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We propose to use the principles of functional modularity to cope with the essential complexity
of statistical production processes. Moving up in the direction of international statistical
production standards (GSBPM and GSIM), data organisation and process design under a
combination of object-oriented and functional computing paradigms are proposed. The former
comprises a standardised key-value pair abstract data model where keys are constructed
by means of the structural statistical metadata of the production system. The latter makes
extensive use of the principles of functional modularity (modularity, data abstraction,
hierarchy, and layering) to design production steps. We provide a proof of concept focusing on
an optimisation approach to selective editing applied to real survey data in standard production
conditions at the Spanish National Statistics Institute. Several R packages have been prototyped
implementing these ideas. We also share diverse aspects arising from the practicalities of the
implementation.
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1. Introduction

The modernisation and industrialisation of official statistical production has been at the

centre of international and national activity in Official Statistics basically since the turn of

the century, with the creation of the High-Level Group for the Modernisation of Official

Statistics by the Bureau of the Conference of European Statisticians as a noticeable

landmark (HLG-MOS 2017).

Indeed, this group was born with a clear strategic vision (HLG-MOS 2011) to streamline

the statistical production by means of “different and better processes and methods tuned to

delivering our products at minimal cost with greater flexibility and in cooperation between

institutions” so that these “new and better products and services [are produced] more tuned

to the way the world is operating today”. Many outputs have been produced by the different

groups operating under the umbrella of the HLG-MOS; these range from the establishment

of diverse production standards (such as the Generic Statistical Business Process Model,

GSBPM, the Generic Statistical Information Model, GSIM, the Common Statistical

Production Architecture, CSPA, or the Generic Activity Model for Statistical
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Organisations, GAMSO) over the promotion and development of streamlined statistical

methods (e.g., UNECE 2017a) to capabilities and communication aspects (UNECE 2017b).

More recently, within the realm of the European Statistical System (ESS hereafter), the

future of European Official Statistics is strategically envisaged by the ESS Vision 2020

(Eurostat 2014a) and its implementation portfolio in key projects, such as those focused on

the European System of Business Registers (ESBRs), the Common EU Data Validation

Policy (VALIDATION), the Shared Services for European Statistics (SERV), and the

Digital Dissemination and Communication (DIGICOM), to name a few (Eurostat 2014b).

All these initiatives pose a challenge for statistical offices in their attempt to modernise

their production, especially regarding the adoption of these new standards and practices:

this is to be accomplished under the high pressure of product release calendars within the

traditional stove-pipe production model and a decreasing amount of budgeted resources.

In this article, we want to present the ongoing efforts at the Spanish National Statistics

Institute to bring a concrete plan for the modernisation of (a part of) the statistical

production process into reality. Our rationale is that an official statistical production system

constitutes a clear example of a human-generated complex system. We claim that to cope

with this complexity, like with the design of computer systems, the principles of functional

modularity are also of great value. These principles must fully integrate statistical

production metadata, statistical methodology, and computer software design. These

principles are often applied in the construction of software for the production of official

statistics, but this is not enough. We claim that these principles must be applied to fully

integrate these three aspects of statistical production, or else we would fail to cope with the

complexity of the process. To illustrate our proposal, we show how we have developed a set

of R packages to make a proof of concept that is already being applied in normal production

conditions of several Short-Term Business Statistics (STS) at the Spanish National

Statistics Institute.

Our proposal is based on two complementary elements. Firstly, for our data

architecture, we make use of a key-value pair structure, in which keys are composed by

making extensive use of the system of structural metadata. Secondly, adhering closely to

the GSBPM and GSIM principles, for our statistical process architecture, we make use of

the functional and object-oriented paradigms to incorporate modularity into the statistical

methods. As we shall illustrate with the R packages, this paves the way for a natural

posterior implementation in software tools. Our central message is thus to bring

modularity by design into the statistical process and the mathematical methodology itself

and not just into the construction of computer tools.

The article is organised as follows. In Section 2 we set up the generic approach, taking

us from complexity as an essential trait of statistical production systems to the principles

of functional modularity to cope with it. In Section 3 we argue that the international

statistical production standards themselves implicitly suggest the use of a combination of

the object-oriented and functional paradigms as a basis for building an information

architecture. In Section 4, we detail the abstract data model that we propose to use as the

central element of our proposed data organisation. Complementarily, in Section 5, we

explain our proposed process design, and illustrate, with an example in statistical data

editing, the application of modularity principles on a very concrete statistical

methodological approach to selective editing. In Section 6, we share diverse aspects
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regarding the implementation of this proposal, including the software tools development.

We close with conclusions and future prospects in Section 7.

2. Generic Approach: From Complexity to Functional Modularity

The need for modernisation and industrialisation of official statistical production can be

immediately argued from the very concept of complex system. The key features of a

complex system are (Saltzer and Kaashoek 2009) (i) a large number of components, (ii) a

large number of interconnections between these components, (iii) many irregularities in

these interconnections, since the lack of regularity is the rule rather than the exception,

(iv) a long description of the system and its related management (Kolmogorov

complexity), and (v) a team of designers, implementers, and/or maintainers to handle the

system. It is evident that an official statistical production system is a clear example of a

human-generated complex system.

This conclusion can be illustrated and motivated with a simple description of the

production of diverse statistical operations at a statistical office. Let us just consider the

execution phases of the process. Data collection needs to be carried out in different data

collection modes (CAPI, CATI, CAWI, EDI and others) on a number of statistical units

(business units, households, or people), usually in the range of tens of thousands for each

survey in a mid-sized country like Spain. This is multiplied by the number of variables

(data or metadata) associated with each unit. These data must be entered into the system,

edited, treated, validated, and curated to produce the corresponding microdata sets. They

are further processed to produce the aggregated outputs using the appropriate statistical

methods. They are then finally treated for disclosure control and, if necessary, for

seasonality and calendar effects adjustment before the due dissemination. Each production

step and data and metadata element in the process is interconnected to some other element.

For example, a change in a parameter in a validation rule during collection will need to

be followed by a post-capture data editing revision and adjusted aggregation procedure

(e.g., in variance estimation). Indeed, the interconnections between all elements cannot be

described according to a given regularity, thus making explicit the water-bed effect: a

slight modification of a process step may lead to major consequences in another process

step. Given the current setting of the statistical process at production offices, the

description of how to produce the statistics for any given survey is not only necessarily

long, showing the imbricate set of process steps, but also, hardly standardised. Members of

the production staff of two different surveys who carry out the same tasks in the process

can seldom be interchanged, despite common standard mathematical procedures

underlying the estimation. Moreover, the number of actors in the process to be

coordinated, not only for a given statistical operation, but also for the set of surveys

conducted at an office (not to mention a whole national or European statistical system) is

very high, which introduces evident management challenges.

In our view, the concept of official statistical production as the combination of statistics

and complexity lies at the core of the need for the industrialisation of the statistical

production process: not only do you need to use sound statistical methodology, you must

also cope with this complexity for an efficient production process. Traditionally, in our

view, official statistics have been produced in an artisan way, in which each survey was
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independently designed and executed. Moreover, in extreme cases, not only have there

been diverse (occasionally even incompatible) data and process architectures in different

surveys in the same office, but different agents within the same survey have also made use

of unconnected architectures, which has rendered management of the whole process

virtually impossible. Up to the present, the stove-pipe production model has been

extensively followed.

On a more quantitative footing, the inefficiency of this stove-pipe approach can also be

justified by the complex nature of the production system itself. As a complex system, it is

subjected to the square law of computation (Weinberg 2011) (see also Saltzer and

Kaashoek 2009), which in our case can be expressed in terms of resources versus the

number of requirements on the system.

A simplified description of how to detect and correct errors in a process step can

illustrate and motivate this law. A process step is, basically, a collection of sequential and

concurrent production tasks for accomplishing a given objective within the process. We

can easily assume that the potential number of errors is proportional to the size of the

production step (i.e., to the number of tasks) and that they can occur randomly throughout

the step. In principle, in a nonmodular approach, an error is detected after executing the

process step, which is then fixed. The process step is then executed again to detect new

errors. If the time to find an error is assumed to be proportional to the execution time, the

total amount of time to clean the process step will be proportional to the number of errors

multiplied by the necessary cleaning time per error. However, the latter is proportional to

the number of errors itself. Thus, the total amount of time will be quadratic to the number

of errors. This argument shows how a naı̈ve sequential approach to production becomes

unmanageable due to the complexity of the system.

Under this square law, it is clear that increasing the number of requirements on the

system (due to the incessant demands on Official Statistics, for example new legal

regulations, more disaggregated information and so on) will produce a quadratic increase

in the demand of resources, which is unattainable. Complexity must be coped with to face

these challenges. The need for modernisation derives from the complexity of the global

statistical production process.

The bottom line of our proposal is that we believe that the common principles of computer

system design jointly known as functional modularity (Saltzer and Kaashoek 2009) are of

great utility in designing and implementing an efficient official statistical production

process. It is worth noting that functional modularity comprises four elements, namely

modularity, data abstraction, hierarchy, and layering. These principles should be applied not

only to the development of computer tools: the process itself must be designed along these

lines by conjugating statistical metadata, statistical methodology, and software design.

Modularity is already at the very heart of production standards (such as the GSBPM –

see next section), where the production chain is broken down into different subprocesses.

However, modularity per se does not help us cope with complexity; we need data

abstraction as this allows modules to be designed and implemented independently of each

other, except for their interconnecting interface. Statistical processes must be designed

independently of each other so that only initial inputs and final outputs uniquely enter into

play in the chained execution of a given set of processes. The details of the execution of

each subprocess must be transparent throughout the entire process.
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Layering and hierarchy are principles applied to design and implement modules to

minimise the number of interconnections among their components seeking optimal

efficiency. In our proposal, these principles will be translated into organising both data and

process architectures into four layers. A bottom layer for the statistical methodology

(purely mathematical in many, but not all, cases); a second layer for the finest-grained

production tasks upon which more complex activities can be composed (third layer).

Finally, a top layer to orchestrate the whole process with these elements will complete the

process design. We insist on the idea that this structure must be applied to the statistical

processes themselves, conjugating metadata, mathematics and software design, not just to

the construction of computer tools.

3. From Metadata to Architecture

The starting point for concretising our proposal into data organisation and process design is

the interrelationship between the GSBPM and GSIM standards. The GSBPM is an

international production standard modelling the statistical production chain in eight phases,

each one divided in different production subprocesses. This standard focuses on production

activities. Complementarily, the GSIM is another international production standard

providing a model for the information objects in the production process. The inspiring

interrelationship between the two standards is represented in Figure 1, already originally

appearing both in the GSBPM (UNECE, 2013a) and in the GSIM (UNECE, 2013b).

There is also an implicit reference to this interrelationship that appears in the name of

the GSBPM level-2 subprocesses (Design collection, Test production system, Calculate

aggregates and so on) with the clear structure action þ information object. If several

transformations matching Figure 1 are concatenated, where the output of a step is the input

of the next one, and if each transformation is associated to each input object, we have the

conception of a statistical production process as a sequence of objects defined through

their attributes (GSIM-like information objects) and transformed according to their

methods (GSBPM-like production tasks).

Our proposal suggests a step forward in this direction by extensively using the principles

of functional modularity to substantiate this general view of the combination of both

GSBPM and GSIM. Note that these standards do not make any explicit mention of these

principles, although their spirit is there. Similarly, in the international DDI standard (DDI

2018) a modular scheme for the successive transformations on both data and metadata sets is

provided. Here, we also include these data and metadata under the same modular view.

To implement this dual data-process view under the principles of functional modularity,

we firstly need to provide a data organisation scheme to deal with information objects in a

standard way. Indeed, the proposed scheme must be valid for all kinds of statistics (social

surveys, business statistics, statistics based on administrative registers, and so on). In the
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Fig. 1. Interrelationship between GSBPM and GSIM standards (taken from UNECE013a).
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next section we present an abstract data model based on key-value pairs in this sense.

Indeed, we will define an object class for representing data in any kind of statistical data

processing subprocess.

Complementarily, a process design scheme also needs to be provided. We understand

that every “unit of statistical production information” is defined through a set of attributes

(GSIM-like part) and a collection of statistical transformations (GSBPM-like part). In

other words, they are objects (Booch et al. 2007). Furthermore, these objects can be

thought of as constituting a sequence of transient transformations also combining data and

metadata. This enables traceability and auditability of the whole process.

Indeed, this is extremely evocative of well-known computing models (van Roy and

Haridi, 2004): the object-oriented and functional paradigms. The application of these

paradigms makes each transformation depend only on its object input – it becomes

stateless, that is, depending on no previous production step (state, in rigour). A cautious

reader may immediately argue whether those steps involving (pseudo)random number

generation arise as an exception to this stateless sequence of transient transformations. In

full rigour, one can consider the random number generation seed as an internal state of the

transformation. However, in the spirit of those statistical methods involving random

simulation, we can accept that two processes providing statistically similar results can be

considered identical under the data organisation and process design we defend here even

despite numerical dissimilarities. This is a natural way of implementing referential

transparency, that is, a property by which the procedure can be replaced with its

corresponding value without changing the behaviour and the result of the whole process. As

a consequence, executing a referentially transparent subprocess will always provide the

same value for the same input arguments, irrespective of the rest of the process. This is the

functional paradigm. As for the object-oriented paradigm, we concentrate on its advantages

to model complex objects, and on its characteristics regarding transformations. Thus,

transformations are conceived under the functional paradigm and objects are understood

and modelled using the object-oriented paradigm.

However, we need to be more concrete about how to combine these paradigms in

statistical processes. Let us focus on the recommendations of the METIS group elaborated

by their informal task force on metadata flows (ITFMF 2013), in particular, to document

each production task by different elements, namely (i) input data, (ii) input parameter,

(iii) throughput, (iv) output, and (v) process metric. These recommendations are followed

closely in the Generic Statistical Data Editing Models (UNECE 2015). In the present

work, we will leave out the fifth element about the metric. We propose the following

structure for every data-processing production task. We conceive every data-processing

production task as a transforming action on a data set under a set of parameters producing a

new data set or a new parameter set. We represent this as

OutputData; OutputParameters :¼ ActionðInputData; InputParametersÞ

It must be noted that the distinction between data and parameter is somewhat arbitrary,

since it depends on the semantic context of the concrete computation. For example, in

Predict(InputData, PredictParameters) we compute predicted values for those data in the

object InputData according to those parameters specified in the object PredictParameters,

for instance, an ARIMA time series model ARIMA( p, d, q). Previously, we would
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need to compute the degrees p, d and q. These can be computed similarly by

PredictParameters: ¼ ComputeDegrees(PredictParameters, DegreeParameters), where an

initialised parameter object PredictParameters is updated with the computed degrees and

where DegreeParameters specifies the parameters needed to compute p, d and q. Notice

how in this second computation PredictParameters acts as an input data object.

This distinction concerning data and parameters can also be discussed in other common

settings in standard production conditions. For instance, when joining two data sets, we can

consider both data sets as elements of a more complex InputData object and the join resulting

from the parameters specified in the corresponding InputParameters object (inner, outer and

so on.). In the same vein, adding new records to an existing data set can also be modelled

through a complex InputData object with an appropriate InputParameters object. Depending

on the traceability and auditability provided to the whole system, the transient transformations

can be further conveniently stored specifying timestamps, usernames and so on.

All in all, functional modularity principles can be used to implement this combination of

paradigms by setting up a hierarchy of layers from (i) the statistical methodology, over its

implementation in (ii) low-level procedures (possibly assembled in libraries) and (iii) high-

level procedures thereof, to (iv) a process-orchestrating layer working as a user interface.

Notice how this organisation in layers also coincides with different traditional profiles at

statistical offices. Statistical methodology is under mathematicians’ and methodologists’

responsibility, possibly also with the collaboration of domain experts. This layer focuses

on the more abstract and mathematical part of the production system. The second layer

implements the methodology as low-level software procedures. It falls under developers’

and programmers’ responsibility, possibly with the collaboration of programming-skilled

methodologists. This layer still maintains a certain degree of abstraction. Concrete

applications and production activities are shaped in the third layer under the responsibility

of statisticians and survey managers, possibly with the aid of developers. In this layer, the

collection of standard low-level procedures is adapted to the concrete needs of each

statistical program. Finally, a process orchestrator working as user interface for ease of the

human-computer interaction can additionally be put into place. This ease of use allows the

management to optimise the production resources by potentially assigning tasks to non-

specialists who follow previously specified protocols.

In the following sections we will use concrete surveys conducted at the Spanish National

Statistics Institute to illustrate how this information architecture has been partially deployed

for the statistical data editing phase. Our first step has been to propose a common data structure

for all survey and administrative data sets (thus either InputData or OutputData) based on a

standardised abstract data model for any kind of statistics. This is detailed in Section 4.

Next, we have implemented the optimisation-based selective editing techniques formerly

developed at the Spanish National Statistics Institute (Arbués et al. 2013) following these

principles. This boils down to designing and programming Actions together with different

sets of InputParameters (also OutputParameters). We undertake this in Section 5.

4. Data Organisation

We will use the Spanish Retail Trade Survey and Service Sector Indicators Survey,

conducted monthly at the Spanish National Statistics Institute, to illustrate the application
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of this approach. These are short-term business statistics. Data are collected through paper

questionnaires, telephone, fax, email, and CAWI modes. Statistical units are selected

according to a stratified simple random sampling design. Target aggregates are mainly

Laspeyres indices of both turnover and number of employees, possibly broken down into

economic sector code and type of employment contracts, respectively.

In the preceding framework, our first task is to define an abstract data model for all

statistical operations. The immediate goals of this model have been the versatility among

all kinds of survey or administrative data and fast and easy deployment in the

implementation.

The model essentially consists of a key-value pair data model, in which the key is

composed by using the structural statistical metadata of the production system. We must

distinguish between the data model for storing data in a corporative internal repository (the

key is not parsed) and the data model for processing (the key is parsed). For manageability

and rapid deployment reasons, in the current implementation the information is stored in

plain text files, as explained below. These files are not modified once written. Updated

information, if any, is included as a new file (with updated key in the name of the new file;

see below). Concurrency issues and many other data architecture details are not considered

relevant at this point.

The central element in the data model is the composition of the key for each single

datum in the global production system at the office scale (or the whole statistical system

scale). The key is composed of the following components:

(i) An alphanumerical code to identify the survey/statistical program.

This alphanumerical code is taken directly from the Spanish National Statistical

Plan, where each survey/statistical program is univocally identified. This code

references the concrete statistics where this value is generated, processed, and

used.

(ii) An alphanumerical code to identify the time period of reference (coincidental with

the time period of the corresponding statistics).

An ad-hoc simplified syntax has been put into place to denote the different

reference time periods for all statistical operations according to the following

table:

The second character denotes whether it is an ordinary data set or a duplicated data

set containing statistical units from the rotated sample. This is especially used in

short-term business statistics that use chain-linked Laspeyres indices with rotating

panels.

(iii) An identifier to indicate whether they are raw or (partially) edited microdata,

paradata, identification data and so on.

Time period Code

Month MM, MR
Trimester TT, TR
Semester SS, SR
Year AA, AR
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The different codes are:

(iv) A version number either with the prefix P for provisional or D for definitive

values.

(v) An identifier for the statistical variable.

This identifier is taken from the system of structural metadata so that each concept

measured with a statistical operation in the whole statistical production system

is identified with a standard name. For example, the concept of “turnover” is

measured in different surveys (industry, retail trade, service sector and so on) and

the same identifier Turnover is used in every survey. Subtleties in this statistical

variable arising from its concrete usage in a survey is further specified using

qualifiers (see immediately below).

(vi) A set of qualifiers specifying different attributes (statistical unit ID, geographical

code, economic activity code and so on).

Qualifiers are variables that further specify the semantic content of each value.

Although from a strict computer point of view, all qualifiers play the same role,

this is not the case from a statistical standpoint. There are basically two types of

qualifiers, namely, those that allow us to identify the statistical units, and the rest

of them. The latter can be further divided into two categories. Firstly, as in the

example below, there are qualifiers that amount to codes of standard

classifications, such as the NACE, PRODCOM, COICOP and so on. At the

Spanish National Statistics Institute, to the extent that it is feasible, international

standard classifications are in use, in agreement with the ESS. In parallel, not all

qualifiers of this type can be found in standard classifications. In these cases, in

agreement with domain experts, the metadata unit puts into place a collection of

internal standard classifications for these qualifiers. For example, the number of

employees in a business unit is an extensively requested variable, usually broken

down according to diverse criteria: by type of contract, by professional situation,

and by type of remuneration. These have given rise to classifications with their

own codes, which are used as qualifiers in the corresponding key. Secondly, there

are qualifiers that are not necessarily understood as part of a classification. For

example, the economic activity code of a business unit may change because of a

change in its business activity, so that this variable in the population frame should

be modified after receiving the updated information during field work. A qualifier

(say, IsMod) denoting whether we are referring to the former value (IsMod ¼ 0)

or the modified value (IsMod ¼ 1) must be introduced. This self-evident qualifier

Data file type Code

Finally validated values FF
Partially edited values FD
Raw values FG
Paradata FP
Identification variable values FI
Edit rules (Longitudinal phase) FL
Edit rules (Cross-sectional phase) FT
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value is not part of a classification. More specific qualifiers can always be used

according to the specific process being executed. For example, in statistical data

editing qualifiers in terms of population, measurement time, measured unit, and

measured element can be properly defined, coded, and used as qualifiers (van der

Loo 2015).

The following simplified example clarifies the meaning of these components. Let

us consider the validated value of the turnover for a business unit (statistical unit ID

289409300MM) in the Retail Trade Survey (code E30103) in the reference time period of

January 2016 in the region of Castilla-La Mancha (geographical code 08), in the economic

sector of trade of food and beverages (NACE Rev.2 code 47.11). This value pertains to the

first definitive data set for this time period. This is visually depicted in Figure 2. Note that

some qualifiers are missing in this simplified example, as structural metadata defining the

variable type (integer value expressed in euros).

As stated above, in the current implementation, data are stored in files. Each one is

identified by statistical operation code, type of data (finally validated data, raw data,

paradata, and so on), reference time period, and definitive or provisional character of the

data in the production process. In other words, the common part of the key for a data set is

encoded in the name of the corresponding file, where the rest of the key and the values are

stored. In each file, each line will keep the standardised identifier and the rest of qualifiers

together for each value (e.g., Turnover@@289409300MM47.1108@@9732 in our

example). Other implementations are also possible.

A data dictionary is also configured and stored, containing the specifications of each

statistical variable: name, description, data type – numeric or alphanumeric, maximal

Identifier: name of the statistical variable 

Qualifiers:

: Validated value in Final File in data dictionary Version 1 – FF V1  
:  Monthly time period (Jan 2016) – MM012016
: Definitive (complete) set of values Version 1 of the file/value – D_1  

1

2

3

Value: value of the statistical variable – 9732

File name: 
E30103.FF V1.MM012016.D 1 Key-value 

pair: 

1 2 3

Turnover + 289409300MM47.1108 + 9732
ValueQualifiersIdentifier

In
 fi

le
 n

am
e

C
om

pl
et

e 
ke

y

File-Internal Key

: (StatSpain internal) code of the statistical operation – E30103 

: ID value of statistical unit – 289409300MM
: NACE v2 code – 47.11
: (StatSpain internal) standardised NUTS2 code – 08

Fig. 2. Example of a key-value pair with a key composed of structural statistical metadata.
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length – in terms of number of characters, qualifiers, corresponding domain-used variable

names, range of values, and some other technical information for data collection

applications. This dictionary allows the user to parse the key to instantiate objects

according to a business logic class for all data processing tasks, which is indeed a data

frame where the parsed key components are assigned in respective columns together with

the corresponding value column. In this way, data are tidy, in the sense of Wickham

(2014), for further processing with standardised transformations. Tidy data mean Codd’s

3rd normal form so that (i) each variable forms a column, (ii) each observation forms a

row, and (iii) each type of observational unit forms a table (see Wickham 2014). This

business logic class consists essentially of the data frame and the data dictionary. Data

transformations are applied on this class of objects, returning updated objects of the same

class.

Immediate benefits are obtained after adopting such a data organisation. Firstly, since

every data of every survey/statistical program can be managed in this way, a unique data

architecture can be adopted throughout the entire production system of the office. This is a

first crucial step towards the suppression of the stove-pipe production model, paving the

way for a more efficient architecture. Having a common data architecture allows us to

build standardised applications valid for all surveys, thus leading to the rationalisation of

resources.

Secondly, these data specifications can be adapted to many actual circumstances in

daily production. Let us consider, for instance, the case in which the economic activity

code in the example changes along the process because the business unit has changed its

activity. The example depicted here is oversimplified for ease of illustration. In practice,

the metadata system has dozens of standard classifications for qualifiers (always

international when possible) to parameterise each single datum along the process. In

particular, we have four classifications that aim to pinpoint (i) the process stage in which

the value is generated (design, collection, processing, dissemination, and so on, or a

subprocess thereof), (ii) the element of the process which the value is related to (frame

population, sample, questionnaire, and so on or a sub-element thereof), (iii) the role of the

related actor in the process (statistical unit, interviewer, editing clerk, and so on), and (iv)

the type of value (dichotomic variable, excluding variable, percentage, and so on). The

evolution of the value along the process can be followed using these qualifiers. The

metadata unit has put in place and is maintaining over 70 classifications and growing, as

more statistical programs incorporate this architecture. Many classifications are very

specific for a given statistical domain, but many others refer to features common to a large

number of surveys.

Thirdly, the use of metadata in composing the keys to identify data values paves the way

for achieving a standardised production system. In this way, every single datum in the

whole production process is parameterised using, so to say, a common system of

coordinates. In contrast to the dangerously common opinion of only conceiving metadata

as a cumbersome documenting tool independent of production tasks and effective only

after production has been executed (socalled passive metadata according to Lundell

2013), this data organisation makes use of the metadata system from the very beginning, in

which data are generated and provide an interface between data and the user (active

metadata according to the same author). Notice how this active role of metadata is key in
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the sequence of transient transformations along the production process. Every independent

transformation on a given data set must be implemented depending only on the input data

and input parameters, that is, on the data and metadata contents that transform according to

the parameters. If metadata are erroneous, the interface between data and the user is lost,

and the process (as a sequence of transformations) cannot be executed.

5. Process Design

The design of the process architecture according to the principles set out in Section 3 is

much more complex than the design of the data architecture. To begin with, a standard class

of parameters (InputParameter) for all possible statistical methods (Action) is virtually

impossible, since there exists a vast number of different statistical techniques. Thus, we will

illustrate the application of the functional modularity principles with the concrete example

of the optimisation approach to selective editing developed at the Spanish National

Statistics Institute (see Arbués et al. 2013).

The division in layers begins by considering the statistical methodology at the bottom

of the hierarchy. We will not go deep into the mathematical details and shall focus on

the implementation of a very concrete formula to assign local (item) scores to each

statistical unit.

The core of selective editing techniques is based on the assignment of a score to each

variable to be edited for each statistical unit, thus providing a measure of the degree of

suspicion of it containing an influential measurement error. The heuristic approach

(de Waal et al. 2011) recommends choosing local (item) score functions such as

sk ¼ vkjyk 2 ŷkj, where vk stands for the sampling weight of unit k and yk, ŷk denote the

reported and predicted (expected) values of the variable y under editing, respectively.

The main methodological content of the optimisation approach firstly consists of modelling

the measurement errors ek ¼ yk 2 yð0Þk ( y ð0Þ denoting the true value) for each unit and

computing their first- and second-order moments Mkl for each pair of statistical units k and l

(business units in our example) and each variable y (turnover and number of employees in

our example). These are given by analytical expressions (Arbués et al. 2013):

Mkk ¼
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2

2n̂2
k

� �

zk

yk 2 ŷk
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n̂k

� �

zk

yk 2 ŷk
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for the loss function L(a,b) ¼ (a 2 b)2, where in both cases
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Exact details about the derivation of expressions (1) and (2) are given by Arbués et al.

(2013). In the first case, when j
yk2ŷk

n̂k
j! 1; Mkk ! vkjyk 2 ŷkj, which is the usual

expression in the heuristic approach (de Waal et al. 2011) (in this case Mkk can be viewed

as item scores). Thus, Formulas (1) and (2) can be understood as a rigorous generalisation

of the traditional approach to selective editing by using statistical models for measurement

errors. The scores also depend on other parameters, such as the probability of reporting an

erroneous value and the variability of these errors reported in the past. As a matter of fact,

statistical models for the measurement error are behind the diverse parameters in these

expressions:

. vk denotes the sampling (design) weight of unit k;

. yk denotes the raw (reported) value of variable y for unit k as collected in the

questionnaire;

. ŷk and n̂k denote the predicted value and its prediction standard deviation for variable

y and unit k;

. F1(x;y;z) stands for the confluent hypergeometric function of the first kind (Pearson

et al. 2017), which arises from the choice of the loss function in the underlying

optimisation problem;

. p̂k denotes the estimated probability of measurement error for variable y and unit k,

that is, pk ¼ P yk – yð0Þk

� �

, where yð0Þk stands for the true value of variable y;

. ŝ
ð0Þ
k denotes the estimated standard deviation for the observed measurement error

Qk ¼ yk 2 yk.

These quantities can be computed for the whole population or by population cells (e.g.,

determined by economic sector or geographical region, or both).

Now we consider the second and third layers, in which the statistical methodology is

implemented in finer – and coarser – grained production tasks. From the methodology, it

is clear that the error moments can be written as functions of diverse parameters

Mkl ¼ Mklð yk; ŷk; n̂k; ŝk; p̂k;vkÞ. Now the question arises regarding how to organise this

computation in a modular way.

At this point, functional modularity and statistical methodology must be precisely

combined. From a strictly computational point of view, there is no distinction between the

parameters yk, ŷk, n̂k, ŝk, p̂k, and vk. However, from a statistical point of view, this

distinction is fundamental for allowing the system to efficiently grow and evolve in the

future. Raw values yk are taken directly from the data collection stage. Independent

modules will handle the computation of ŷk and n̂k (prediction module), ŝk (observation

error estimation module), p̂k (error probability estimation module), and vk (sampling

design module). The computation of these parameters will be completely independent of

each another and each one will depend exclusively on its input arguments. They will
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interact with each other only through their final computed values, so that the computation

is transparent.

This organisation in modules is justified by the underlying statistical knowledge. First,

there are many prediction methods that potentially could be applied to obtain both ŷk and

n̂k. If new methods need to be added to the system, this can be done without affecting the

rest of the computation. This same observation is valid for the remaining modules. Note

that this is a simple example in which we are computing a single value with an analytical

formula with just six arguments. The consequences of a poor (from a methodological point

of view) modular organisation, may produce the opposite effect across the entire

production system. This is why functional modularity and statistical methodology must be

precisely combined in the design of the production system.

Each module, in turn, makes use of these same principles, so that different

methodological aspects of the computation are considered independently. For example,

due to missing values or some other reason, predicted values cannot be computed for all

statistical units and must be imputed. An independent module for imputation is thus

constructed to handle this task independently of any other, and embedding it in the former

computation. The architecture is, again, the same:

ImputedObject :¼ ImputeðInputObject; ImputationParametersÞ:

The whole computation is then constructed as follows. Firstly, the Action element

specifying the concrete production task will be denoted by ComputeErrorMoment and will

implement either Formula (1) or (2), depending on its arguments.

As InputData we set all elements in Expressions (1) and (2), namely (i) the values of the

target variables y (turnover and number of employees in our example), (ii) some other

auxiliary variables (e.g., those determining different population domains; economic

classification NACE codes, and Spanish geographical classification codes in our example),

and (iii) the model parameters uk ¼ ð ŷk; n̂k; ŝk; p̂k;vkÞ for each variable y and each unit k.

These are the parameters for the continuous variable observation-prediction model

(Arbués et al. 2013). We will call this InputData data set contObsPredModParam and it is

given the key-value pair structure described in the preceding section. These parameters

(hence the object contObsPredModParam) must be computed with their respective

modules:

. The predicted values ŷk and their standard deviations n̂k are computed by initialising

the object contObsPredModParam and defining an abstract class PredictionParam for

the input parameter. The computation is carried out by updating the object

contObsPredModParam:

contObsPredModParam :¼ ComputePredðcontObsPredModParam; PredictionParamÞ:

The concrete statistical method used to compute ŷk,n̂k is specified by defining a

concrete subclass of PredictionParam. In our example, we have defined four time

series models (random walks with regular, seasonal, and regular/seasonal differences

and automatic ARIMA models), among which the one with the lowest n̂k is

automatically selected. Any alternative choice (e.g., with machine learning

techniques) could easily be implemented by defining the corresponding subclass.
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Hierarchy and layering principles are applied by internally constructing routines on

the key-value pair data structure in terms of simpler data structures such as vectors.

In addition, imputation routines can be embedded in the design of these classes and

methods as an attribute of PredictionParam.

. The estimated standard deviation ŝk of observation errors is computed in the same

way:

contObsPredModParam :¼ ComputeObsErrorSTDðcontObsPredModParam;

ObsErrorSTDParamÞ:

In this case, another abstract class ObsErrorSTDParam has been defined. Its concrete

subclasses determine the statistical method to be used for the estimation. In our

example, we have defined a subclass to estimate sk by maximum likelihood, using the

historical double sets of raw and validated data. As before, imputation routines can

also be embedded in the design of these classes and methods as an attribute of

ObsErrorSTDParam.

. The estimated error probabilities p̂k are also computed in the same way:

contObsPredModParam :¼ ComputeErrorProbðcontObsPredModParam;

ErrorProbParamÞ:

In this case, an abstract class ErrorProbParam is defined. Its concrete subclasses

determine the statistical method to be used for the estimation. In our example, we

have defined a subclass to estimate pk by maximum likelihood, using the historical

double sets of raw and edited data. Again, as before, imputation routines can also be

embedded in the design of these classes and methods as an attribute of

ErrorProbParam.

. The sampling weights vk are usually computed at an earlier stage of the production

process, so that we can simply retrieve them from some other data set in the survey in

question. In other cases, if explicitly needed for the editing phase, the computation of

the sampling weights can be carried out along similar lines.

Next, as parameters InputParameter in our error moments computation, we essentially

need to specify the loss function L(·,·). We will denote this object by ErrorMomentParam.

Finally, the output object OutputData will be denoted by ErrorMoments and is basically

an array of error moment matrices [M
ðqÞ
kl ] per population cell (q denotes the turnover and

the number of employees in our example). In this way, we already have the content of each

object in the expression

ErrorMoments :¼ ComputeErrorMomentðcontObsPredModParam; ErrorMomentParamÞ

The whole computation at the third (scripting) layer is thus executed just by calling

something like

DD :¼ readFileðDataDictionaryFileÞ

contObsPredModParam :¼ buildcontObsPredModParamðDDÞ

PredictionParam :¼ buildPredictionParamðand so onÞ
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contObsPredModParam :¼ ComputePredðcontObsPredModParam; PredictionParamÞ

ObsErrorSTDParam :¼ buildObsErrorSTDParamðand so onÞ

contObsPredModParam :¼ ComputePredðcontObsPredModParam; ObsErrorSTDParamÞ

ErrorProbParam :¼ buildErrorProbParamðand so onÞ

contObsPredModParam :¼ ComputePredðcontObsPredModParam; ErrorProbParamÞ

SamplingWParam :¼ buildSamplingWParamðand so onÞ

contObsPredModParam :¼ ComputePredðcontObsPredModParam; SamplingWParamÞ

ErrorMoments :¼ ComputeErrorMomentðcontObsPredModParam; ErrorMomentParamÞ

In the construction of the diverse parameters objects, the same hierarchical scheme can

be followed (including e.g., the imputation routines). Notice also the far-reaching

consequences on the organisation of work and the production process at a statistical office.

Firstly, survey managers and domain experts can work at a scripting level with high-level

functions such as ComputePred, ComputeObsErrorSTD, and ComputeErrorProb above.

This does not demand extensive IT skills and they can concentrate on the adapted use of

these tools to their concrete survey. Indeed, the modularity allows them to seamlessly

combine and choose diverse alternatives to compute the parameters and the error moments

according to the characteristics of the statistical operation. On the other hand, developers

and methodologists (ideally data scientists) can work at a lower level, implementing new

statistical methods as new subclasses and overloaded methods. Needless to say, for an

optimal design of classes and methods, communication between both layers is

recommended. Notice however that both the naming conventions and the division in

modules (both functions and libraries) derives directly from the application of the

foregoing principles: it is the statistical methodology which should define the borders

(interfaces) between the different modules. This paves the way for easy application of

standard good practices in software development, supported by a strong mathematical

basis. In the current development and implementation of our proposal, we can only offer

an empirical view on this particular production stage (editing). However, if these

principles are to be applied throughout the process, the different functional modules

should similarly interface with one another, thus coping with complexity.

Secondly, this architecture favours software evolution and ease of maintenance over

code preservation (Booch et al. 2007). Legacy code is recognised as a heavy ballast in the

modernisation of statistical production. We are not providing solutions for the existing

legacy code, but this architecture philosophy helps a great deal by not producing legacy

code. The code can evolve according to new needs detected in the statistical programs,

by defining new subclasses and methods. At the same time, the produced code is easily

maintained, since execution statements such as the one above seldom change.

Thirdly, since statistical methods are implemented with an abstraction of concrete

statistical operations, the same code at the lower level and very similar at the scripting

level is valid for different surveys. This allows us to optimally manage resources among

statistical operations, as the methodology and computer tools are standardised.

Fourthly, we would like to comment on the granularity of the services and computer

tools. In our example above, by starting with Formulas (1) and (2), we also want to suggest

that the statistical methodology should determine the degree of granularity of computer
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tools that implement the different methods. In the modular design, the statistical methods

themselves should determine the natural borders among modules (hence also their

interconnecting interfaces). Furthermore, the internal components of each module should

also be structured according to the statistical methodology. Note how, in our example

above, each parameter entered into Formulas (1) and (2) is dealt with using an independent

method on the object contObsPredModParam, because each parameter can be

computed/estimated choosing an adequate statistical method. Should new methodological

proposals appear for a concrete computation, these can easily be incorporated without

affecting the other software routines (e.g., imputation routines).

Finally, we would like to underline how the scripting philosophy fits perfectly well in

the GSDEMs as a processing step, in which input statistical data and input metadata,

process details, and transformed statistical data and output metadata are clearly expressed

(UNECE 2015). Although we have not yet used this process architecture to manage

process metrics, we are convinced that these monitoring parameters can also be computed

along similar lines. This may be carried out by complementing each computation or

transformation on an input data set with a chosen set of indicators in the output monitoring

the transformation.

In conclusion, we must mention that in addition to the foregoing technical,

mathematical difficulties, a highly relevant element of the practical implementation of

this proposal is the staff reaction to changes in the production system. In the current stage

of prototyping in production in a few statistical operations, the role of survey managers has

been identified as key, since, in our current production model, they take the decisions on

each survey. The gap between statisticians and computer scientists (and their traditional

skills) also stands out as an aspect that needs to be addressed further.

6. Implementation: A Proof of Concept

The principles of functional modularity have been applied by designing and developing

independent software packages for concrete aspects of this data organisation and process

design. There are many aspects of the implementation worth sharing in order to be

acquainted with the interplay between theoretical proposals and the practicalities arising in

an ongoing production system at a statistical office.

Firstly, since both object-oriented and functional paradigms lie at the core of the

proposal, the natural choice for a programming language is one that naturally supports

these paradigms, without syntax quirks and twists. Java, Cþþ , R, Python, Scala and many

others are candidates that fulfill this condition. Since the user domain is clearly statistical

data processing, another requisite is feasible rapid development of trustworthy statistical

tools. Finally, a good documenting system of classes, methods, and functions is also

desirable, which allows us to document data and parameter inputs, output, and throughput

of each element (the process statistical metadata). These considerations led us to choose R

(R Core Team 2012; Chambers 2008).

Secondly, the methodology of software development has also been carefully decided.

Instead of the more classical waterfall model (see e.g., Palmquist et al. 2013), we have

used a spiral approach (Boehm 1988). Thus, instead of compiling specifications,

designing, coding, and testing in a linear way, we have incrementally agreed on a first
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round of specifications, made a first design implemented on a first version of several R

packages, and constructed a first version of the repository with key-value data files for

three different short-term business statistics surveys. In this first round, the physical layer

(the files themselves), the programming layer (classes, methods, and functions: the R

packages), and the scripting layer were constructed. In a second round, apart from bugs

and flaws in some functions detected in the testing phase, an important redesign was

discovered to be necessary in the classes and methods implementation. The technical

reason was that, for performance reasons in order to handle these key-value pair data sets,

our packages heavily depend on the package data.table (Dowle and Srinivasan 2016).

Formerly we used the S4 system of classes and methods, and the method dispatch, which

suspends the lazy evaluation, is thus incompatible with the data.table syntax. We migrated

all key-value data packages to the system S3. This affected the second layer, and

interestingly enough, it did not affect the scripting layer. Along this line of work, we

pursue the production of constantly evolving pieces of software that can adapt quickly and

straightforwardly to the needs and changes of production. Again, this change of

philosophy is at odds with the traditional culture at a statistical office and requires

formidable management efforts in order to implement it at the officewide scale. For

example, the idea that computer tools built in this way are not completed and ready for use

in production may be risky, since it may lead to rejection of the methodology due to

immature tools. These, more agile, methodologies also allow us to make more rational use

of scarce resources, since development is incremental. In our view, a mindset change to

perceive software as constantly evolving, rather than as a closed definitive tool is

necessary for the industrialisation and modernisation of statistical production.

Thirdly, as a byproduct of the preceding methodology, communication between domain

experts and survey managers, on the one hand, and developers and methodologists, on the

other hand, must be clearly stressed. Although the architecture makes the work of both

profiles independent by defining programming and scripting layers, an optimal system

design will be achieved when communication between both parts is at a maximum during

the development stage. Again, we face a management challenge that may impinge on

organisational aspects of the whole statistical office (e.g., does it make sense to

differentiate between statistical methodology and statistical software development

departments?).

Fourthly, the different actors’ computer skills must be taken into account. Two further

actions have been taken in this regard to deploy the preceding architecture at the Spanish

National Statistics Institute. On the one hand, the file containing the data dictionary is an

XML file for machine readability. This technology does not form part of regular computer

skills of domain experts and survey managers. Thus, to build this file, we asked these

statisticians to record the specifications of each statistical variable in their survey in an

Excel file with a prespecified structure. Excel files, although limited when dealing with

some data structures, are easily handled. Then, we programmed a specific function,

building the data dictionary file automatically from this Excel file.

Fifthly, the statistical computing system used as a standard at the Spanish National

Statistics Institute is SAS, and following this institutional policy, computing routines used

by survey managers and domain experts must be written in SAS, and not in other

languages such as R, Python, Scala, and so on. Thus, the fourth layer, working as a user
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interface, has been developed in the form of extremely simplified SAS macros that execute

the aforementioned R scripts in batch form. This means that the interaction between the

user and the architecture occurs only in SAS (so far, this has only been accomplished to

feed and read from the repository; the selective editing routines are executed directly by

data collection staff in simplified R scripts). Although the functionality of the system is

currently severely reduced and rigidity is increasing, ease of use is noticeable, as the user

only needs to specify a few very generic parameters.

Finally, the collection of packages in constant evolution at various stages of maturity are

available in GitHub (Esteban et al. 2017a,b,c,d,e,f,g,h,i,j,k,l; Sanguiao 2017). The

architecture behind these packages closely follows the statistical methodology of the

optimisation approach to selective editing. Thus, it is difficult to give a precise description

of what each package does without entering into mathematical content. A summarised

description of what each package does can be found in Esteban et al. (2017m). It is

important to point out that this division into many different packages that focus on

concrete aspects of the statistical process should not be read just as an example of good

practices in programming, but also as a consequence of the identification of functional

modules according to the underlying statistical methodology.

7. Conclusion and Future Prospects

The main conclusion from this work is that in recognising an official statistical production

system as a human-generated complex system, the principles of functional modularity can

be used to cope with this complexity of designing both data and process architectures

adapted and adaptable to the evolving needs of statistical production. By moving a step in

the direction of international standards, we can combine the object-oriented and functional

paradigms to define functional modules for the different production tasks whose borders

and interacting interfaces are naturally determined by means of the underlying statistical

methodology. These principles drive us genuinely to a set of layers in the statistical

methodology, over its implementation in lower – and higher – level production tasks and

steps to a top-orchestrating user interface.

The data organisation essentially revolves around a key-value pair data model, where

keys are composed of statistical metadata. The process architecture implements

transformations over information objects, thus combining both paradigms. In our view,

these architectures bring relevant benefits to an efficient production system. They provide

due roles for the different professional profiles in a statistical office, favour the evolution

of software, thus adapting to new needs, lead to complete global parametrisation of every

single datum in the process, and lead to standardisation in the production tools in surveys

and statistical programs of various types.

Some of the elements presented in preceding sections are connected with the concrete

production system at the Spanish National Statistics Institute. Therefore, it is advisable

to recognise those elements that are exportable to other offices. Regarding the data

architecture, the core element is the use of metadata to identify values. The key-value pair

structure could be substituted by alternative data models, such as the SDMX or DDI.

Nonetheless, in a deeper stage of analysis, performance issues (among others) should be

taken into account in making a choice. In our case, we can process monthly data sets of
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around 2 million lines and about 15 qualifiers (around 28,000 business units) to construct

their corresponding traditional data matrices in less than two seconds. Regarding the

process architecture, the core elements are (i) the application of functional modularity to

statistical methods to produce modular computations respecting the natural borders in

statistics, (ii) the layers organising the production tasks at different degrees of modularity,

(iii) the use of object-oriented modelling for the information objects (both data and

parameters), and (iv) the use of the functional paradigm to carry out the chained

transformations on these information objects. All other implementation details can be

adapted to concrete circumstances.

Nonetheless, our proof of concept reveals relevant challenges ahead. To be more

efficient, an agile software development methodology should be preferred over more static

methodologies. Also, it is important that the existing gap between methodologists/

statisticians and computer scientists/developers must be bridged. All this pushes us to

improve communication standards among the different actors (methodologists, computer

scientists, domain experts, survey managers, business managers, and so on) within an

office. This a remarkable management exercise.

Along this line, as stakeholders in and members of the ESS we recognise that alignment

with international initiatives is a strategic matter. Thus, in future revisions and

developments, alignment with CSPA services and European standards will be taken into

account and pursued. Previously, technical requisites to be CSPA-compliant and to

achieve shareability of computer application must be agreed upon by the international

community (see, for example, the 2017 meeting report of UNECE 2017a).
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