the remainder of this article, we

limit ourselves to the analysis of reporting behaviour on a set of variables, because

analysing one variable at a time is a special case of this.

In order to assess differences in reporting behaviour among data suppliers, one needs to

correct for differences in the population on which they report. We use covariates to capture

this population composition. These covariates may coincide with the error-free variables zl

(l ¼ 1, : : : , L) within the administrative data set, but they may also be amended with

error-free variables that are not available in the administrative data set at hand. It is

important that those variables are error-free to assure unbiased estimates for the supplier

effects (the ĝ in (2), see below). In the discussion we give some suggestions for the

situation that the covariates contain measurement errors. We denote the set of covariates

by x ¼ {x1; : : : ; xk; : : : ; xK} and their obtained values for unit i of data supplier h are

denoted by xhi ¼ ðx1hi; : : : ; xkhi; : : : ; xKhiÞ
T . Let Ihi be an indicator variable that is 1 if

unit i belongs to data supplier h (h ¼ 1, : : : , H ) and 0 otherwise. Let dhi be the vector

dhi ¼ ðI1i; : : : ; IHiÞ
T . Further, let P yð1Þ†hi ¼ 1

� �
denote the probability that yð1Þ†hi ¼ 1.

We estimate the data supplier effect on the reporting behaviour using the logistic model:

logit P̂ yð1Þ†hi ¼ 1jxhi; dhi

� �� �
¼ ðxhiÞ

T b̂þ ðdhiÞ
T ĝ; ð2Þ

where b̂ is the vector of estimated regression coefficients concerning the covariates

(including the intercept) and ĝ ¼ ½gh� is the vector with the estimated data supplier effects.

With Equation (2) we assume that there is an overall effect gh on a set of binary ym

variables (m ¼ 1, : : : , M ) due to the administrative practice of the data supplier. As an

alternative to (2) one might estimate the data supplier effect for summary variable yð2Þ†hi

with a simple linear model. When the decentralised data also contains data suppliers that

report for a smaller number of units, random effects models might give better estimates of

gh (see discussion). Note that large gh values indicate high reporting levels, whereas small

values stand for the opposite.

For (each) reference group r, we aim to select data suppliers with similar gh values.

Since we are interested in changes of a target parameter ðûhÞ as affected by shifts in

reporting behaviour (between two subsequent periods), we estimate Equation (2) for two

subsequent periods and select data suppliers with similar values over two periods. A

directly related issue concerns the choice of the group size. This size should, on the one

Van Delden et al.: Detecting Reporting Errors 869



hand, be small enough to reduce the variability in reporting behaviour within the set, but

on the other hand it should be large enough to reliably predict the variables with reporting

patterns. See Subsection 4.2 how we operationalised “similar gh values” and the group size

for the case study.

Note that we regard the computed value for P̂ yð1Þ†hi ¼ 1jxhi; dhi

� �
in (2) to be an estimate,

although it is derived from administrative data that covers the complete target population.

The reason is that we are interested in the reporting behaviour of the data supplier

concerning the ym variables. We regard this reporting behaviour to be an unknown

property; the obtained observations can be seen as “input” to monitor this reporting

behaviour.

3.3. Predict the Variables with Data Supplier Effects

In the second step, we predict the scores for each of the variables ym (m ¼ 1, : : : , M ) for

reference group r and judge how well the models fit. A good model fit leads to a better

result for the next step: predictive mean matching. Let d be a domain, that is, a category of

one variable or a category of a cross-classification of multiple categorical variables.

Domains are used when the effect of the covariates on the error-prone ym variables are

expected to vary (over domains). Domains thus capture interactions between the

population composition variables with respect to their effect on reporting intensity.

Further, let ymhdi be the score for unit i on variable ym for data supplier h and domain d. Let

Urd be the set of units of reference group r within domain d. Denote by pðrÞmhdi ¼

P yðrÞmhdi ¼ 1jxhdi

� �
the probability that ymhdi ¼ 1 for reference group r given the values of a

set of covariates. For the set of units i [ Urd we estimate pðrÞmhdi by:

logit p̂ðrÞmhdi

� �
¼ ðxhdiÞ

T b̂
ðrÞ

md ði [ Urd; m ¼ 1; : : : ; MÞ ð3Þ

where b̂
ðrÞ

md stands for the estimated regression coefficients that depend on reference group

r, variable ym and domain d. The periods, for instance years, can be included as dummy

variables in xhdi, which means that the model captures that reporting behaviour for each of

the variables ym may vary with year. Next, also compute p̂ðrÞmhdi for the nonreference

suppliers based on the same regression coefficients b̂
ðrÞ

md in (3). Note that Equation (3), in

contrast to Equation (2), does not contain a data supplier effect (ĝ). The reason is that we

wish to model how the comorbidity probabilities p̂ðrÞmhdi depend on a set of error-free

background variables for a set of units i [ Urd that have a similar reporting behaviour.

We used the C-statistic as an evaluation criterion for the predictive validity of the

logistic regressions. The C-statistic lies between 0.5 and 1. As a rule of thumb, values of

0.7 to 0.8 indicate an acceptable discrimination and values above 0.9 show an outstanding

discrimination (Hosmer and Lemeshow, 2004).

3.4. Predictive Mean Matching

For ease of notation, in the remainder of the article, we will drop the super- and subscripts

r, h and d from the notation of the variables, unless we need them to explain the equations.

Thus, for instance p̂ðrÞmhdi will be abbreviated as p̂mi.
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In order to analyse the effect of reporting behaviour on the target parameter, we did not

directly replace the originally observed ymi values by their p̂mi values, for two reasons:

1. the p̂mi values are estimated for each of the variables ym separately without

accounting for their covariances;

2. we wanted to replace the original data only when the existing values differed clearly

from their expected values (see below).

Note that in the HSMR case study, the target variable u is a nonlinear function of the

binary variables ym (m ¼ 1, : : : , M ) and zl (l ¼ 1, : : : , L) (see Section 7). Therefore,

directly using the p̂mi will not yield the same outcome as using the binary variables

themselves.

We use a nearest neighbour hot deck imputation method, whereby the reference

suppliers act as donors and the nonreference suppliers as recipients. We use predictive

mean matching as our hot deck imputation method (De Waal et al. 2011). We do not

impute all units of the nonreference suppliers: our baseline is that we keep the originally

supplied data untouched as much as possible, unless there is a large difference between

observed and expected values (similar to selective editing).

Before explaining the algorithm, we introduce some additional notation. Let H denote

the full set of data suppliers and letRðrÞ denote the set of reference suppliers for reference

group r. Thus, HnRðrÞ stands for the group of nonreference suppliers in case of reference

group r. The imputation algorithm is repeated for each combination of reference group r,

nonreference data supplier h, domain d and period t. We will refer to this combination by

“stratum s” and the set of units in a stratum is denoted by Us and its size by Ns. Within each

stratum Us we will impute the units one by one. After each imputation, we check the

difference between observed and expected values to decide whether or not a new unit is to

be imputed, see step three below. Let l ¼ 0; 1; : : : ; L (with L # Ns) be an index that

counts the number of units that have been imputed (so far). Let �ymi denote an imputed

value (0 or 1) for variable ym (m ¼ 1, : : : , M ) of unit i and let ~y
ðlÞ
mi denote the actual

value of unit i when l units have been imputed, that is

~y
ðlÞ
mi ¼

ymi if not imputed; given that l units have been imputed

�ymi if imputed; given that l units have been imputed

(
ð4Þ

The imputation algorithm consists of three steps:

1. For the units of all nonreference data suppliers ðh [ HnRðrÞÞ compute the sum

y†i ¼
PM

m¼1 ymi. Likewise, compute the expected value as Êð y†iÞ ¼
PM

m¼1 p̂mi.

Denote its difference by v̂†i ¼ y†i 2 Êð y†iÞ. Additionally, compute

Êð y††Þ ¼
P

i[UsÊð y†iÞ, which is the expected total of y†i within stratum s. Thus,

in our case study, the total y†† stands for the number of registered comorbidities over

all admissions i in nonreference hospital h and main diagnosis d and year t, and the

expectation of y†† is determined for each reference group r.

Let V( y††) denote the variance of y††. Further, let L( y††) denote the lower and

Uð y††Þ the upper bound of an (approximate) 95%-confidence interval for Êð y††Þ.
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When the stratum size Ns is large we can estimate these bounds by:

L̂ð y††Þ ¼ Êð y††Þ2 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ð y††Þ

q
ð5Þ

Ûð y††Þ ¼ Êð y††Þ þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ð y††Þ

q
ð6Þ

We now derive an expression for Vð y††Þ. ymi follows a Bernoulli distribution with

Eð ymiÞ ¼ pmi. Let Eð ymiyniÞ ¼ pmni. We then find Vð y†iÞ ¼
PM

n¼1

PM
m¼1

ð pmni 2 pmipniÞ; for m ¼ n we obtain pmmi ¼ pmi. Because the ymi variables are

independent across units, Vð y††Þ ¼
PNs

i¼1

PM
n¼1

PM
m¼1 ð pmni 2 pmipniÞ. The values

that are generated by (3), p̂mi, do not account for interactions between the variables,

which implies that we use the approximation p̂mni ¼ p̂mip̂ni for m – n. This leads to

V̂ð y††Þ ¼
PNs

i¼1

PM
m¼1 p̂mi 2 p̂2

mi

� �
, which is an approximation of Vð y††Þ. When the

ymi variables are positively correlated, Vð y††Þ is underestimated. When they are

negatively correlated, Vð y††Þ is overestimated.

2. Let u denote a recipient unit that belongs to the nonreference suppliers and let v be a

donor unit that belongs to the reference suppliers. We seek a donor v for recipient u

such that the sum of the observed values ymv of the donor will be close to the expected

sum of ymu for the recipient. Since this expected sum, Êð y†uÞ, follows from the

corresponding probabilities, we select a donor by using the Euclidean distance

between p̂mu and p̂mv:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
m¼1 ðp̂mv 2 p̂muÞ

2

q
.

3. Within each stratum s for the nonreference data suppliers:

a. Set l ¼ 0;

b. Compute the totals ~yðlÞ†† ¼
P

i[Us

PM
m¼1 ~y

ðlÞ
mi of the actual scores (including

imputations). If ~yðlÞ†† � ½L̂ð y††Þ; Ûð y††Þ� continue with c), otherwise stop.

c. If ~yðlÞ†† . Êð y††Þ then determine unit u, from the set of units in s that have not

been imputed (so far), with the largest value of jv̂†uj given that v̂†u . 0.

Likewise, if ~yðlÞ†† , Êð y††Þ then determine unit u with the largest value of jv̂†uj

given that v̂†u , 0. Denote this unit by u0. For recipient u0, determine the

closest donor v0 according to the Euclidean distance and impute its values yv0
.

So, the values for all ym variables from donor v0 are imputed.

d. Let l ¼ l þ 1 and go to b.

3.5. Compute the Imputed Target Parameter

Let superscript 0 denote the parameters that are based on the original input values zhi and

yhi. Let û t;0 denote the target parameter of interest for period t, based on a function of the

original input values zhi and yhi for all data suppliers h [ H and of the estimated model

parameters b̂0. Note that this function can be a simple sum of yhi or a complex function,

which is the case with the HSMR. We now evaluate the effect of the reporting behaviour of

one specific data supplier, h1, by replacing the original input values for that data supplier

by its imputed values. Next, we reestimate the target parameter, denoted by û t;impðh1Þ based

on the imputed values for h1 and the original values for all other data suppliers. Since we
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aim to evaluate estimated changes, we compare the change based on the original

input values, û t;0 2 û t21;0, with the imputed version: û t;impðh1Þ 2 û t21;impðh1Þ. We denote

its difference by D̂t;t21ðh1Þ ¼ ðû t;0 2 û t21;0Þ2 ð û t;impðh1Þ 2 û t21;impðh1ÞÞ. We analyse

D̂t;t21ðhÞ for all nonreference data suppliers h [ HnRðrÞ. In the case study, we have the

special situation that we have a target parameter û0
h , but the model parameters b̂0 continue

to be based on all h [ H. This leads to a small modification, which is explained in

Subsection 4.2.

Since our method aims to select nonreference data suppliers with extreme values of

D̂t;t21ðhÞ, we wish to have a practical rule to appoint which values we consider to be

extreme. To that end, we assume that for data suppliers h that are free of under- or

overreporting, the values of D̂t;t21ðhÞ are approximately normally distributed:

D̂t;t21ðhÞ , N 0;s 2

D̂

� �
. The expected value of D̂t;t21ðhÞ is taken to be 0, since we expect

that the ym values (m ¼ 1, : : : , M ) of data suppliers without under- or overreporting are

not imputed. Further, s 2

D̂
stands for variation in the outcomes of D̂t;t21ðhÞ that cannot be

explained by the covariates used in the regression. Here, we limit the estimation of s 2

D̂
to

the situation that we have two reference groups r; it can easily be extended to a situation

with more reference groups. The situation of a single reference group is treated in the

discussion.

Denote the first reference group by A, its corresponding set of data suppliers byRðAÞ and

its size by NRðAÞ . Likewise, we denote the second reference group by B with setRðBÞ of size

NRðBÞ . When A is selected as the reference group, values of D̂t;t21ðhÞ are not available for

R(A), since only the values of the nonreference suppliers are imputed, but they are

available for RðBÞ. We consider the variation in D̂t;t21ðhÞ for RðBÞ when A is the reference

group as an estimate of s 2

D̂
, since we have selected the set within a reference group to be

(more or less) homogeneous in reporting behaviour. We define:

s2

D̂
ðRðBÞjr ¼ AÞ ¼

1

NRðBÞ 2 1
h[RðBÞ

X
ðD̂t;t21ðhÞ 2 �D

^ t;t21ðBÞÞ2 ð7Þ

with �D
^ t;t21ðBÞ ¼ 1

NRðBÞ

P
h[RðBÞ D̂

t;t21ðhÞ. Note that in (7) we used the sample mean �D
^ t;t21ðBÞ

with NRðBÞ 2 1 degrees of freedom rather than using the expected value “0”. Likewise, we

define:

s2

D̂
ðRðAÞjr ¼ BÞ ¼

1

NRðAÞ 2 1
h[RðAÞ

X
ðD̂t;t21ðhÞ 2 �D

^ t;t21ðAÞÞ2 ð8Þ

We now estimate s2

D̂
as the pooled estimate of s2

D̂
ðRðBÞjr ¼ AÞ and s2

D̂
ðRðAÞjr ¼ BÞ:

ŝ2

D̂
¼
ðNRðAÞ 2 1Þs2

D̂
ðRðAÞjr ¼ BÞ þ ðNRðBÞ 2 1Þs2

D̂
ðRðBÞjr ¼ AÞ

NRðAÞ þ NRðBÞ 2 2
ð9Þ

Using ŝ2

D̂
, we construct an (approximate) 95%-confidence interval for D̂t;t21ðhÞ as

0 ^ 1:96
ffiffiffiffiffiffi
ŝ2

D̂

q
. Data suppliers outside this confidence interval are considered to have a

deviating reporting behaviour.
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4. Application to the Case Study

The method described in the previous section was applied to the HSMR case study, which

is calculated from the LBZ data. The HSMR is limited to hospital stays, also called

inpatient admissions. Day admissions are excluded, since they are usually non-life-

threatening. As was mentioned in the introduction, there are strong indications that some

of the variables in this data set are affected by reporting differences between the hospitals,

which affects the output. The next subsections describe the administrative data and how

our method is applied to the HSMR case study. The method of calculating the HSMR is

given in the Appendix. Section 5 describes the results.

4.1. LBZ Data

We used LBZ data for the consecutive years 2011 and 2012 with a total of 1,221,414

inpatient admissions. We wanted to use data near 2010, which was announced to be the

first year when the HSMR would become publicly available. We found clear shifts in

intensity of comorbidity reporting by some of the hospitals a few years before and after

that period. Although the HSMR model (see Section 7, Appendix) is normally estimated

over three years, we did not include 2013 or more recent years as most hospitals switched

to a new coding system (ICD10) in 2013, which might affect the results (Van der Laan

et al. 2015). In total, 83 hospitals provided LBZ data for both 2011 and 2012. Four of these

hospitals submitted data of poor quality (an incomplete data set). One hospital was very

specialised with only a few main diagnoses. We excluded those five hospitals and used a

net population of 78 hospitals in the analysis.

4.2. Analysis of the Reporting Effects

The target parameter uh is in this case the HSMR of hospital h (see Appendix and Van der

Laan et al. 2015 for how this parameter is calculated). The HSMR is the ratio between the

observed mortality and the expected mortality. The expected mortality is calculated using

a logistic regression model for mortality at patient level using background properties such

as age, sex and comorbidities. We studied the effect of reporting intensity on the

comorbidity variables. These comorbidity variables were grouped into 17 Charlson

groups (see Section 7, Appendix). So in the case study, the variable ym (m ¼ 1, : : : , M)

stands for one of the 17 Charlson groups for admission i of hospital h. We now describe

how we applied Subsections 3.2–3.5 to our case study.

4.2.1. First Step

We asked experts which hospitals they thought were expected to have correct comorbidity

reporting, but they were unable to answer the question. Therefore, we decided to select two

reference groups, to be able to determine the sensitivity of the outcomes for the choice

of the reference group. We selected a “middle group” representing average levels of

comorbidity reporting and a “top group” representing high levels of comorbidity

reporting.

To summarise the variables ym we used yð1Þ†hi, defined in Equation (1), which has a value 1

when at least one comorbidity code is given to admission i and 0 otherwise. We used the
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logistic regression model in (2) to model yð1Þ†hi as a function of the hospital effect gh and of a

set of diagnoses- and patient-related variables that are given in Table 1 in the Appendix

(column “select reference hospitals”). The logistic regression was applied to 2011 and

2012 separately. Within a year, it was applied to all admissions of all hospitals. This means

that we did not let the hospital effect vary with main diagnosis, but it did vary with year.

We did so, because we were interested in estimating the overall hospital effect on

reporting behaviour and because previous experience showed that hospitals may vary their

reporting behaviour from one year to the next. Note that in Equation (2) we used a fixed

hospital effect gh. Prins (2016) has also computed outcomes where the hospital effect was

included as a random effect within a multilevel model, which yielded near-identical

results.

We wanted to select two reference groups that were homogeneous in their reporting

behaviour for two subsequent years (2011, 2012). Thus, we wanted the gh values not to

vary too much from one year to the next. We computed the difference d
t;t21
h ¼ g t

h 2 g t21
h

of the hospital effects, with t ¼ 2012 and its variance: V d
t;t21
h

� �
¼ 1

H21

PH
h¼1

d
t;t21
h 2 �d

t;t21
h

� �2

, with �d
t;t21
h ¼ 1

H

PH
h¼1 d

t;t21
h . Next, we computed an (approximate)

80% confidence interval according to �d
t;t21
h ^ 1:28

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V d

t;t21
h

� �r
, based on a Normal

distribution. Hospitals with d
t;t21
h values outside this interval were excluded from the

reference group. For the “middle reference group” we selected the hospitals within the

80% confidence interval whose absolute g2012
h values were closest to 0. For the “top

reference group” we selected the hospitals within the 80% confidence interval with the

largest g2012
h values. A reference group size of 15 (we investigated 10, 15 and 20) was

found to be the smallest group size for which the models could be reasonably accurately

Table 1. Variables used in the various computations.

Variable (no of classes1)
HSMR
model

Select
reference
hospitals

Predict each
comorbidity (15)

Age (5-year classes) x x x (5 knot spline)
Comorbidity group (17) x
Hospital (78) x
Main diagnosis (50) * x *
Medical specialty (44) x
(bi-) Month of admission (6) x x x
Re-admission (2) x x x
Reason of admission (3) x
Sex (2) x x x
Severity main diagnosis (9) x x x
Social-economic status (6) x x x
Source of admission (3) x x x
Type of hospital (2) x
Urgency (2) x x x
Year of discharge (2) x * x

x: variable included as independent variable in the regression; *: class for which the regression is run separately.
1 an explanation of the categories can be found in Israëls et al. (2012) and van der Laan (2013)
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estimated (all categories reasonably filled; few categories in the recipient group that were

not present in the donor group).

4.2.2. Second Step

The second step in the case study was to predict each of the comorbidity variables ym as

a logistic function of patient- and disease-related variables, according to Equation (3).

Because the occurrence of comorbidities varied greatly with main diagnosis, the model

was fitted separately for each main diagnosis. Thus, main diagnosis represents domain d in

Equation (3). For instance, Charlson group 15 (HIV) occurs mainly with main diagnosis 38

(non-Hodgkins lymphoma), see Van der Laan et al. (2015). The patient- and disease-

related variables used in this second step are given in the final column of Table 1 in the

Appendix. In addition to the covariates that we used to select the reference hospitals,

we added medical specialty, type of hospital and reason of admission. For the regressions,

two sets of comorbidity groups were very similar and therefore combined: Charlson

comorbidity group 17 (Severe liver disease) was combined with Charlson comorbidity

group 9 (Liver disease) and Charlson comorbidity group 11 (Diabetes complications) was

combined with Charlson comorbidity group 10 (Diabetes), leading to a total of 15 groups

(see Table 1, final column). Charlson groups 17 and 11 occur only rarely, and a

preliminary analysis showed that merging these comorbidity groups had only a minor

effect on the HSMR outcomes (Israëls et al. 2012).

4.2.3. Third Step

The third step was to apply the imputation algorithm. To estimate V( y††) we assumed

that the probabilities pmi for most of the variables are very small. We assumed that

p̂mi 2 p̂2
mi < p̂mi. Recall from Subsection 3.4 that V̂ð y††Þ ¼

PNs

i¼1

PM
m¼1 p̂mi 2 p̂2

mi

� �
. We

now approximate this variance by V̂ð y††Þ <
PNs

i¼1

PM
m¼1 p̂mi ¼ Êð y††Þ. Note that the

same variance would have been obtained by assuming that the data are Poisson-

distributed.

In the case study, we used the Euclidean distance between the probabilities p̂mu of

recipient u and p̂mv of donor v. We explain why we use a distance function based on

probabilities in Subsection 3.4 (step 2 of the imputation algorithm). In preliminary

computations, we also performed the imputation algorithm using the Euclidean distance

between the logit of the probabilities, which resulted in near identical results.

4.2.4. Fourth Step

The fourth and final step was to compute the HSMR for each of the hospitals, according to

Equations (10) and (11) in the Appendix, based on the observed and the imputed

comorbidity scores. Let û
t;0
h denote the HSMR based on the original input values for

hospital h and year t and let û
t;imp
h be its imputed version. û

t;0
h is estimated according to the

logistic regression for the HSMR given in (11). The imputed HSMR for a specific data

supplier h1, û
t;imp
h1

, is defined in Subsection 3.5 as the outcome of (11), based on the values

~yh1mi and the original values for the other input variables, combined with the original

values for all other data suppliers h – h1. Since the data set is changed only slightly,

we assume that we can ignore the change in the regression coefficients when we impute
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only one data supplier. Therefore, we use the original regression coefficients when

calculating û
t;imp
h .

Finally, we compared the HSMR change based on the original comorbidity values,

û
2012;0
h 2 û

2011;0
h , with the change based on the imputed version: û

2012;imp
h 2 û

2011;imp
h . We

denote its difference by D̂
2012;2011
h ¼ û

2012;0
h 2 û

2011;0
h

� �
2 û

2012;imp
h 2 û

2011;imp
h

� �
.

5. Results

5.1. Selection of Reference Group

The hospital effects in 2012 g2012
h

� �
and the differences in those hospital effects over the

two years g2012
h 2 g2011

h

� �
are given in Figure 2. The g2012

h values ranged from 22.57 to

1.29. These values are the logarithm of the log-odds of the probabilities of reporting at

least one comorbidity per hospital admission. These probabilities can be found by

P̂ yð1Þ†hi ¼ 1jxhi; dhi

� �
¼ 1

1þexp 2 ðxhiÞ
T b̂d2ðdhiÞ

T ĝf g
from Equation (2). Values of the logistic

regression are given as the difference to a reference category (in case of categorical

variables). So, for a patient admission that matches the reference category, the probability

of having at least one comorbidity in 2012 among the hospitals ranged from 1
1þexp{2:57}

¼

0:22 to 1
1þexp{21:29}

¼ 0:93. These results indicate that there was considerable variation
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Fig. 2. The difference in the hospital effects (gh) of 2012 minus 2011 versus the hospital effects of 2012.
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among the hospitals in intensity of comorbidity reporting, after correcting for differences

in patient and diagnosis characteristics.

Given a group size of 15 units, the grey points in Figure 2 show the middle reference

group and the black points show the top reference group. A standard deviation of 0.452

was found for d
2012;2011
h leading to an 80% margin of ^ 0.580. Using these margins as an

additional selection criterion implied that one hospital was excluded from the top

reference group (with g2011
h ¼ 2.00 and g2012

h ¼ 1.23) and no hospital was excluded from

the middle group (the extreme value shown in Figure 2 with 0.179 in 2012 had order

position 16).

5.2. Prediction of the Incidence of the Charlson Groups

The fit of the predicted probabilities p̂mi; m ¼ 1; : : : ;M
� �

based on the admissions of the

two reference groups according to (3) varied slightly between the different Charlson

groups. The averages of the C-statistic for the middle and top groups were relatively small

for Charlson group 6 (0.78, 0.71) and 10 (0.74, 0.72) whereas they were large for Charlson

group 5 (0.89, 0.90), 8 (0.89, 0.89) and 9 (0.91, 0.87). Overall, the fraction of “main

diagnosis £ Charlson group” combinations with a C-statistic of at least 0.7 was 0.92 for

the middle group and 0.86 for the top group. Since values of 0.7 and higher indicate an

acceptable fit (see Subsection 3.3) we considered the results of the C-statistics to be

sufficient to use the predicted probabilities ð p̂miÞ for predictive mean matching.

5.3. Results of the Predictive Mean Matching

Figure 3 displays for each hospital the distribution of the fraction-imputed records after

applying the imputation algorithm across the 50 main diagnosis groups and the two years

for both reference groups. We computed the average and third quantile per hospital of this

distribution over diagnosis groups and years. The average per hospital was at most 0.16

(hospital 78) in case of the middle reference group and 0.24 (hospital 48) in case of the top

reference group. Furthermore, the third quantile of this distribution was at most 0.24

(hospital 78) for the middle reference group and 0.34 (hospital 48) for the top reference

group. These findings clearly show that only a limited number of records for each hospital

were imputed, which is in line with the imputation approach that we intended (see

Subsection 3.4). The minimum value of these averages over the set of recipient hospitals

was 0.003 (middle reference group) and 0.015 (top reference group). This implies that for

all recipient hospitals at least some records were imputed.

We also computed the average fraction of imputed records per main diagnosis group

over the set of the recipient hospitals and the two years (not shown). For the middle

reference group, the three smallest average fractions were 0.007, 0.010 and 0.015 and the

three largest ones were 0.0977, 0.134 and 0.141. In the top reference group, the three

smallest average fractions were 0.0208, 0.0255 and 0.0278 and the three largest ones were

0.181, 0.202 and 0.224. There were a few “main diagnosis £ hospital” combinations

where all admissions were imputed. This was not always for the same hospital or for the

same diagnosis.

When a certain category of the covariates occurred in the recipient set that was absent in

the donor set, the p̂mi probabilities could not be predicted and those records were excluded
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from the imputation algorithm. We computed the average, median, standard deviation,

maximum and minimum fraction of units without a predicted comorbidity group score per

main diagnosis. These values were 0.13, 0.070, 0.18, 0.93, 0.0058 for the middle and

0.080, 0.039, 0.14, 0.79, 0.0017 for the top reference group. In both reference groups, the

median fraction of units without predicted scores was small, but in each reference group

there were a few main diagnoses with a large fraction. The reason for this larger fraction

was that those main diagnoses occurred mainly in certain categories of the patient- and

diagnosis-related variables that were (by accident) absent in the reference group.

5.4. Computation of the Imputed HSMR

Production staff at CBS are interested in knowing to what extent the original HSMR

development represents a change in the quality of hospital care or whether it results from a

change in intensity of comorbidity reporting. The fraction of reported Charlson groups per

admission for a given year is denoted by �yh and defined as �yh ¼
1

NhM

P
i[Uh

PM
m¼1 ymhi,

where Nh stands for the number of admissions for hospital h. The development of �yh from

2011 to 2012 is denoted by �yh
2012;2011, with �yh

2012;2011 ¼ �y2012
h 2 �y2011

h . In Figure 4 we plotted

D̂h
2012;2011 against �yh

2012;2011 and we fitted a simple linear regression through the data. We

tested whether the slope differed from zero, under the assumption that the residuals are

independent and identically distributed. We found a slope of 242.3 for the middle
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Fig. 3. Boxplot of the fraction of imputed records (distribution over 50 main diagnoses and both years) for each

hospital with the middle (upper panel) or the top reference group (lower panel).
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reference group and of 255.7 for the top reference group at a p-value , 0.001. Recall that

an increase in comorbidity reporting – everything else being the same – leads to a decrease

in the HSMR. The latter represents an improvement in the quality of hospital care. The

regression results imply that an increase in “the fraction of reported Charlson groups”

�yh
2012;2011

� �
of 0.1 leads to an HSMR development which reduced by 4.2 points (middle

group) or 5.5. point (top reference group). So, the hospitals that are plotted in the bottom-

right of Figure 4 are hospitals with a large increase in comorbidity reporting from 2011 to

2012. It concerns hospitals where the original HSMR development û
2012;0
h 2 û

2011;0
h

� �
is

lower than the imputed one û
2012;imp
h 2 û

2011;imp
h

� �
, suggesting that their original

improvement in the quality of hospital care was partly due to reporting effects.

Figure 5 shows that the D̂h
2012;2011-values of the nonreference hospitals (circles) with the

middle reference group were clearly related to those of the top group, with a correlation of

0.91. We found an estimated variance s2

D̂
of 11.57 when the middle group was used as the

reference group and of 15.24 when the top group was used as reference group. This

resulted in a pooled variance of 13.41 and an estimated 95%-confidence interval of ^7.17

index points. We thus found five hospitals with significant reporting effects. Three

hospitals in the bottom-left of Figure 5 have a negative value for D̂
2012;2011

h and in Figure 4

Middle

D
iff

er
en

ce
 b

et
w

ee
n 

th
e 

or
ig

in
al

 d
ev

el
op

m
en

t a
nd

 im
pu

te
d

Change in fraction of comorbidities from 2011 to 2012

Top20

0.0 0.2 0.4 0.40.20.0

10

0

–20

–10

–30

Fig. 4. Difference between the original and the imputed HSMR development as a function of the change in the

fraction of comorbidities (2012 minus 2011) for both reference groups. Shaded areas represent the 95%

confidence intervals of the linear regressions.

Journal of Official Statistics880



we can see that it concerns three hospitals with a large increase in comorbidity reporting,

suggesting that their original change in hospital care was “too positive”. Two hospitals in

the top-right have a positive value for D̂
2012;2011

h suggesting that their original change in

hospital care was “too negative”. These two hospitals had a very low value of original

comorbidity reporting in both years (not shown). These five hospitals are the suspicious

hospitals to be contacted.

6. Discussion

We presented a method to detect under- and overreporting by data suppliers for

decentralised administrative data in case of change estimates. With our approach, we

estimated the impact of correlated measurement errors within a data supplier on the target

outcomes. We successfully applied the method to administrative hospital data to detect

hospitals that show large changes in reporting of the comorbidities of their patients.

Previous studies have also found reporting differences among hospitals (Jarman 2008; Van

der Laan 2013) but they were unable to estimate the impact of the reporting intensity on

the outcomes. With the current method we expect to reduce the number of hours spent on

manual data analysis. Moreover, we can contact the suspicious data suppliers, in order to

improve the accuracy of future administrative data deliveries. The question remains how

to proceed with the output based on the current data delivery. When reporting errors of a
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variable that are widespread and severe, one might decide not to publish the outcomes that

are based on this variable. When it concerns only a limiting number of data suppliers, then

one might set those cases to “missing” and use a robust estimation, a weighting model or

an imputation model to correct for it. In the special case of the HSMR, the output is at the

level of the data supplier. When the quality of data delivered by a certain supplier is

insufficient, one might publish a remark along with the outcomes, decide not to publish the

output of that supplier, or exclude that data supplier from the data set, depending on the

severity of the errors.

Our method is developed for a situation with decentralised administrative data, where it

is possible to detect differences in reporting behaviour among data suppliers, but it is not

possible to exactly pinpoint which units within the suspicious data supplier have

measurement errors. This is opposed to the situation described in Van Delden and Scholtus

(2017), where reporting patterns at unit level are detected with deterministic rules. That

concerned turnover patterns derived from reported value added tax data. Our method

requires that the total set of data suppliersH is large enough to set aside a groupR that can

act as reference suppliers.

A number of points are to be addressed before our method can be applied in statistical

production and before it can be applied to forms of decentralised administrative data other

than hospital data. First, tooling should be developed to enable analysts to perform the four

steps in Subsection 3.1. Second, some practical guidance is needed in treating the

decentralised data structure in the parameter estimates. Third, a practical application of

our method would be enhanced by relaxing some of the assumptions and conditions of the

currently reported method, because they may not hold in practice. Fourth, for application

of the method to other decentralised data than the hospital data, it would be very useful to

extend the method in terms of the types of variables it concerns, the types of errors treated

and the forms of output. In the next four paragraphs we elaborate on the second, third and

fourth point.

The decentralised, hierarchical, data structure needs to be accounted for in the

estimation of the regression coefficients in step 1. In practical applications, one has to

choose whether to treat the data supplier effects as random effects within a multilevel

model or as fixed effects. In a data set where at least some of the data suppliers have a

limited number of units per data supplier, we would prefer to model the data supplier

effects as random effects, since one can then make use of the shrinkage factor (Efron and

Morris 1975). In the HSMR case study, we had a large number of units for each data

supplier. We found that treating the hospital effects as random or fixed effects yielded

near-identical estimates, whereas the convergence of the latter model was much faster than

that of the multi-level model, in line with Kim et al. (2013).

An example of a useful relaxation concerns the imputation algorithm (step 3). The

current procedure does not account for the actually reported scores ymi ¼ 1. We propose

the following refinement. Let Yv be the set with ymv ¼ 1 (with m ¼ 1, : : : , M), for

recipient v and let Yu be the corresponding set for donor u. If the size of Yv is smaller than

expected, thus y†v , Êð y†vÞ; which is an indication for underreporting, then it might be

reasonable to assume that any reported values ymv ¼ 1 are correct and replacing them in

the imputation algorithm by zeros should be avoided. In that case, one might limit the set

of donors to those for which it holds that the observed set is a subset of the donor set:
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Yu . Yv. Conversely, if the size of Yv is larger than expected, thus y†v . Êð y†vÞ; which is

an indication of overreporting, a donor u could be selected such that the donor set is a

subset of the observed set: Yu , Yv. This refinement is only feasible when the donor set is

large enough.

Another example of a relaxing a condition of the reported method concerns the

estimation of the residual variance s2

D̂
. In our article the estimation of s2

D̂
is based on

multiple reference groups, but the question remains how this variance can be estimated

with a single reference group. The latter situation might occur when a reference group is

appointed by experts. This residual variance stems from four error sources. The first is that

not all covariates explaining the ym variables (m ¼ 1, : : : , M) in Equation (3) might in

fact be available, so there is unexplained variance. A second, related, cause is uncertainty

in the imputation procedure due to uncertainty in the regression coefficients and in

appointing the nearest neighbour. A third error source is the presence of random reporting

errors in the ym variables among the data suppliers in the reference group. The extent of

this error source might be investigated by letting two or more administrators

independently register the same cases. The final issue is that we are interested in

capturing the reporting behaviour of data suppliers, whereas data from a single data

supplier can be seen as just one realisation of an (unknown) distribution. Using multiple

years of data from the same supplier might help to analyse the extent of this error source.

When all four error sources are quantified, one might apply a repeated sampling procedure

to estimate their effect on the variance s2

D̂
. Possibly, a multiple imputation approach,

originating from Rubin (1978, 1987), is useful in this context. Using that approach, we

then aim to draw multiple versions of the regression coefficients of Equation (3) that

capture the combined effect of the four error sources. Next, multiple versions of the

matching algorithm and of D̂t;t21ðhÞ are obtained. It needs to be tested whether this

approach yields good results.

Before our method can be applied to forms of decentralised administrative data

other than the hospital data, research is needed on adaptation and extension of the

method to other types of variables, errors and output forms. First, we will give two

examples of potential other applications and then we will go into those adaptations

and extensions. CBS has municipalities’ administrative data on inhabitants’ receipt of

social benefits. It not only concerns social benefit data, but also additional information

such as fraud occurrence, estimated fraud values, and training activities to find a job.

Different municipalities have different reporting intensities, especially concerning the

additional information. Suppose our aim is to detect changes in the intensity of fraud

activities. We can then use covariates such as received social benefit, age, profession,

social economic status, current duration of unemployment and so on (we have a social

statistical database with many potentially useful variables). We could compute the

(expected) changes in fraud intensity per municipality after applying steps 1–3,

compare this with the original changes and select the suspicious municipalities.

Likewise, we could detect underreporting of the occurrence of environmental damage

reported by fire brigades using covariates like type of building, type of surrounding,

presence of chemicals and so on.

It would be useful to apply the method to new examples to find out whether it works,

and which adaptations or extensions are needed. We have foreseen some of those
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adaptations and extensions already. A first small adaptation to the method can be done

when one applies the approach to a single binary variable (representing reporting

behaviour) at a time, rather than to a set of variables. Then, one could replace the

predictive mean matching step by drawing a binary value from a Bernoulli distribution

for each unit in the data set using the estimated probabilities. Second, the method could

be extended by handling continuous variables with reporting errors in a selective group

of data suppliers. That requires a robust way of estimating the data supplier effects (gh)

especially in the case of large measurement errors (Rousseeuw and Leroy 1987). Third, it

would be useful to develop an analysis procedure that combines the detection of under-

and overreporting in classification variables with that of misclassifications. A fourth

extension would be to increase the level of detail: in addition to analysing effects at data

supplier level, one could analyse effects in underlying domains. Those underlying

domains could, in fact, represent administrative agencies underlying the formal data

suppliers, for instance clinics within large hospitals or establishments within large

schools. When the reference group is selected at the more detailed domain level one may

have to find a procedure to deal with a limited number of units per domain. A fifth

extension is to address the effect of reporting behaviour on level estimates. This requires

a subset of data suppliers for which we are certain that they are reporting correctly. One

way to do this is to use expert knowledge to obtain such a set. It is a point of future

research whether there are other possibilities for such an analysis.

7. Appendix: Computation of the HSMR

The target parameter uh, denoting the HSMR for hospital h, is computed as follows. Let

Ohd be the observed mortality for main diagnosis d of hospital h and let Ehd be the

corresponding expected mortality based on the patient population. Further, let uhd be

standardised mortality ratio (SMR) for the set of units Uhd within main diagnosis d of

hospital h. The SMR is an indicator for the quality of hospital care per main diagnosis. uhd

is given by

uhd ¼ 100
Ohd

Ehd

ð10Þ

with Ohd ¼
P

i[Uhd
Dhdi and Ehd ¼

P
i[Uhd

Ehdi, where Dhdi is a variable that equals 1

when the patient died during hospital admission i and 0 otherwise. The expected

mortality Ehdi for admission i is estimated from a logistic regression with patient- and

diagnosis-related variables as covariates. Hospital-related variables are left out of the

model, such as the number of doctors per bed, because these are directly related to the

quality of hospital care that the HSMR tries to measure. This logistic regression is fitted

for each main diagnosis separately. Recall that the patient- and diagnosis-related

covariates are split up into an error-free and an error-prone part. Let zhdi ¼

z1hdi; : : : ; zlhdi; : : : ; zLhdi

� �T
denote the L-vector of error-free covariates (including the

intercept), yhdi ¼ y1hdi; : : : ; ymhdi; : : : ; yMhdi

� �T
denote the M-vector of error-prone

covariates and bd denote the vector of regression coefficients for the joint covariates
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vector. Êhdi is given by:

Êhdi ¼ P̂ðDhdi ¼ 1jxhdiÞ ¼
1

1þ exp 2 ðzhdiÞ
T ; ðyhdiÞ

T
	 


b̂d

� � ð11Þ

The patient- and diagnosis-related variables are given in Table 1.

Let D be the set of main diagnoses that are included in the computation of the HSMR.

We included 50 out of 200 main diagnoses in the HSMR computation. These 50 diagnoses

comprised about 80 per cent of all hospital admissions (Israëls et al. 2012). Further, let uh

be the HSMR of hospital h, which is computed by uh ¼
P

d[Duhd:

The SMR in (10) and HSMR uh are estimated using the observed mortality relative to

the estimated expected mortality according to (11). The comorbidities are not directly used

in Equation (11) as covariates. Instead, they are transformed into 17 binary variables. Each

binary variable stands for a group of related diseases according to the classification of the

so called Charlson Index (Charlson et al., 1987). This binary variable is 1 when one or

more comorbidities are registered for that specific class of the Charlson index and 0

otherwise.

When the number of admissions for a certain class within the patient- or diagnosis-

related variables was smaller than 50, classes were merged. This was done to avoid that the

standard errors of the regressions became too large. The procedure for merging classes can

be found in Van der Laan et al. (2015).
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