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In this article, we consider a generalized method moments (GMM) estimator to estimate
treatment effects defined through estimation equations using an observational data set from a
complex survey. We demonstrate that the proposed estimator, which incorporates both
sampling probabilities and semiparametrically estimated self-selection probabilities, gives
consistent estimates of treatment effects. The asymptotic normality of the proposed estimator
is established in the finite population framework, and its variance estimation is discussed. In
simulations, we evaluate our proposed estimator and its variance estimator based on the
asymptotic distribution. We also apply the method to estimate the effects of different choices
of health insurance types on healthcare spending using data from the Chinese General Social
Survey. The results from our simulations and the empirical study show that ignoring the
sampling design weights might lead to misleading conclusions.
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1. Introduction

Observational data from a complex survey has increasingly become useful for causal

inference because they can provide timely results with low cost. Survey data contains

information on the treatment selections, which enables us to estimate the effects of

treatments that cannot feasibly be evaluated with a randomized trial. In a survey, a

treatment can be broadly defined as one of the survey questions, for example whether or

not an individual has quit smoking, how often an individual does a physical exam, or what

types of health insurance an individual has chosen. We can use the existing survey data to

estimate effects of those treatments on health care spending, even if we cannot randomize

the health behavior or the health insurance enrollment of an individual. Also because a

well-designed survey sample is often a good representative of the target population, the

treatment effect results can be generalized to the target population level if the survey

weights are appropriately incorporated. Propensity score methods are well-established

statistical methods to remove treatment selection bias in observational studies if the
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selection probability model is correctly specified (Rosenbaum and Rubin 1983). Many

observational data sets have multiple treatment options. In order to handle the complexity

in multiple treatment groups, theoretical results support using the inverse of the estimated

treatment selection probabilities as weights to adjust for selection bias and attain

asymptotic efficiency (Hahn 1998; Hirano et al. 2003; Cattaneo 2010). This kind of

estimator is called inverse probability weighted (IPW) estimator, and the estimated

selection probabilities are called propensity scores. We also consider IPW estimators in

this article to address the potential confounding in observational studies. However, it is

very common that people ignore survey weights in observational data when using the IPW

estimators yet claim that the estimated treatment effects are generalizable to the target

population, causing misleading guidance in causal inference. Failure to properly account

for the complex survey design may lead to biased treatment effect estimates and incorrect

variance estimation.

Several authors have emphasized the importance of incorporating survey weights in

their IPW estimators, for example DuGoff et al. (2014), Zanutto (2006), Ashmead (2014),

and Ridgeway et al. (2015). The general idea is to multiply the inverse of the estimated

propensity scores by the sampling design weights. However most of the papers, except for

Ashmead (2014), do not provide theoretical justification for such survey adjusted

estimators, and variance estimation is seldom discussed. Yu et al. (2013) proposes a

semiparametric two-phase regression estimator to estimate marginal mean treatment

effects in observational data sets from complex survey designs. This article considers

a more general set up in which parameters of interest are defined through estimation

equations, and uses the generalized method of moments (GMM) for parameter estimation.

Similarly to Yu et al. (2013), this article draws a connection between the two-phase

sampling in survey statistics and the estimation of treatment effects from an observational

database. The observational data set, denoted as A1 (with size n), is considered as a first-

phase sample from a finite population, according to a known sampling probability p1i for

subject i. The second-phase sampling is a partitioning of the first-phase sample

(observational data set) into mutually exclusive and self-selected treatment groups,

A21; : : : ;A2G, where G is the number of treatments. This partitioning in the second-phase

can be viewed as a multinomial sampling in survey statistics, and its self-selection

probabilities p2ig for subject i into group g (g ¼ 1; : : : ;G) can be estimated using the

semiparametric approach in Cattaneo (2010).

Our article differs from DuGoff et al. (2014), Zanutto (2006), Ashmead (2014) and

Ridgeway et al. (2015) in the following ways. (i) Their papers consider two treatments,

while our article deals with multi-level treatment selection. (ii) In their work, the

propensity scores are estimated using a parametric linear logistic regression, while our

propensity scores, that is p2ig in our situation, are estimated through a semiparametric

approach. Thus, our approach should be more robust to the misspecification of the

selection probability model. (iii) In their work, the parameters of interest are treatment

means. We are interested in estimating treatment specific parameters defined through

estimation equations. In addition to providing generality, defining parameters through

estimation equations can facilitate variance estimation. For example, if a parameter is a

function of means, such as correlation or domain mean (see more details in Subsection 2.1),

the variance estimation of GMM estimators for such parameter scan be easily calculated
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through the sandwich formula associated with the asymptotic variance for a GMM

estimator. Ashmead (2014) also utilizes estimation equations in their weighting estimator.

This article also differs from Yu et al. (2013) in the following aspects. We extend Yu

et al. (2013), which only focuses on estimating marginal treatment means, to estimate

parameters defined through estimation Equations (see û
ð1Þ

g in Subsection 2.3). This article

also proposes the second estimator to gain efficiency by incorporating the first phase and

second phase means of covariates into the estimation equations (see û
ð2Þ

g in Subsection

2.3). This is similar to the effect of calibrating the second phase means of covariates to

their first phase means seen in the optimal two-phase regression estimator discussed in

Fuller (2009). Additionally, Yu et al. (2013) assumes sample missing at random (SMAR),

which is commonly used in literature, while this article considers population missing at

random (PMAR), the framework proposed in Berg et al. (2016) (see more details in

Subsection 2.1). It makes sense to use PMAR assumption in the context of casual inference

study using observation dataset. We discuss situations when PMAR holds but SMAR fails,

and argue that when it happens survey weights should be included in the estimation of

p2ig, that is the propensity scores.

We provide theoretical justification for our estimator in a combined framework of a

finite population and a superpopulation, and also propose variance estimators. We

demonstrate the validity of our estimator through simulation studies, and show that the

estimator that ignores the design weights might be subject to biases. We also explore the

feasibility of our method using data from the Chinese General Social Survey to estimate

the effects of different choices of health insurance types on health care spending. The

article is organized as below. Section 2 introduces the framework and the proposed

estimators. Section 3 presents an asymptotic normality and variance estimation.

Simulation studies and an empirical study are reported in Sections 4 and 5 respectively.

Section 6 concludes. Appendix collects the conditions and a sketch of the proof for the

main theorem in the article.

2. Proposed Estimators

In this section, we introduce our estimators. Subsection 2.1 discusses the basic set-up,

Subsection 2.2 introduces the semiparametric approach for estimating the self-selection

probabilities, and Subsection 2.3 proposes the estimators.

2.1. Basic Setup

Let U be a finite population with size N containing ðYi; ZiÞ, where i ¼ 1; : : : ;N indexes

a subject, Zi is a covariate variable, and Yi ¼ ½Yi1; : : : ; YiG�
T is a vector of potential

outcomes for G different treatments depending on covariate Zi. Let d1i be the sampling

indicator from the survey design, defined by d1i ¼ 1 if unit i is selected into A1 and zero

otherwise. Let p1i and p1ij be the first and second order inclusion probabilities of the

sampling design, defined as,

½p1i;p1ij� ¼ ½Probðd1i ¼ 1Þ;Probðd1i ¼ 1; d1j ¼ 1Þ�:

We assume the sampling weights are appropriately adjusted for any nonresponse. If the

weights are adjusted due to nonresponse, the method can be used but with awareness of
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that the variation from estimating p̂1i is not accounted for. Let d2ig (g ¼ 1; : : : ;G) be the

self-selection indicator of subject i selecting treatment g, defined by d2ig ¼ 1 if unit i

selects treatment g and zero otherwise. The self-selection process leads to the partitioning

in the second phase. Assume conditioning on a covariate Xi, the self-selection indicators

d 2i ¼ d2i1; : : : ; d2iG

� �
follow a multinomial distribution with probabilities,

p2ig ¼ Probðd2ig ¼ 1jXiÞ; for g ¼ 1; : : : ;G; ð1Þ

that is for any subject i,

d 2i ¼ d2i1; : : : ; d2iG

� �
, multinomial 1;p2i1; : : : ;p2iG

� �
;

where
PG

g¼1 p2ig ¼ 1 for any i, and d2i is independent of d2j for any subjects i – j. Here

covariates Zi and Xi can be totally different, or can have overlap. We use separate notations

in order to emphasize that the outcome response variables Yi and the self-selection

indicatorsd2i can depend on different sets of covariates. We discuss how to identify Zi and Xi

practically in Section 4. Both Zi and Xi have compact supports and are observed in A1. They

are written to be univariate forms in order to reduce notation burden. It is straightforward to

extend to multivariate covariates, which are considered in the simulation studies and the

empirical study of this article. We suppose that Yi; d1i;
�

d2i;Xi; ZiÞ; i ¼ 1; : : : ;N are

identically independently distributed (i.i.d.) generated from a superpopulation j.

In the context of simple random sampling, a common missing at random (MAR)

assumption is Yi ’d2ijðXi; ZiÞ. With this MAR assumption, the selection bias can be

removed by applying the propensity score method (Rosenbaum and Rubin 1983; Hirano

et al. 2003). However, in the context of a complex survey, unequal probabilities of

sampling can complicate the relationship between Yi, ðXi; ZiÞ, d2i and the sample inclusion

indicator d1i. Even if

Yi ’d2ijðXi; ZiÞ; ð2Þ

holds for a specific superpopulation model,

Yi ’d2ij{ðXi; ZiÞ; d1i ¼ 1}; ð3Þ

may not hold. Following Berg et al. (2016), we call Assumption (2) population missing at

random (PMAR), and Assumption (3) sample missing at random (SMAR) to emphasize it

depends on the realized sample (that is conditional on d1i ¼ 1). The SMAR has been used

previously (Pfefferman 2011 and Little 1982). However, it is natural to consider PMAR

in our context because the mechanisms underlying the selection propensity are

conceptualized as inherent characteristics of the subjects in the population. For example,

whether or not a person decides to stop smoking heavily depends on this person’s

perseverance and personality type; what types of insurance a person has chosen depends

on the nature of this person’s work. In these examples, the self-selection probabilities

depend on subjects’ inherent characteristics that have nothing to do with whether or not the

subjects were selected into the survey that was typically designed for other general

purposes. Berg et al. (2016) also provides examples of situations in which PMAR may be

considered reasonable. They argue that if both PMAR and SMAR hold, weights are not

needed in their imputation model; however if PMAR holds but SMAR fails, it is necessary

to include weights to produce consistent estimators. A situation in which PMAR holds
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while SMAR does not can arise if a design variable omitted from the first phase sample is

related to both the sampling inclusion probabilities and the response variable. An example

of such a design variable is location in a situation where design strata are functions of

location, the location is correlated with the response variable, but the specific location is

masked from the analyst because of concerns associated with confidentiality. Using

Lemma 1 of Berg et al. (2016), we identify the following two conditions of the sampling

and the self-selection mechanisms for which PMAR implies SMAR: (1)

d1i’YijðXi; ZiÞ; d2i; or (2) d2i’ Yi; d1i

� �
j Xi; Zi

� �
. The first condition states that the

sampling mechanism is noninformative given covariates ðXi; ZiÞ within all the second

phase self-selected groups A2g. The second condition states that the self-selection

mechanism is independent of either Yi or sample inclusion given Xi; Zi

� �
. Like Berg et al.

(2016), we suggest to include survey weights into the estimation of the self-selection

probabilities p2ig when SMAR fails (see Subsection 2.2). In our simulation studies, we

consider both noninformative sampling (Condition (1) above holds), and informative

sampling (Condition (1) above fails).

The true parameter of interest, u 0
g ðg ¼ 1; : : : ;GÞ, is a du-dimensional vector

satisfying,

E mg Yig; Zi; ug

� �� �
¼ 0; ð4Þ

in the superpopulation, where mgðYig; Zi; ugÞ, hereafter denoted as migðugÞ to save space,

is an r-dimensional function with r $ du. Sometimes in addition to treatment marginal

means, people might be interested in estimating treatment correlations or treatment

domain means. For example in our empirical study, it is interesting to understand whether

the correlations between annual medical expenditure and age (or household income) differ

significantly across different health insurance type groups; or whether the means of annual

medical expenditure for very sick people (domain means) are significantly different across

health insurance type groups. The parameter defined through Equation (4) includes

treatment correlations and treatment domain means as special cases. More specifically, if

the parameter of interest is u 0
g ¼ Pg;mg;s

2
g ;Rg

h iT

, where Pg ¼ ProbðYig # CÞ for some

C, mg ¼ EðYigÞ, s
2
g ¼ VarðYigÞ and Rg ¼ CorrðYig; ZiÞ, then the estimation equation can

be defined as,

migðugÞ ¼ 1Yig#C 2 Pg; Yig 2 mg; ðYig 2 mgÞ
2 2 s2

g ; ðYig 2 mgÞðZi 2 mzÞ
h

2Rg

ffiffiffiffiffiffi
s2

g

q ffiffiffiffiffiffi
s2

z

q
; Zi 2 mz; ðZi 2 mzÞ

2 2 s2
z

iT

:

ð5Þ

If the parameter of interest is a treatment specific domain mean, u 0
g ¼ EðYigjZi # CÞ, then

the estimation equation can be written as,

migðugÞ ¼ ½Yig1Zi#C 2 ugPz; 1Zi#C 2 Pz�
T : ð6Þ

Here in both examples, mz, s
2
z or Pz are all nuisance parameters.

2.2. Semiparametric Estimation of p2ig

Because of the difficulty in specifying a parametric form for p2ig and the constraint,PG
g¼1 p2ig ¼ 1, we adopt the semiparametric method in Cattaneo (2010) to estimate p2ig.
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Let {rkðXiÞ}
1
k¼1 be a sequence of known approximating functions, and assume that the

generalized logit of p2ig can be approximated by RKðXiÞ
Tgg;K for K ¼ 1; 2; : : : ; where

RKðXiÞ ¼ ½r1ðXiÞ; r2ðXiÞ; : : : ; rKðXiÞ�
T and gg;K is a vector of the real-valued coefficients

of RK(Xi) for the g-th treatment selection. Let an estimator of the K £ G matrix gK ¼

g1;K ; g2;K ; : : : ; gG;K

� �
be,

ĝK ¼ ½ĝ1;K ; ĝ2;K ; : : : ; ĝG;K� ¼
gK jg1;K¼0 K

argmax
i[A1

X
biw1i

XG

g¼1

d2iglog
eRK ðXiÞ

Tgg;K

XG

g¼1
eRK ðXiÞ

Tgg;K

2

4

3

5; ð7Þ

where w1i ¼ p21
1i , and 0K represents a K £ 1 zero vector used to constrain the sumPG

g¼1 p̂2ig ¼ 1. The estimated self-selection probabilities are

p̂2ig ¼
eRK ðXiÞ

T ĝg;K

1þ
XG

g¼2
eRK ðXiÞ

T ĝg;K

for g ¼ 2; 3; : : : ;G

¼ 1þ
XG

g¼2

eRK ðXiÞ
T ĝg;K

 !21

for g ¼ 1:

ð8Þ

This solution is that of multinomial logistic regression where the probability for each g is

approximated using a linear combination of the series of the approximating functions

RK(Xi). Condition B in the Appendix specifies assumptions about RKðXiÞ, p2ig and K to

ensure p̂2ig converges to p2ig fast enough. Examples of RKðXiÞ include a cubic polynomial

basis, RKðXiÞ ¼ 1;Xi;X
2
i ;X

3
i

� �T
, or a quadratic spline basis with q knots RKðXiÞ ¼

1;Xi;X
2
i ; ðXi 2 k1Þ

2
þ; : : : ; ðXi 2 kqÞ

2
þ

� �T
where ðtÞþ ¼ t if t . 0 and 0 otherwise, and

k1; : : : ; kq are knots in the compact support of Xi.

The bi in Equation (7) is a user-specified constant that represents the properties of the

sampling and the self-selecting mechanism. As discussed in Subsection 2.1, PMAR

assumption does not necessarily imply SMAR assumption. If one believes SMAR

assumption holds, then one can set bi ¼ w21
1i , which leads to unweighted estimation of

p̂2ig. If SMAR is not satisfied, the unweighted estimator may lead to bias, and setting

bi ¼ 1 is one way to attain an approximately unbiased estimator, see Berg et al. (2016) for

further discussion of the choice of bi. If it is difficult to verify SMAR assumption, we

suggest to use the conservative choice of bi ¼ 1, which leads to consistent estimators

under PMAR without requiring SMAR.

2.3. Proposed Estimators

Since the true parameter of interest u0
g is defined through an estimation equation in (4),

the GMM method with propensity scores is used for estimation. It is common that

people simply ignore the sampling design weights in the first-phaseand calculate a naive

estimator as,

û
nw

g ¼
ug

arg min �mnw
g ðugÞ

h iT

�mnw
g ðugÞ

h i
; ð9Þ
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where

�mnw
g ug

� �
¼

1

ni[A2g

Xmig ug

� �

p̂2ig

: ð10Þ

Here the superscript ‘nw’ means no weight. The estimator û
nw

g ignores the sampling

weights by applying equal weights to the estimation equations in (10). Although it uses the

propensity score p̂2ig to adjust for selection biases in the second-phase, it does not account

for the survey design in the first-phase, which might lead to biases and incorrect variance

estimation when estimating the treatment effect parameters on the population level. This is

demonstrated in the simulation studies of Section 4. Both Ridgeway et al. (2015) and Yu

et al. (2013) analytically quantify biases caused by ignoring the survey weights in complex

survey.

In order to obtain a consistent estimator for u0
g , the first-phase survey weights need to

be included into the estimation equation. We propose the following GMM estimator,

û
ð1Þ

g ¼
ug

arg min ½ �m2pgðugÞ�
T ½ �m2pgðugÞ�; ð11Þ

where

�m2pgðugÞ ¼
1

Ni[A2g

X
w1i

migðugÞ

p̂2ig

: ð12Þ

In order to improve efficiency, one can incorporate the information from covariate Zi that

is potentially correlated with the outcome responses into the estimation equations. We

propose the second GMM estimator as,

û
ð2Þ

g ; m̂z

� �
¼

ðug;mzÞ
arg min ½Hngðug;mzÞ�

T Ŝ
21

Hg ðug;mzÞ½Hngðug;mzÞ�; ð13Þ

where

Hngðug;mzÞ ¼ ½ �m2pgðugÞ; �z2pgðmzÞ; �z1pðmzÞ�
T ; ð14Þ

�z2pgðmzÞ ¼
1

Ni[A2g

X
w1i

Zi 2 mz

p̂2ig

and �z1pðmzÞ
T ¼

1

N i[A1

X
w1iðZi 2 mzÞ: ð15Þ

m̂z is an estimator for the nuisance parameter m0
z ¼ EðZiÞ and ŜHgðug;mzÞ is the variance

estimator of Hngðug;mzÞ, which depends on the joint inclusion probabilities and is defined

in (36) of Subsection 3.2. The estimator û
ð2Þ

g in (13) is connected to a two phase sampling

extension of the design unbiased difference estimator proposed by Särndal et al. (1992)

and Breidt et al. (2005) when �migðugÞ ¼ Yig 2 mg.

Remark 1: It can be shown that when migðugÞ ¼ Yig 2 mg and Xi ¼ Zi, the estimator û
ð1Þ

g

in (11) is asymptotically equivalent to the regression estimator proposed in Yu et al.

(2013).
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Remark 2: The estimator û
ð2Þ

g in (13) is more efficient than the estimator û
ð1Þ

g in (11). The

supplemental file provides a sketch of proof to show that û
ð2Þ

g is the most efficient estimator

among the class of estimators û
a

g that use any fixed positive definite matrix A in the

quadratic form minimization, that is û
a

g is defined as

û
a

g ; m̂
a
z

� �
¼

ðug;mzÞ
arg min ½Hngðug;mzÞ�

T A21½Hngðug;mzÞ�: ð16Þ

If the matrix is an identity matrix, then û
a

g obtained in (16) is equivalent to û
ð1Þ

g . Therefore

û
ð1Þ

g is expected to be less efficient than û
ð2Þ

g , which has been confirmed by the simulation

studies in Section 4.

Remark 3: It can be shown that when migðugÞ ¼ Yig 2 mg, the estimator û
ð2Þ

g

corresponds to the optimal two phase regression estimator discussed in Fuller (2009)

(Theory 2.2.4). The optimality in Fuller (2009) is in terms of achieving the minimum

variance for the limiting distribution of design consistent estimators of the form, �Y2p;reg ¼

�Y2p þ �Z1p 2 �Z2p

� �
b̂; where ½ �Y2p; �Z2p� ¼

P
i[A2

p21
1i p

21
2i

� �21P
i[A2

p21
1i p

21
2i

� �
Yi; Zi

� �
,

�Z1p ¼
P

i[Aa
p21

1i

� �21P
i[Aa

p21
1i Zi, and p1i (or A1) and p2i (or A2) are the first phase and

the second phase sampling probabilities (or samples). The efficiency gain of �Y2p;reg over
�Y2p is similar to the effect of calibrating the second phase covariate mean �Z2pg to its first

phase mean �Z1p.

Remark 4: It can be shown that when migðugÞ ¼ Yig 2 mg and Zi ; 1, the estimator û
ð2Þ

g

coincides analytically with the weighting estimator discussed in Ashmead (2014) except

that the propensity scores in Ashmead (2014) are estimated using a parametric logistic

regression.

Remark 5: When the population mean of Zi is available, the estimator û
ð2Þ

g can be easily

extended to incorporate this additional information. For example, this case can occur when

there are some demographic variables available on the population level. The extended

estimator can be obtained by adding one more moment �zNðmzÞ ¼ N 21
P

i[UðZi 2 mzÞ into

the Hngðug;mzÞ in Equation (14). Efficiency gain should be expected since this estimator

uses more information on the population level. By viewing the problem as a two-phase

sampling problem, the method can be readily extended to multiple sampling phases. This

extension is useful because the database A1 can come from alarger sample within the

database. This case covers the common situations where detailed treatment and outcome

data is available for only a subsample of the data such as a subsample with medical chart

adjudication of claims records or a subsample constructed by merging multiple sources of

claims records and electronic medical records.

3. Asymptotic Normality and Variance Estimation

Since û
ð1Þ

g can be written as a special case of û
ð2Þ

g , in Subsection 3.1 we derive the

asymptotic normal distribution for û
ð2Þ

g only, and in Subsection 3.2 provide a linearized

variance estimator for û
ð2Þ

g . Subsection 3.3 gives a replication variance estimator for û
ð1Þ

g .
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3.1. Asymptotic Normality of û
ð2Þ

g

The asymptotic normality of û
ð2Þ

g is established in Theorem 1 by combining two

randomizations from the finite population level and the superpopulation level. For the

finite population level, we consider a sequence of samples and finite populations indexed

by N, where the sample size n ! 1 as N ! 1 (Isaki and Fuller 1982). To define the

regularity conditions, we introduce the notation FN to represent an element of the

sequence of finite population with size N. To distinguish between the two randomizations,

we use the notation “jFN” to indicate that the reference distribution is with respect to

repeated sampling conditional on the finite population size N. For example, Eð�jFNÞ and

Vð�jFNÞ denote the conditional mean and variance with respect to the randomization

generated from repeated sampling from FN . And we use Ejð�Þ, Varjð�Þ and Covjð�;�Þ

to denote mean, variance and covariance with respect to the randomization from the

superpopulation j. The proof of Theorem 1 uses a result given in Theorem 1.3.6 of Fuller

(2009) that shows how to combine two asymptotic normalities from the finite population

and the superpoulation levels. Because of the importance of this theorem to our results, we

state this theorem as Fact 1:

Fact 1 (Theorem 1.3.6 of Fuller 2009): Suppose u0 is a true parameter on a

superpopulation level, uN is its analogous part on a finite population level, and û is

an estimator of u0 calculated from a sample. If ðû 2 uNÞjFN
L
! Nð0;V11Þ almost surely

(a.s.) and ðuN 2 u0Þ
L
! Nð0;V22Þ; then, ðû 2 u0Þ

L
! N ð0;V11 þ V22Þ. Here ðû 2 uNÞj

FN
L
! Nð0;V11Þ a:s: means that û 2 uN converges in a distribution to a random variable

with the distribution of Nð0;V11Þ almost surely with respect to the process of repeated

sampling from the sequence of finite populations as N ! 1. V11 is the asymptotic variance

of û on the finite population level, while V22 is the asymptotic variance of uN on the

superpopulaton level.

The key step in our proof of Theorem 1 is to obtain an asymptotic equivalence of

�m2pgðugÞ,

�m2pgðugÞ ¼
1

N

X

i[A2g

migðugÞ

p1ip̂2ig

¼
1

N

X

i[U

d1id2igmigðugÞ

p1ip2ig

2
1

N

X

i[U

d1iðd2ig 2 p2igÞ

p1ip2ig

EjðmigðugÞjXiÞ þ opðn
21=2Þ:

ð17Þ
Define

Higðug;mzÞ ¼ ½migðugÞ; Zi 2 mz�
T ; ð18Þ

and similary we can show an asymptotic equivalent form of �H2pgðug;mzÞ as,

1

N

X

i[A2g

Higðug;mzÞ

p1ip̂2ig

¼
1

N

X

i[U

d1id2igHigðug;mzÞ

p1ip2ig

2
1

N

X

i[U

d1iðd2ig 2 p2igÞ

p1ip2ig

£ EjðHigðug;mzÞjXiÞ þ opðn
21=2Þ

¼
1

N

X

i[A1

higðug;mzÞ

p1i

þ opðn
21=2Þ;

ð19Þ
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where

higðug;mzÞ ¼ Higðug;mzÞ
d2ig

p2ig

þ 1 2
d2ig

p2ig

	 

mHgðXi; ug;mzÞ; and

mHgðXi; ugÞ ¼ EjðHigðug;mzÞjXiÞ:

ð20Þ

Thus we can write Hngðug;mzÞ in (14) as,

Hngðug;mzÞ ¼
1

N

X

i[A2g

Higðug;mzÞ

p1ip̂2ig

;
1

N

X

i[A1

Zi 2 mz

p1i

2

4

3

5

T

¼
1

N

X

i[A1

higðug;mzÞ

p1i

;
1

N

X

i[A1

Zi 2 mz

p1i

" #T

þ opðn
21=2Þ:

ð21Þ

Then the large sample theory for û
ð2Þ

g is derived based on the asymptotic form of

Hngðug;mzÞ in Equation (21). We now state Theorem 1:

Theorem 1: Under the regularity conditions in the Appendix, for any g ¼ 1; : : :G;

ffiffiffi
n
p û

ð2Þ

g

m̂z

2

4

3

52

u0
g

m0
z

2

4

3

5

0

@

1

A L
!N 0;Vg u0

g ;m
0
z

� �� �
;

where

Vgðug;mzÞ ¼ GT
g ðugÞS

21
Hg ðug;mzÞG

T
g ðugÞ

h i21

; ð22Þ

GgðugÞ ¼ Ej

›Higðug;mzÞ

›ug

� �
Ej

›Higðug;mzÞ

›mz

� �
; 0 2 1

� �
; ð23Þ

and SHgðug;mzÞ ¼ S11ðug;mzÞ S12ðug;mzÞ; S
T
12ðug;mzÞ S22ðmzÞ

h i
: ð24Þ

Here the notation ½a11; a12; a21; a22� represents a 2 £ 2 block matrix with blocks aij. The

term S11ðug;mzÞ in Equation (24) is related to the asymptotic variance of the first element

in Equation (21) and is defined as,

S11ðug;mzÞ ¼
N!1
lim Vhg;Nðug;mzÞ þ

n

N
Varjðhigðug;mzÞÞ; ð25Þ

where Vhg;Nðug;mzÞ ¼ nN 22

i[U

X

j[U

Xp1ij 2 p1ip1j

p1ip1j

higðug;mzÞh
T
jgðug;mzÞ: ð26Þ

The term S22ðmzÞ in Equation (24) is related to the asymptotic variance of the second

element in Equation (21) and is defined as,

S22ðmzÞ ¼
N!1
lim Vz;NðmzÞ þ

n

N
VarjðZiÞ; ð27Þ
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where Vz;NðmzÞ ¼ nN 22

i[U

X

j[U

Xp1ij 2 p1ip1j

p1ip1j

ðZi 2 mzÞðZj 2 mzÞ: ð28Þ

The term S12ðug;mzÞ in Equation (24) is related to the asymptotic covariance between the

two elements in Equation (21) and is defined as,

S12ðug;mzÞ ¼
N!1
lim Chz;Nðug;mzÞ þ

n

N
Covjðhigðug;mzÞ; ZiÞ; ð29Þ

where Chz;Nðug;mzÞ ¼ nN 22

i[U

X

j[U

Xp1ij 2 p1ip1j

p1ip1j

higðug;mzÞðZj 2 mzÞ: ð30Þ

Equation (25) is connected to Fact 1 stated above, where its first term is

nV N 21
P

i[A1
p21

1i higðugÞjFN

� �
on the finite population corresponding to V11 in Fact

1, and its second term is nVj N 21
P

i[U higðugÞ
� �

on the superpopulation level

corresponding to V22 in Fact 1. The limit sign in the first term of Equation (25) indicates

this is the limit with respect to the process of repeated sampling from a sequence of finite

population as N ! 1. Similar connections can be seen in Equations (27) and (29). The

proof of Theorem 1 uses results from Pakes and Pollard (1989) (Theorems 3.2 and 3.3)

which provides a general central limit theorem for estimators defined by minimization of

the length of a vector valued random criterion function. The justification of Theorem 1

takes into account the finite population asymptotic framework and the semiparametric

estimation of p̂2ig. The asymptotic equivalence of �m2pgðugÞ in (17) is analytically similar

to the mathematical forms of the doubly robust (DR) estimators when migðugÞ ¼ Yig 2 mg,

see Kim and Haziza (2014), Haziza and Rao (2006), Tan (2006), and Robins et al. (2007).

One difference is that the consistency of the DR estimators requires one of the response

model and the outcome model to be correctly specified, while our estimators estimate both

the self-selection probabilities p2ig and the outcome model semiparametrically. The

regularity conditions on the sample design and tuning parameters for the semiparametric

estimation are provided in the Appendix, and an outline of the proof for Theorem 1 can be

found in Appendix A.

3.2. Variance Estimation Based on the Asymptotic Normality

We use the asymptotic variance Vgðu
0
g ;m

0
z Þ in (22) to estimate the variance of û

ð2Þ

g . To

estimate SHgðug;mzÞ, an estimator of higðug;mzÞ is obtained by,

ĥigðug;mzÞ ¼ Higðug;mzÞ
d2ig

p̂2ig

þ 1 2
d2ig

p̂2ig

	 

m̂Hg Xi; ug;mz

� �
; ð31Þ

wheremHgðXi; ugÞ is also estimated semiparametrically using the same bases RKðXiÞ, that is

m̂HgðXi;ug;mzÞ ¼ b̂
T

g ðug;mzÞRKðXiÞ; and ð32Þ

b̂gðug;mzÞ ¼
i[A2g

X
p21

1i p̂
21
2igRKðXiÞRKðXiÞ

T

0

@

1

A

21

i[A2g

X
p21

1i p̂
21
2igRKðXiÞH

T
igðug;mzÞ: ð33Þ
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An estimator of Vg u 0
g ;m

0
z

� �
is calculated as follows,

V̂g û
ð2Þ

g ; m̂z

� �
¼ Ĝ

T

g û
ð2Þ

g

� �
Ŝ

21

Hg û
ð2Þ

g ; m̂z

� �
Ĝ

T

g û
ð2Þ

g

� �h i21

; ð34Þ

where

ĜgðugÞ ¼
1

N i[A2g

X
w1ip̂

21
2ig

›Hig ug;mz

� �

›ug i[A2g

X
w1ip̂

21
2ig

›Hig ug;mz

� �

›mz

; 0 2 1

2

4

3

5; ð35Þ

and ŜHgðug;mzÞ ¼ Ŝ11ðug;mzÞ Ŝ12ðug;mzÞ; Ŝ
T

12ðug;mzÞ Ŝ22ðmzÞ
h i

: ð36Þ

The term Ŝ11ðug;mzÞ is estimated using

Ŝ11ðug;mzÞ ¼ V̂hg;Nðug;mzÞ þ
n

N
dVarVarj ðhigðug;mzÞÞ; ð37Þ

where V̂hg;Nðug;mzÞ ¼ nN 22

i[A1

X

j[A1

Xp1ij 2 p1ip1j

p1ijp1ip1j

ĥigðug;mzÞ ĥ
T
jgðug;mzÞ; ð38Þ

and

dVarVarj ðhigðug;mzÞÞ ¼
1

N i[A1

X
p21

1i ĥigðug;mzÞĥ
T
igðug;mzÞ

2
1

N 2
i[A1

X
p21

1i ĥigðug;mzÞ

2

4

3

5
i[A1

X
p21

1i ĥigðug;mzÞ

2

4

3

5

T

: ð39Þ

The term Ŝ22ðmzÞ is estimated using

Ŝ22ðmzÞ ¼ V̂z;NðmzÞ þ
n

N
dVarVarj ðZiÞ; ð40Þ

where V̂z;NðmzÞ ¼ nN 22

i[A1

X

j[A1

Xp1ij 2 p1ip1j

p1ijp1ip1j

ðZi 2 mzÞðZj 2 mzÞ; and ð41Þ

dVarVarj ðZiÞ¼
1

Ni[A1

X
p21

1i ðZi2mzÞ
22

1

N 2
i[A1

X
p21

1i ðZi2mzÞ

2

4

3

5
i[A1

X
p21

1i ðZi2mzÞ

2

4

3

5

T

; ð42Þ

The term Ŝ12ðug;mzÞ is estimated using

Ŝ12ðug;mzÞ¼Ĉhz;Nðug;mzÞþ
n

N
dCovCovj ðhigðug;mzÞ;ZiÞ; ð43Þ

where Ĉhz;Nðug;mzÞ¼nN 22

i[A1

X

j[A1

Xp1ij2p1ip1j

p1ijp1ip1j

ĥigðug;mzÞðZj2mzÞ; ð44Þ
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and

dCovCovj ðhigðug;mzÞ; ZiÞ ¼
1

N i[A1

X
p21

1i ĥigðug;mzÞðZi 2 mzÞ

2
1

N 2
i[A1

X
p21

1i ĥigðug;mzÞ

2

4

3

5
i[A1

X
p21

1i ðZi 2 mzÞ

2

4

3

5:

ð45Þ

To construct a joint estimator for u ¼ ½u1; : : : ; uG�
T , one can simply stack Hngðug;mzÞ in

the quadratic form of Equation (13). Define Hiðu;mzÞ as the stacked vector of Higðug; uzÞ
0s

in Equation (18) and hiðu;mzÞ as the stacked vector of higðug;mzÞ
0s in Equation (20). The

asymptotic theory and the variance estimator for ûð2Þ can be derived by simply replacing

Higðug;mzÞ by Hiðu;mzÞ and higðug;mzÞ by hiðu;mzÞ. Then we can obtain an inference for

the treatment effects or any linear combination of treatment parameters, lTu.

3.3. Replication Variance Estimation

In surveys conducted on land, for example surveys about natural resources (soil, forest,

water, etc.), non-responses hardly occur. However, in surveys with high non-response

rates, such as almost all surveys conducted on people, the joint inclusion probabilities are

typically not available because sampling weights have to be appropriately adjusted for

nonresponse. After such adjustments, the joint inclusion probabilities change and are

hard to be derived. In practice, a set of replicate weights are often provided instead,

because (1) design weights are often adjusted due to nonresponse issues and a set of

replicate weights are provided to account for the weight adjustment; (2) sometimes a few

design variables are masked from users to keep confidentiality. An example of such

design variable is location which is used for defining design strata in a study, but the

specific location is omitted from the analyst because of concerns associated with

confidentiality. In this subsection, we show how to use the replicate weights to construct

a Jackknife variance estimator for û
ð1Þ

g . Note that û
ð2Þ

g depends on the joint inclusion

probabilities p1ij which are typically not available when replicate weights are provided.

We propose to use the Jackknife (JK) variance estimator for a two-phase sampling

design discussed in Fuller (2009) and Kim et al. (2006). Assume that there is a replicate

variance estimator that gives a consistent estimator for the variance of the total estimator

based on the first-phase sample. We write the replication variance estimator as,

V̂JK1ðû1Þ ¼
PB

b¼1cb û
½b�

1 2 û1

� �
ðû
½b�

1 2 û1Þ
T ; where B is the number of replicates, û1 ¼P

i[A1
w1iXi is the total estimator of variable X using the first-phase sample, û

½b�

1 ¼
P

i[A1
w½b�1i Xi is the estimated total for the bthreplicate, w b½ �

1i is the bthreplicate weights in

the first-phase, and cb is a factor associated with replicate b such that V̂JK1ðû1Þ is a

consistent estimator for the variance of û1. Suppose the second-phase total estimator is,

û2 ¼
P

i[A2
w1ip

21
2ij1i

Xi; where p2ij1i is the conditional probability of selecting i for the

phase 2 sample given that i is in the phase 1 sample, and A2 is the phase 2 sample. Define

the bthreplicate of û2 as, û
½b�

2 ¼
P

i[A2
w½b�1i p

21
2ij1i

Xi: A Jackknife variance estimator for û2
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can be calculated as, V̂JK2ðû2Þ ¼
PB

b¼1cb û
½b�

2 2 û2

� �
û
½b�

2 2 û2

� �T

: Kim et al. (2006)

showed that V̂JK2ðû2Þ is a consistent estimator for the variance of û2.

Following the idea of Fuller (2009 Subsection 4.4), let b be the index for the deleted

Jackknife groups and the corresponding replicate version of �m2pgðugÞ be,

�m½b�2pgðugÞ ¼
1

Ni[A2g

X
w½b�1i p̂ ½b�2ig

� �21

migðugÞ; ð46Þ

where p̂ ½b�2ig is obtained by replacing w1i by w½b�1i in Equation (7). Then the replicate

estimator for û
ð1Þ

g is,

û
ð1Þ½b�

g ¼
ug

arg min �m½b�2pgðugÞ
h iT

�m½b�2pgðugÞ
h i

; ð47Þ

and the replication variance estimator for û
ð1Þ

g is calcualted as,

V̂JK û
ð1Þ

g

� �
¼
XB

b¼1

cb û
ð1Þ½b�

g 2 û
ð1Þ

g

� �
û
ð1Þ½b�

g 2 û
ð1Þ

g

� �T

: ð48Þ

Examples of w½b�1i and cb for a variety of designs are given in Särndal et al. (1992). For

example, if the first-phase sample is drawn from a multi-stage cluster design, the Jackknife

technique is usually applied at the primary sampling unit (PSU) levels. Assuming there are

B PSUs and Sb is the bth PSU deleted in the bth replicate sample, the bth replicate weight for

the first-phase is defined as,

w½b�1i ¼

0 if i [ Sb

B

B 2 1
w1i if i � Sb

8
><

>:
; ð49Þ

and cb ¼ B21ðB 2 1Þ. As mentioned in Särndal et al. (1992), for stratified sampling

designs, w½b�1i and cb need to be defined with care. We discuss this situation in Section 5 of

the empirical study. If the first phase replicate weights are provided in practice, one can

directly use them as w½b�1i . One thing to note is that Kim et al. (2006) assume p2ig are known

in their two phase replication variance estimator. The consistency theorem in Kim et al.

(2006) needs to be modified to account for the variation from estimating p̂2ig in our JK

variance estimator, which can be our future study.

4. Simulation Study

In this section, we evaluate the performance of our estimators and variance estimators

under four different simulation set-ups. We consider three treatment levels, and a

population size of N ¼ 10;000 and an expected sample size of n ¼ 1,000. We generate

i.i.d. realizations, ðYi; d1i; d2i;Xi; ZiÞ; i ¼ 1; : : : ;N, according to the following super-

population set-ups.

(1) Covariates: simulate covariates Zi ¼ ½Z1i; Z2i� where Z1i , Nð2; 1Þ and

Z2i , Nð10; 1Þ, and Xi ¼ ½X1i;X2i� where X1i ¼ Z1i and X2i , Nð0:5; 0:32Þ.

Journal of Official Statistics766



(2) Potential response outcomes: the superpopulation model for potential outcomes is

Yig ¼ mgðZiÞ þ sgðZiÞ1ig; where

mgðZiÞ ¼ bg0 þ bg1ðZ1i 2 0:5Þ þ bg2ðZ1i 2 0:5Þ2 þ bg3Z2i;

e ig , Nð0; 1Þ, sgðZiÞ ¼ jmgðZiÞj, and ½bg0;bg1;bg2;bg3� equals to [5, 4, 2, 1] for

g ¼ 1, [0, 1, 0, 0] for g ¼ 2, and ½25;24;22;20:5� for g ¼ 3.

(3) First phase sampling: we consider two sampling designs, non-informative

stratification sampling and informative Poisson sampling.
* Stratification (STS): population units are sorted by values of Z1i, and then the

population is divided into two subpopulations U1 and U2 with equal sizes.

Simple random sampling is used to draw 80 percent of the sample from U1

and 20 percent from U2. For units in stratum s ðs ¼ 1 or 2Þ, p1i ¼ N21
s ns and

p1ij ¼ {NsðNs 2 1Þ}21nsðns 2 1Þ, where ns and Ns are the sample size and the

population size in stratum s. The joint inclusion probability for two units in

different strata is the product of their first order inclusion probabilities.
* Informative Poisson (Informative): the first-phase sample design is Poisson

sampling with selection probability,

p1i ¼
exp 21:5 2 2:5X2i þ 0:07kYik
� �

1þ exp 21:5 2 2:5X2i þ 0:07kYik
� � ;

where kYik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2

i1 þ Y2
i2 þ Y2

i3

q
. Modeling p1i as a function of Yi is a common

way (i.e., Pfeffermann and Sverchkov 1999) to represent joint dependence of Yi

and p1i on a design variable that is not contained in ðXi; ZiÞ. In this specification,

we assume kYik is known at the design stage of the survey, but is unavailable at the

analysis stage.

(4) Second phase self-selection probability models: we consider two models for p2ig.
* Logit Linear (LogitLinear):

p2ig ¼
exp ðfg0 þ fg1X1i þ fg2X2iÞ

XG

g¼1
exp ðfg0 þ fg1X1i þ fg2X2iÞ

;

where ½fg0;fg1;fg2� equals to ½20:5; 0; 0� for g ¼ 1, ½0:3;20:3;20:3� for g ¼ 2,

and ½0;20:5; 0:5� for g ¼ 3.
* Jump (JUMP):

½p2i1;p2i2;p2i3� ¼ ½0:90; 0:05; 0:05� if X1i þ X2i $ 3

¼ ½1=3; 1=3; 1=3� if 2 # X1i þ X2i , 3

¼ ½0:05; 0:05; 0:90� if X1i þ X2i , 2:

The JUMP model violates the differentiability assumption of p2ig in Condition

B(2) in the Appendix. It is deliberately included in the simulation to see if our

semiparametric approach can estimate a nonsmooth multiple treatment selection

probabilities well.
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For each i [ U, d2i is simulated from multinomialð1;p2i1;p2i2;p2i3Þ. For i – j,

p1ij ¼ p1ip1j. For STS design which is noninformative, SMAR holds and we set bi ¼ w21
1i

in Equation (7) to estimate p̂2ig. For Informative design, SMAR fails and we use bi ¼ 1 in

Equation (7) to estimate p̂2ig.

We first simulate a finite population with size N from the superpopulation and then use

indicators generated in (3) and (4) to obtain the first and second phase samples. We repeat

the process to produce 1,000 MC samples. We are interested in estimating five parameters

for each group, ug ¼ Pg;mg;s
2

g ;Rg;Dg

h i
, where Pg ¼ ProbðYig # 0Þ, mg ¼ EðYigÞ, s

2
g ¼

VarðYigÞ and Rg ¼ CorrðYig; Z2iÞ, and Dg ¼ E½EðYigjZ1i # 0:65Þ�. The corresponding

estimation equations migðugÞ can be found in Equations (5) and (6). For each MC sample,

we calculate the following four estimators:

. û
ð1Þ

g : the estimator defined in (11). When migðugÞ ¼ Yig 2 mg, û
ð1Þ

g corresponds to the

estimator in Yu et al. (2013) asymptotically.

. û
ð2Þ

g : the estimator defined in (13).

. û
nw

g : the estimator defined in (9), and is included to see what happens when the survey

weights are ignored in analyses.

. û
p

g : the estimator calculated the same way as û
ð1Þ

g , except that p̂2ig are estimated using

a parametric multinomial regression. This estimator is introduced in order to have

plausible comparisons in context of three treatments between our

estimators and others that use parametric logistic regression to estimate propensity

scores, see DuGoff et al. (2014), Zanutto (2006), Ashmead (2014), and Ridgeway

et al. (2015).

We use a cubic spline base of X1i for RKðX1iÞ, as suggested by Breidt et al. (2005) which

mentions that setting the degree of the spline equal to three is a popular choice in practice.

Condition 4(B) in the Appendix gives a practical guidance for the choice of K, the number

of knots in the spline. Condition 4(B) requires K ¼ OðnnÞ, where n has an upper bound

n # ð4hþ 2Þ21 with h ¼ 1/2 for spline bases. In our simulation studies, the sample size

n ¼ 1,000, suggesting nu ¼ 5:6. The choices of K ¼ 5; 4; 3; 2 are tried and the

corresponding p̂2ig curves are plotted. It is found that there is not noticeable change in the

p̂2ig curves until K decreases to 2. So K ¼ 3 is used and the locations of the three knots

correspond to the 25th, 50th, and 75th quantiles of observed X1i’s. A cubic spline base for

RK(X2i) is constructed the same way. And the semiparametric bases are RKðXiÞ ¼

RT
K X1ið Þ;RT

K X2ið Þ
� �T

.

If the dimension of ðXi;ZiÞ is big, in practice we suggest to run a multinomial regression

using d2i on ðXi;ZiÞ to select covariates that are most significant, and then use them for

estimation of p̂2ig. When using û
ð2Þ

g , one can run a multiple linear regression of Yig on

ðXi;ZiÞ in A2g to identify covariates that are most useful for explaining the outcome Yig,

and then add their first and second phase means in the estimation equations. It is not

impossible to obtain a very small p̂2ig computationally, which leads to extreme weights. A

solution is to truncate such p̂2ig’s to a small constant L (which is set to be 0.0001 in our

study), then adjust the truncated p̂2ig by calibrating the second phase mean of Ui to its first

phase mean, that is ~p2ig ¼ Fgp̂
t
2ig where Fg ¼

P
i[A1

w1iUi

� �21P
i[A2g

w1i p̂ t
2ig

� �21

Ui,

and p̂ t
2ig is the truncated propensity score which equals to L if p̂2ig , L, otherwise remains
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unchanged. Here the variable Ui can be an important covariate chosen by users, or a

weighted mean of ðXi;ZiÞwhere weights indicate importance of the covariates. We use the

average of the covariate Xi as Ui in both of the simulation studies and the empirical study.

Figures 1–4 show side-by-side boxplots of MC estimates of the four estimators for all

treatment effects. Each figure represents one of four simulation setups: (STS-

LogitLinear), (STS-JUMP), (Informative-LogitLinear), and (Informative-JUMP). In each

subplot, the first two boxplots are for û
ð1Þ

g and û
ð2Þ

g , and the third and fourth boxplots are

for û
p

g and û
nw

g respectively. When comparing our estimators û
ð1Þ

g and û
ð2Þ

g with û
nw

g , û
nw

g

is highly biased in most of parameters and scenarios, due to ignoring the survey weights.

The variances of û
nw

g in general are smaller than those of û
ð1Þ

g and û
ð2Þ

g , which is expected

especially when the survey weights are very different from each other. The coefficient of

variation (CV) of the weights for the STS design is 0.75, and the CV of weights for the

Informative design is 4.77. When comparing our estimators û
ð1Þ

g and û
ð2Þ

g with û
p

g , biases

of û
p

g are comparable to those of û
ð1Þ

g and û
ð2Þ

g for the LogitLinear model because in this

scenario û
p

g correctly assumes a parametric model for p2ig. However, in the situation of

JUMP models, û
p

g has larger biases than û
ð1Þ
g and û

ð2Þ
g because p2ig is misspecified

parametrically. When comparing û
ð1Þ

g with û
ð2Þ

g , both of their biases are comparable in all

scenarios. However, the plots show that û
ð2Þ

g consistently has smaller variances than û
ð1Þ

g .

The variance reduction of û
ð2Þ

g over û
ð1Þ

g indicates that efficiency gain occurs after adding

the first and second phase means of covariates to the estimation equations, which

confirms Remark 2. Additionally, it is promising to see that both û
ð1Þ

g and û
ð2Þ

g have

relatively small biases even if the JUMP model fails to satisfy the differentiability

assumption in the theory, indicating our semiparametric approach of estimating p̂2ig

works well for the nonsmooth function considered. We also tabulate the MC results into

four tables for readers who prefer to see numbers rather than Figures (see Supplemental

file, Tables 1–4).

Tables 1–2 contain the coverage probabilities of the 95 percent confidence intervals for

û
ð2Þ

g based on its asymptotic normality and its linearized variance estimator in Subsection

3.2, and the coverage probabilities of the 95 percent confidence intervals for û
ð1Þ

g and û
nw

g

based on the JK approach discussed in Subsection 3.3. The replication variance estimator

for û
nw

g is calculated by replacing w1i by N/n in Equation (49). This gives inappropriate

variance estimation for û
nw

g under an unequal probability sampling, but mimics what

people do when they ignore survey weights. To create the JK replicates, we delete one unit

at a time and set B ¼ 1,000. The coverage probabilities for û
ð2Þ

g using the linearized

variance estimator seem to work well, except for the marginal mean mg under (STS-

LogitLinear) and the marginal proportion Pg under (STS-JUMP). The rest of coverage

probabilities are reasonably close to the nominal size 95 percent. The JK variance

estimator of û
ð1Þ

g gives very good coverage probabilities. However the coverage

probabilities for û
nw

g using the JK variance estimation are far away from the nominal size,

especially under the Informative-JUMP model where the coverage probabilities are

severely underestimated. Those under-coverages are due to the biases in û
nw

g , or

inappropriate variance estimation, or both.

Our simulation studies demonstrate the validity of our estimators and variance

estimators.
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Fig. 1. STS-LogitLinear: Boxplots of MC estimates of the four estimators for all treatments. Each row

represents a parameter, and each column represents a treatment. In each subplot, the four boxplots

are for û
ð1Þ

g , û
ð2Þ

g , û
p

g and û
nw

g respectively in order. The horizontal line is located at the value of the true

treatment effect.
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û
ð2
Þ

g

�
�

fo
r

û
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û
ð1
Þ

g

�
�

V̂
JK

û
n
w

g

�
�

V̂
L

û
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5. Empirical Study

In this section, we investigate the feasibility of our method in estimating the mean annual

medical expenditures under different choices of health insurance types in China. We use

the data from the Chinese General Social Survey (CGSS) conducted by the National

Survey Research Center at the Renming University of China in 2010. The population

consisted of all Chinese adults (18þ ) in mainland China. A sample of 12,000 adults was

drawn for the base questionnaire and a subsample of 4,000 adults was drawn for the health

care questionnaire. Data were collected by in-person interviews. The sample for the CGSS

survey was selected using a multi-stage cluster sampling design. In the first stage, the

primary sampling units (PSUs) were districts which were divided into two strata. Stratum

1 contained 67 districts in five major cities (Shanghai, Beijing, Guangzhou, Shenzhen and

Tianjin), and Stratum 2 contained 2,795 districts in the rest of the area of China. In both

strata, a probability proportional to size (PPS) design with the resident population size as

the size variable was used to select the PSUs (40 PSUs were selected in Stratum 1, and 100

PSUs were selected in Stratum 2). In the second stage, the secondary sampling units

(SSUs) were communities. A PPS design with resident population size as the size variable

was used to select 2 SSUs within each selected PSU in Stratum 1 and 4 SSUs within each

selected PSU in Stratum 2. In the third stage, the ultimate sampling units (USUs) were

households. In each selected SSU, 25 households were drawn by a systematic sampling

method. Then a respondent was selected randomly within each household. Totally 12,000

households responded to the base questionnaire. Then every third household respondent in

each SSU was selected to answer the health care questionnaire. The subsample of 4,000

was used in our investigation.

Table 3. Empirical study with weights in estimation of p̂2ig: The treatment effect estimates using estimators

û
nw

g and û ð1Þg defined in Subsection 2.3. The parameter of interests are u 0
g ¼ EðYigÞ and u 0

g ¼ EðYigjIdi ¼ 1Þ

where Idi is the indicator for the domain of interest that contains respondents who have sick or very sick physical

condition. The standard errors are in parentheses and calculated using the Jackknife variance estimator, and the

95 percent confidence intervals are in brackets.

(a) Treatment mean effect estimates for u0
g ¼ EðYigÞ

Estimators Public – Private Public – No insurance Private – No insurance

û
ð1Þ

g 1349.57 (215.90) 309.408 (28.23) 21040.165 (698.47)
[926.40 1772.74] [254.07 364.74] [22409.17 328.84]

û
nw

g 1210.57 (353.50) 221.45 (29.17) 21232.03 (56.56)
[517.71 1903.44] [278.61779 35.71] [21342.88 21121.18]

(b) Treatment domain mean effect estimates for u0
g ¼ EðYigjIdi ¼ 1Þ

Estimators Public – Private Public – No insurance Private – No insurance

û
ð1Þ

g 3214.18 (32.22) 811.56 (38.69) 22402.62 (46.48)
[3151.03 3277.34] [735.73 887.39] [22493.73 22311.52]

û
nw

g 3320.93 (9.97) 4.49 (2.69) 23316.43 (240.85)
[3301.39 3340.47] [20.77 9.76] [23788.50 22844.37]
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The response variable in our study is the annual medical expenditure. The treatment

variable is the health insurance type (public health insurance, private health insurance, and

no health insurance). Public health insurance is sponsored by Chinese government and is

the main health insurance type in China. Six relevant covariates are chosen from the health

care questionnaire in our study: age, household register (urban, rural, other), annual

household income, physical condition (healthy, just so-so/or a little sick, sick, very sick),

chronic disease (yes, no), and treatment to illness (self-treatment, go to hospital, no

treatment). Due to some nonresponse units, the final data had a sample size of 3,866. The

data weights were adjusted to deal with the nonresponse issue.

We are interested in estimating the following parameters, u0
g ¼ EðYigÞ and u0

g ¼

EðYigjIdi ¼ 1Þwhere Idi is the indicator for the domain of interest that contains respondents

who have sick or very sick physical condition. When estimating p̂2ig, we use bi ¼ 1 in

Equation (7) to obtain conservative estimates since it is difficult to verify SMAR

assumption. For comparison, we also report the results using bi ¼ w21
1i in Equation (7).

Estimators û
ð1Þ

g and û
nw

g are calculated and the Jackknife variance estimator discussed

in Subsection 3.3 is used to calculate their standard errors. û
ð2Þ

g is not included into the

empirical study becausep1ij are not available. Since the design is a stratified multi-stage

cluster design, we use the districts (PSUs) in different strata as the deleted Jackknife

groups Sb. The Jackknife variance estimator is,

V̂JK û
ð1Þ

g

� �
¼
X2

h¼1

Bh 2 1

Bh

XBh

b¼1

û
ð1Þ½b�

g 2 û
ð1Þ

g

� �
û
ð1Þ½b�

g 2 û
ð1Þ

g

� �T

; ð50Þ

Table 4. Empirical study without weights in estimation of p̂2ig: The treatment effect estimates using estimators

û
nw

g and û
ð1Þ

g defined in Subsection 2.3. The parameter of interests are u0
g ¼ EðYigÞ and u0

g ¼ EðYigjIdi ¼ 1Þ

where Idi is the indicator for the domain of interest that contains respondents who have sick or very sick physical

condition. The standard errors are in parentheses and calculated using the Jackknife variance estimator, and the

95 percent confidence intervals are in brackets.

(a) Treatment mean effect estimates for u0
g ¼ EðYigÞ

Estimators Public – Private Public – No insurance Private – No insurance

û
ð1Þ

g 1301.04 (150.81) 298.02 (42.79) 21003.02 (169.31)
[1005.45 1596.63] [214.15 381.89] [21334.87 2671.17]

û
nw

g 1205.295 (259.68) 213.23 (55.84) 21218.52 (260.12)
[696.32 1714.27] [2122.68 96.22] [21728.36 2708.68]

(b) Treatment domain mean effect estimates for u0
g ¼ EðYigjIdi ¼ 1Þ

Estimators Public – Private Public – No insurance Private – No insurance

û
ð1Þ

g 2519.35 (239.67) 829.45 (87.41) 21689.90 (257.46)
[2049.60 2989.10] [658.13 1000.77] [22194.52 21185.28]

û
nw

g 3207.10 (17.14) 4.092 (4.30) 22343.00 (180.83)
[3173.51 3240.69] [24.34 12.52] [22697.43 21988.57]
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where û
ð1Þ½b�

g is the minimizer of Equation (47) and the replicate weight in the first-phase is

defined as,

w½b�1i ¼

0 if i [ Sb

p21
1i if i � Sb and hði Þ – hðbÞ

Bh

Bh 2 1
p21

1i if i � Sb and hði Þ ¼ hðbÞ:

8
>>>><

>>>>:

ð51Þ

Here h(i ) is the stratum where unit i belongs to, h(b) is the stratum where the bth deleted

group Sb belongs to, and ½B1;B2� ¼ ½40; 100�. The replicate estimator û
nw½b�
g for the

estimator û
nw

g without survey weights and the variance estimator V̂JK û
nw

g

� �
can be

obtained in the same way by simply replacing p1i by nN 21 in (51). A spline base of degree

2 with 8 equally spaced knots in the data range is constructed for the two continuous

variables (age and annual household income). Dummy variables are created for the

remaining categorical variables and added to the model.

Table 3 and 4 contain the estimated treatment mean effects and estimated treatment

domain mean effects for physical condition, along with standard errors (in parentheses)

and 95 perecnt confidence intervals (in brackets), for bi ¼ 1 and bi ¼ w21
1i cases

respectively. The treatment effect estimates in Table 3(a) indicate that, when the data

weights are neglected, the estimated mean medical expenditure of the public health

insurance group is not significantly different from that of the no health insurance group.

However, when the data weights are incorporated, the public health group is found to

spend significantly more on the medical expenses than the no health insurance group. This

makes sense because people who have no health insurance might be reluctant to spend

money to see doctors. This trend is also seen in the domain treatment effects estimates in

Table 3(b). In addition, when the data weights are neglected for the treatment mean effect

estimates, the estimated mean medical expenditure of the private health insurance group is

significantly different from that of the no insurance group, while incorporating the data

weights finds these estimated means not significantly different. Table 4 gives the same

story as Table 3 when comparing the public health insurance group versus the private

health insurance group, and comparing the public health insurance group versus the no

health insurance group. However, when comparing the private health group with the no

insurance group, Table 4 reports significant difference in the treatment mean effect for

both estimators û
ð1Þ

g and û
nw

g . Note that the standard errors of the unweighted estimator are

not consistently smaller than those of the weighted estimator because the variation of

weights in the real data is small (the CV ¼ 0.45).

This study demonstrates that our method is feasible in real data application and suggests

that ignoring the weights of an observational data might lead to a misleading conclusion.

6. Conclusions

In this article, we consider a GMM estimators û
ð1Þ

g and û
ð2Þ

g to estimate treatment effects

defined through an estimation equation in an observational data set that is a sample drawn

by a complex survey design. The estimators û
ð1Þ

g and û
ð2Þ

g include both the first-phase

sampling probabilities and the estimated second-phase selection probabilities to remove
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the biases due to ignoring unequal sampling design in the first-phase and the selection

biases in the second-phase. The self-selection probabilities are estimated using a

semiparametric approach in Cattaneo (2010) to deal with the situation with multiple

treatments. Our simulation studies demonstrate that neglecting the first-phase design

and handling only treatment selection could lead to erroneous treatment effect estimation.

The proposed estimator is designed to handle multiple treatments and do not require

strong model assumption of the selection probability as in a fully parametric solution. The

estimators û
ð1Þ

g and û
ð2Þ

g can be readily extended to multiple sampling phases as well when

the data set is a subsample of a larger survey sample.

Appendix

The notation of j�j represents the norm of a matrix, defined as jAj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðA 0AÞ
p

and

the notation of k�k denotes the sup-norm in all arguments for functions.

We first give regular conditions on the sample designs in both phases. The following

notations, Ii, pi and pij, denote the sampling indicator, the first and second inclusion

probabilities either for the first-phase design or for the second-phase design. For example,

Ii ¼ d1i or Ii ¼ d2ig for any g, and pi ¼ p1i or pi ¼ p2ig for any g, depending on whether

the design if the first-phase design or the second-phase design.

Condition A:

(1) Any variable vi such that E½jvij
2þd
� , 1, where d . 0, satisfiesffiffiffi

n
p

�vHT 2 �vNð ÞjFN
L
! Nð0;V1Þ a:s:, where ð�vHT ; �vNÞ ¼ N 21

PN
i¼1 ðp

21viIi; viÞ,

V1 ¼ limN ! 1VN , and VN ¼ nVð�vHT jFNÞ is the conditional variance of the

Horvitz-Thompson estimator (Horvitz and Thompson 1952), �vHT , given FN .

(2) nN 21 ! f 1 [ ½0; 1�.

(3) There exist constant C1, C2 and C3 such that 0 , C1 # nN 21p21
i , 1, and

nðpij 2 pipjÞp
21
i p21

j








 # C3 , 1 a:s:

Condition A(1) and A(2) are regular conditions assumed for a survey design in a finite

population framework. Condition A(3) is used in Fuller (2009). The part of condition A(3)

related to the joint selection probabilities is used in the proofs to bound sums of covariance

induced by the sample design. Condition A(3) holds for simple random sampling, where

ðpij 2 pipjÞp
21
i p21

j ¼ n21ðn 2 1ÞðN 2 1Þ21N 2 1, and for Poisson sampling, where

ðpij 2 pipjÞp
21
i p21

j ¼ 0, and can hold for cluster sampling and stratified sampling. Fuller

(2009) explains that a designer has the control to ensure condition A(3). Note that for the

second-phase design in our situation, ðp2ij;g 2 p2igp2jgÞp
21
2igp

21
2jg ¼ 0 for any g because our

second-phase design is a multinomial extension of Poisson sampling.

Next we give regular conditions on the tuning parameters of the semiparametric basis.

For simplicity, we consider the special case of power series and spline series.

Condition B:

(1) The smallest eigenvalue of E½RKðXiÞRKðXiÞ
0Þ is bounded away from zero uniformly

in K.
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(2) There exists a sequence of constant zðKÞ such that kRKðXiÞk # zðKÞ for K ! 1 and

zðKÞK 1=2n21=2 ! 0.

(3) For all g, p2igðXiÞ and mmgðXi; ugÞ ¼ E½migðugÞjXi� are s-time differentiable with

sd21
x $ 5h=2þ 1=2, where dx is the dimension of Xi, and h ¼ 1 or h ¼ 1=2

depending on whether power series or spline series are used as basis function.

(4) K ¼ OðnnÞ with 4sd21
x 2 6h $ n21 $ 4hþ 2, where h ¼ 1 or h ¼ 1/2 depending

on whether power series or spline series are used as basis function.

Condition B(1) and B(2) are standard assumptions and are automatically satisfied in the

case of power series or spline series. Condition B(3) and B(4) describe the minimum

smoothness required as a function of the dimension of X and the choice of basis, and the

relationship between the sample size and the number of bases. Under B(3) and B(4), by

Lorentz (1986), there exists a K-vector g*
g;K for any g such that

log
p2igðXÞ

1 2
XG

g¼2
p2igðXÞ

0

@

1

A2 RT
KðXÞg

*
g;K

������

������
¼ O K 2s

n

� �
; ð52Þ

where RT
KðXÞg

*
g;K is the best L1 approximation for the logarithm of the odds ratio of

treatment g to the base treatment. The property (52) is used to derive the convergence rate

of p̂2ig to p2ig as follows,

kp̂2ig 2 p2igk ¼ OpðjðKÞK
1=2n21=2 þ jðKÞK 1=2K 2s=dx Þ ¼ opð1Þ: ð53Þ

For details, see Theorem B-1 of Cattaneo (2010).

Next we give regular conditions on the estimation equation function migðYig; Zi; ugÞ.

Condition C:

(1) migðYig; Zi; ugÞ is differentiable with respect to ug.

(2) Both migðYig; Zi;ugÞ and its first derivative with respect to ug have bounded 2þ d

moments. More specifically, E½jhðYi; Zi; uÞj
2þd
� , M; where h Yi; Zi; u

� �
denote an

element of migðYig; Zi; ugÞ or an element of its first derivative with respect to ug.

(3) Gg u0
g

� �
is full rank.

(4) Assume that �hHT ðuÞ2 �hNðuÞ converges to 0 uniformly in u, where �hHT ðuÞ ¼

N 21
PN

i¼1 Iip
21
i hiðYi; Zi; uÞ, �hNðuÞ ¼ N 21

PN
i¼1 hiðYi; Zi; uÞ, and hiðYi; Zi; uÞ has

the same interpretation as in condition C(2) above. This condition means that for

all e . 0, there exists a d . 0 such that Proðj�hHT ðuÞ2 �hNðuÞj . eÞ , d; for all N

greater than some value M, and for all u.

A: Proof of Theorem 1

The proof of Theorem 1 proceeds in two steps. The first step is to show that the asymptotic

equivalence of �m2pg ug

� �
,

�m2pgðugÞ ¼
1

N i[U

X d1id2igmigðugÞ

p1ip2ig

2
1

N

d1iðd2ig 2 p2igÞ

p1ip2ig

mmgðXi; ugÞ þ opðn
21=2Þ;

ðA:1Þ
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where mmgðXi; ugÞ ¼ EjððmigðugÞjXiÞ. In order to show (A.1), we first decompose

�m2pgðugÞ into

1

Ni[A2g

XmigðugÞ

p1ip̂2ig

¼
1

N i[A1

X d2igmigðugÞ

p1ip̂2ig

2
d2igmigðugÞ

p1ip2ig

þ
d2igmigðugÞ

p1ip
2
2ig

ðp̂2ig 2 p2igÞ

( )

þ
1

N i[A1

X
2

d2igmigðugÞ

p1ip
2
2ig

ðp̂2ig 2 p2igÞ þ
mmgðXi; ugÞ

p1ip2ig

ðp̂2ig 2 p2igÞ

( )

þ
1

N i[A1

X
2

mmgðXi; ugÞ

p1ip2ig

ðp̂2ig 2 p2igÞ þ
mmgðXi; ugÞ

p1ip2ig

ðd2ig 2 p2igÞ

� �

þ
1

N i[A1

X d2igmigðugÞ

p1ip2ig

2
mmgðXi; ugÞ

p1ip2ig

ðd2ig 2 p2igÞ

� �
:

ðA:2Þ

By the result in (53), the first three terms in (A.2) can be shown to have order opðn
21=2Þ

asymptotically, which leads to Equation (A.1). Similar arguments can be used to show
�H2pgðugÞ ¼

1
N

P
i[A1

p21
1i higðugÞ þ opðn

21=2Þ: The justification of those orders follows

Cattaneo (2010), and we refer readers to Cattaneo (2010) for details.

The second step is to show the following two conditions of Pakes and Pollard (1989)

hold: (1) supug[Qj �m2pgðugÞ2 EðmigðugÞÞj ¼ opð1Þ, and (2) for every sequence of real

numbers dn ! 0, sup ug2u 0
gj j#dn

�m2pgðugÞ2 EðmigðugÞÞ2 �m2pg u 0
g

� �






 ¼ opðn

21=2Þ: By

Equation (A.1), we can show that

Eð �m2pg2EðmgðugÞÞ
2¼E

1

N i[U

XmigðugÞd1id2ig

p1ip2ig

2
1

N i[U

XmigðugÞðd2ig2p2igÞ

p2ig

2E migðugÞ
� �

0

@

1

A

2

þo n21=2
� �

#2T1Nþ2T2Nþo n21=2
� �

;

ðA:3Þ

where T1N¼E 1
N

P
i[U

m igðugÞd1id 2ig

p1ip2ig
2EðmigðugÞÞ

� �2

and T2N¼E 1
N

P
i[U

m igðugÞðd 2ig2p2igÞ

p2ig

� �2

. It

is easy to show T1N¼OðN 21Þ and T2N¼OðN 21Þ. Then we have

Eð �m2pgðugÞ2EðmgðugÞÞÞ
2¼O 1

N

� �
) �m2pgðugÞ2EðmgðugÞÞ¼opð1Þ. Condition (1) of

Pakes and Pollard (1989) holds. Similarly, we can show that supðug;mzÞj
�H2pgðug;mzÞ2

EðHigðug;mzÞÞj¼opð1Þ:

By Equation (A.1), we can also show that �m2pgðugÞ2 EðmgðugÞÞ2 �m2pg u0
g

� �
¼

T3N 2 T4N þ op n21=2
� �

;where T3N ¼
1
N

P
i[U

m igðugÞ2m ig u 0
g

� �� �
d1id 2ig

p1ip2ig
2 E

	
mig ug

� �
2 mig

u0
g

� �

and T4N ¼

1
N

P
i[U

E m ig ugð Þ2m ig u 0
g

� �� �
jX

� �
d 2ig2p2igð Þ

p2ig
: When ug 2 u 0

g








 # dn,

we have
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E T2
3N

� �
¼

1

N
Var mig ug

� �
2 mig u0

g

� �� �

þE
1

N 2
i[U

X

j[U

X
D1ij

mig ug

� �
2 mig u0

g

� �

p1i

mjg ug

� �
2 mjg u0

g

� �

p1j

2

4

3

5

þE
2

N 2
i[U

X 1

p2ig

2 1

	 
 mig ug

� �
2 mig u 0

g

� �� �2

p1i

2

64

3

75 #
1

N
O d2

n

� �
¼ o

1

N

	 


ðA:4Þ

E T2
4N

� �
# E

1

N 2
i[U

X
E mig ug

� �
2 mig u 0

g

� �



X
	 
2

2

4

3

5

# E
1

N
E mig ug

� �
2 mig u 0

g

� �� �2




X

� �
#

1

N
O ug 2 u 0

g









2

	 

¼ o

1

N

	 

:

ðA:5Þ

Then we have T3N ¼ opðn
21=2Þ and T4N ¼ opðn

21=2Þ when ju 2 u 0j # dn, thus Condition

(2) of Pakes and Pollard (1989) is verified. Similarly, we can show that for every sequence

of real numbers dn ! 0,

sup
ug

mz

" #

2

u 0
g

m0
z

2

4

3

5
















#dn

�H2pg ug;mz

� �
2E Hig ug

� �� �
2 �H2pg u0

g ;m
0
z

� �






¼opðn

21=2Þ: ðA:6Þ

For a vector c¼½c1;c2�
T , we know jcj#

ffiffiffi
2
p
ðjc1jþjc2jÞ. Therefore, Condition (1) and (2) of

Pakes and Pollard (1989) in terms of Hngðug;mzÞ can be verified. The details of the proof

can be obtained upon request.
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