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Generalized Method of Moments Estimators
for Multiple Treatment Effects Using Observational
Data from Complex Surveys

Bin Liu', Cindy Long Yu?, Michael Joseph Price®, and Yan Jiang®

In this article, we consider a generalized method moments (GMM) estimator to estimate
treatment effects defined through estimation equations using an observational data set from a
complex survey. We demonstrate that the proposed estimator, which incorporates both
sampling probabilities and semiparametrically estimated self-selection probabilities, gives
consistent estimates of treatment effects. The asymptotic normality of the proposed estimator
is established in the finite population framework, and its variance estimation is discussed. In
simulations, we evaluate our proposed estimator and its variance estimator based on the
asymptotic distribution. We also apply the method to estimate the effects of different choices
of health insurance types on healthcare spending using data from the Chinese General Social
Survey. The results from our simulations and the empirical study show that ignoring the
sampling design weights might lead to misleading conclusions.

Key words: Observational data; propensity score; semiparametric; treatment effects;
two-phase sampling design.

1. Introduction

Observational data from a complex survey has increasingly become useful for causal
inference because they can provide timely results with low cost. Survey data contains
information on the treatment selections, which enables us to estimate the effects of
treatments that cannot feasibly be evaluated with a randomized trial. In a survey, a
treatment can be broadly defined as one of the survey questions, for example whether or
not an individual has quit smoking, how often an individual does a physical exam, or what
types of health insurance an individual has chosen. We can use the existing survey data to
estimate effects of those treatments on health care spending, even if we cannot randomize
the health behavior or the health insurance enrollment of an individual. Also because a
well-designed survey sample is often a good representative of the target population, the
treatment effect results can be generalized to the target population level if the survey
weights are appropriately incorporated. Propensity score methods are well-established
statistical methods to remove treatment selection bias in observational studies if the
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selection probability model is correctly specified (Rosenbaum and Rubin 1983). Many
observational data sets have multiple treatment options. In order to handle the complexity
in multiple treatment groups, theoretical results support using the inverse of the estimated
treatment selection probabilities as weights to adjust for selection bias and attain
asymptotic efficiency (Hahn 1998; Hirano et al. 2003; Cattaneo 2010). This kind of
estimator is called inverse probability weighted (IPW) estimator, and the estimated
selection probabilities are called propensity scores. We also consider IPW estimators in
this article to address the potential confounding in observational studies. However, it is
very common that people ignore survey weights in observational data when using the IPW
estimators yet claim that the estimated treatment effects are generalizable to the target
population, causing misleading guidance in causal inference. Failure to properly account
for the complex survey design may lead to biased treatment effect estimates and incorrect
variance estimation.

Several authors have emphasized the importance of incorporating survey weights in
their [PW estimators, for example DuGoff et al. (2014), Zanutto (2006), Ashmead (2014),
and Ridgeway et al. (2015). The general idea is to multiply the inverse of the estimated
propensity scores by the sampling design weights. However most of the papers, except for
Ashmead (2014), do not provide theoretical justification for such survey adjusted
estimators, and variance estimation is seldom discussed. Yu et al. (2013) proposes a
semiparametric two-phase regression estimator to estimate marginal mean treatment
effects in observational data sets from complex survey designs. This article considers
a more general set up in which parameters of interest are defined through estimation
equations, and uses the generalized method of moments (GMM) for parameter estimation.
Similarly to Yu et al. (2013), this article draws a connection between the two-phase
sampling in survey statistics and the estimation of treatment effects from an observational
database. The observational data set, denoted as A; (with size n), is considered as a first-
phase sample from a finite population, according to a known sampling probability 7r;; for
subject i. The second-phase sampling is a partitioning of the first-phase sample
(observational data set) into mutually exclusive and self-selected treatment groups,
Apy, . . ., A, where G is the number of treatments. This partitioning in the second-phase
can be viewed as a multinomial sampling in survey statistics, and its self-selection
probabilities ,;, for subject i into group g (¢ =1, . . ., G) can be estimated using the
semiparametric approach in Cattaneo (2010).

Our article differs from DuGoff et al. (2014), Zanutto (2006), Ashmead (2014) and
Ridgeway et al. (2015) in the following ways. (i) Their papers consider two treatments,
while our article deals with multi-level treatment selection. (ii) In their work, the
propensity scores are estimated using a parametric linear logistic regression, while our
propensity scores, that is m,, in our situation, are estimated through a semiparametric
approach. Thus, our approach should be more robust to the misspecification of the
selection probability model. (iii) In their work, the parameters of interest are treatment
means. We are interested in estimating treatment specific parameters defined through
estimation equations. In addition to providing generality, defining parameters through
estimation equations can facilitate variance estimation. For example, if a parameter is a
function of means, such as correlation or domain mean (see more details in Subsection 2.1),
the variance estimation of GMM estimators for such parameter scan be easily calculated
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through the sandwich formula associated with the asymptotic variance for a GMM
estimator. Ashmead (2014) also utilizes estimation equations in their weighting estimator.

This article also differs from Yu et al. (2013) in the following aspects. We extend Yu
et al. (2013), which only focuses on estimating marginal treatment means, to estimate
parameters defined through estimation Equations (see ég in Subsection 2.3). This article
also proposes the second estimator to gain efficiency by incorporating the first phase and
second phase means of covariates into the estimation equations (see ég in Subsection
2.3). This is similar to the effect of calibrating the second phase means of covariates to
their first phase means seen in the optimal two-phase regression estimator discussed in
Fuller (2009). Additionally, Yu et al. (2013) assumes sample missing at random (SMAR),
which is commonly used in literature, while this article considers population missing at
random (PMAR), the framework proposed in Berg et al. (2016) (see more details in
Subsection 2.1). It makes sense to use PMAR assumption in the context of casual inference
study using observation dataset. We discuss situations when PMAR holds but SMAR fails,
and argue that when it happens survey weights should be included in the estimation of
e, that is the propensity scores.

We provide theoretical justification for our estimator in a combined framework of a
finite population and a superpopulation, and also propose variance estimators. We
demonstrate the validity of our estimator through simulation studies, and show that the
estimator that ignores the design weights might be subject to biases. We also explore the
feasibility of our method using data from the Chinese General Social Survey to estimate
the effects of different choices of health insurance types on health care spending. The
article is organized as below. Section 2 introduces the framework and the proposed
estimators. Section 3 presents an asymptotic normality and variance estimation.
Simulation studies and an empirical study are reported in Sections 4 and 5 respectively.
Section 6 concludes. Appendix collects the conditions and a sketch of the proof for the
main theorem in the article.

2. Proposed Estimators

In this section, we introduce our estimators. Subsection 2.1 discusses the basic set-up,
Subsection 2.2 introduces the semiparametric approach for estimating the self-selection
probabilities, and Subsection 2.3 proposes the estimators.

2.1. Basic Setup

Let U be a finite population with size N containing (Y, Z;), where i = 1, . . ., N indexes
a subject, Z; is a covariate variable, and Y; = [Y;q, . . ., Yigl" is a vector of potential
outcomes for G different treatments depending on covariate Z;. Let 6,; be the sampling
indicator from the survey design, defined by &;; = 1 if unit i is selected into A; and zero
otherwise. Let 7; and r;; be the first and second order inclusion probabilities of the
sampling design, defined as,

[m1i, m] = [Prob(6y; = 1), Prob(8y; = 1, 6;; = 1)].

We assume the sampling weights are appropriately adjusted for any nonresponse. If the
weights are adjusted due to nonresponse, the method can be used but with awareness of
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that the variation from estimating 7; is not accounted for. Let 65, (¢ = 1, . . ., G) be the
self-selection indicator of subject i selecting treatment g, defined by 85, = 1 if unit i
selects treatment g and zero otherwise. The self-selection process leads to the partitioning
in the second phase. Assume conditioning on a covariate X;, the self-selection indicators
0y = [82,-1, Ce 82,-0} follow a multinomial distribution with probabilities,

Tig = PrOb(SZig = 1|Xi)7 for g=1,...,G, ()
that is for any subject i,
0y = [62,’1, .. .762,(;] ~ multinomial(l;mil, e 772iG)7

where Zngl m, = 1 for any i, and &, is independent of &,; for any subjects i # j. Here
covariates Z; and X; can be totally different, or can have overlap. We use separate notations
in order to emphasize that the outcome response variables Y; and the self-selection
indicators &,; can depend on different sets of covariates. We discuss how to identify Z; and X;
practically in Section 4. Both Z; and X; have compact supports and are observed in A;. They
are written to be univariate forms in order to reduce notation burden. It is straightforward to
extend to multivariate covariates, which are considered in the simulation studies and the
empirical study of this article. We suppose that (Yi, 01, 021, XiyZi);i=1,... N are
identically independently distributed (i.i.d.) generated from a superpopulation &.

In the context of simple random sampling, a common missing at random (MAR)
assumption is Y; L 8,](X;,Z;). With this MAR assumption, the selection bias can be
removed by applying the propensity score method (Rosenbaum and Rubin 1983; Hirano
et al. 2003). However, in the context of a complex survey, unequal probabilities of
sampling can complicate the relationship between Y;, (X;, Z;), 8,; and the sample inclusion
indicator &;;. Even if

Y L &al(X;, Z)), (2)
holds for a specific superpopulation model,
Y L&xl{(Xi, Z), 81i = 1}, (3)

may not hold. Following Berg et al. (2016), we call Assumption (2) population missing at
random (PMAR), and Assumption (3) sample missing at random (SMAR) to emphasize it
depends on the realized sample (that is conditional on §;; = 1). The SMAR has been used
previously (Pfefferman 2011 and Little 1982). However, it is natural to consider PMAR
in our context because the mechanisms underlying the selection propensity are
conceptualized as inherent characteristics of the subjects in the population. For example,
whether or not a person decides to stop smoking heavily depends on this person’s
perseverance and personality type; what types of insurance a person has chosen depends
on the nature of this person’s work. In these examples, the self-selection probabilities
depend on subjects’ inherent characteristics that have nothing to do with whether or not the
subjects were selected into the survey that was typically designed for other general
purposes. Berg et al. (2016) also provides examples of situations in which PMAR may be
considered reasonable. They argue that if both PMAR and SMAR hold, weights are not
needed in their imputation model; however if PMAR holds but SMAR fails, it is necessary
to include weights to produce consistent estimators. A situation in which PMAR holds
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while SMAR does not can arise if a design variable omitted from the first phase sample is
related to both the sampling inclusion probabilities and the response variable. An example
of such a design variable is location in a situation where design strata are functions of
location, the location is correlated with the response variable, but the specific location is
masked from the analyst because of concerns associated with confidentiality. Using
Lemma 1 of Berg et al. (2016), we identify the following two conditions of the sampling
and the self-selection mechanisms for which PMAR implies SMAR: (1)
81i LY(Xi,Zy), 823 or (2) 82 L (Y, 81:)|(Xi,Z;). The first condition states that the
sampling mechanism is noninformative given covariates (X;, Z;) within all the second
phase self-selected groups A,,. The second condition states that the self-selection
mechanism is independent of either Y; or sample inclusion given (X,-, Z,-). Like Berg et al.
(2016), we suggest to include survey weights into the estimation of the self-selection
probabilities 7,;, when SMAR fails (see Subsection 2.2). In our simulation studies, we
consider both noninformative sampling (Condition (1) above holds), and informative
sampling (Condition (1) above fails).

The true parameter of interest, 0;) (g=1,...,G), is a dy-dimensional vector
satisfying,
E[mg (Y, Zi:05)] =0, @

in the superpopulation, where m(Y,, Z;; 0,), hereafter denoted as m;,(8,) to save space,
is an r-dimensional function with r = dy. Sometimes in addition to treatment marginal
means, people might be interested in estimating treatment correlations or treatment
domain means. For example in our empirical study, it is interesting to understand whether
the correlations between annual medical expenditure and age (or household income) differ
significantly across different health insurance type groups; or whether the means of annual
medical expenditure for very sick people (domain means) are significantly different across
health insurance type groups. The parameter defined through Equation (4) includes
treatment correlations and treatment domain means as special cases. More specifically, if

the parameter of interest is Ogo = [Pg, Mg, a’é,Rg , where P, = Prob(Y;, = C) for some
C, ug = E(Yjp), ng = Var(Y;,) and R, = Corr(Y,,Z;), then the estimation equation can
be defined as,

mig(0) =1y, =c = P, Vig = b, (Vig = ie)? = 02, (Vig = Mo)Zi = )
T
~Rgy/02\/02,Z; = pe, (Zi — o)’ — 07|

If the parameter of interest is a treatment specific domain mean, 05? =EY igIZi = (), then
the estimation equation can be written as,

m;(0,) = [Yilz=c — 0,P,, 1z=c — P.l". (6)

&)

Here in both examples, u., 022 or P, are all nuisance parameters.

2.2.  Semiparametric Estimation of ;g

Because of the difficulty in specifying a parametric form for ;, and the constraint,
Zg:l i, = 1, we adopt the semiparametric method in Cattaneo (2010) to estimate 7.
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Let {ri(X;)};=, be a sequence of known approximating functions, and assume that the
generalized logit of m,;, can be approximated by RK(X,-)T'yg_K for K=1,2, ..., where
Rx(X) = [rn(X), (X)), . . .,rx(X)]" and Ye.x 1s a vector of the real-valued coefficients
of Rx(X;) for the g-th treatment selection. Let an estimator of the K X G matrix yx =
[Vik, Y2k, - - -5 Yox] be,

G e R X vex
Yk = [Vikx, Y2k, - - -, Yo.x] = argmax E biwi; E Siglog | =g————1|- (D
Y&l k=0k i€A, =1 E leRK(Xx) Yok
o=
where wy; = 771;1, and Oy represents a K X 1 zero vector used to constrain the sum

25:1 Tig = 1. The estimated self-selection probabilities are

eRK(Xi)TYg.K
Thig = for g=2,3,...,G

+ ZG | eRRC ok
o=
G . -1
=(1+ ZeR’((X") ek for g=1.
g=2

®)

This solution is that of multinomial logistic regression where the probability for each g is
approximated using a linear combination of the series of the approximating functions
Rk(X;). Condition B in the Appendix specifies assumptions about Rg(X;), mm;, and K to
ensure 7;, CONVerges to ;. fast enough. Examples of Rx(X;) include a cubic polynomial
basis, Rx(X;) = [I,XhX,-z,XﬂT, or a quadratic spline basis with ¢ knots Rg(X;) =
[1,X, X2, X — k)5, . (X — Kq)ﬂT where (), =t if +> 0 and 0O otherwise, and
Ki, . . ., K are knots in the compact support of X;.

The b; in Equation (7) is a user-specified constant that represents the properties of the
sampling and the self-selecting mechanism. As discussed in Subsection 2.1, PMAR
assumption does not necessarily imply SMAR assumption. If one believes SMAR
assumption holds, then one can set b; = wy;!, which leads to unweighted estimation of
Thig. If SMAR is not satisfied, the unweighted estimator may lead to bias, and setting
b; = 11is one way to attain an approximately unbiased estimator, see Berg et al. (2016) for
further discussion of the choice of b;. If it is difficult to verify SMAR assumption, we
suggest to use the conservative choice of b; = 1, which leads to consistent estimators
under PMAR without requiring SMAR.

2.3.  Proposed Estimators

Since the true parameter of interest 0;3 is defined through an estimation equation in (4),
the GMM method with propensity scores is used for estimation. It is common that
people simply ignore the sampling design weights in the first-phaseand calculate a naive
estimator as,

ANW . I, T _n
0, = argomln [mgW(eg)} [mgW(Og)} , 9)

8
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where
. 1 m; (0)
m™(0,) =— AN P (10)
2" () nde g

Here the superscript ‘nw’ means no weight. The estimator é: " ignores the sampling
weights by applying equal weights to the estimation equations in (10). Although it uses the
propensity score 77;, to adjust for selection biases in the second-phase, it does not account
for the survey design in the first-phase, which might lead to biases and incorrect variance
estimation when estimating the treatment effect parameters on the population level. This is
demonstrated in the simulation studies of Section 4. Both Ridgeway et al. (2015) and Yu
et al. (2013) analytically quantify biases caused by ignoring the survey weights in complex
survey.

In order to obtain a consistent estimator for 0; , the first-phase survey weights need to
be included into the estimation equation. We propose the following GMM estimator,

A

ag = argoinin [ﬁlzﬂg(Og)]T[ﬁlzﬂg(Gg)], (11)
where
_ 1 m;,(60,)
m277g(0g) NiEEAzgwlt 'ﬁ'zig ( )

In order to improve efficiency, one can incorporate the information from covariate Z; that
is potentially correlated with the outcome responses into the estimation equations. We
propose the second GMM estimator as,

~2)
(og u) = a(ragmm[Hng(og,uafz,,g(og,m)[ ng (g 1)1, (13)
g“’
where
H, (0, 1) = [Mong(0,), Zame(ito), Zin(p)]”, (14)
Zamg(be) = NZWM e and 2" Zwlxz (15)
i€An Tig N

{i; is an estimator for the nuisance parameter u; = E(Z;) and ) 1g(0,, ;) 1s the variance
estimator of H,,;(0,, u.), which depends o%)the joint inclusion probabilities and is defined
in (36) of Subsection 3.2. The estimator 0 in (13) is connected to a two phase sampling
extension of the design unbiased dlfference estimator proposed by Sidrndal et al. (1992)
and Breidt et al. (2005) when m;,(0,) = Y, — .

Remark I: It can be shown that when m;,(0,) = — M and X; = Z;, the estimator 0
in (11) is asymptotically equivalent to the regressmn estimator proposed in Yu et al
(2013).
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Remark 2: The estimator 0 1n (13) is more efficient than the estimator 0 1n (11). The
supplemental file provides a sketch of proof to show that 0 ' is the most efﬁ01ent estimator
among the class of estimators 0 that use any fixed posmve definite matrix A in the
quadratic form minimization, that is 0 is defined as

(00, ) = arg min (Hy(0y, )" A™ (0, L, (16)

If the matrix is an identity matrix, then 0 obtamed in (16) is equivalent to 0 . Therefore

A(1
0:, | is expected to be less efficient than 0 , which has been confirmed by the simulation
studies in Section 4.

Remark 3: It can be shown that when m(0,) =Y;, — u,, the estimator é:’,z)
corresponds to the optimal two phase regression estimator discussed in Fuller (2009)
(Theory 2.2.4). The optimality in Fuller (2009) is in terms of achieving the minimum
variance for the limiting distribution of design consistent estimators of the form, Y2, e, =

_ _ N o -1
Vor+ (Zin = Z2x) B, Where [Yar, 2o, = (Z,-EAZ ! w;-‘) >ie, (mi'mt) [Yi 2]
Zin= (ZIEA“ 77;1) Diea, m;'Z;, and 1r; (or A;) and 7, (or A,) are the first phase and
the second phase sampling probabilities (or samples). The efficiency gain of Y5, ., over

Y, is similar to the effect of calibrating the second phase covariate mean Zgﬁg to its first
phase mean Z, .

Remark 4: It can be shown that when m;(0,) = Y;; — ug and Z; = 1, the estimator ég(z)
coincides analytically with the weighting estimator discussed in Ashmead (2014) except
that the propensity scores in Ashmead (2014) are estimated using a parametric logistic
regression.

Remark 5:  When the population mean of Z; is available, the estimator ég(z) can be easily
extended to incorporate this additional information. For example, this case can occur when
there are some demographic variables available on the population level. The extended
estimator can be obtained by adding one more moment Zy(u,) = N~ > iev(Zi — uy) into
the H,,,(0,, u.) in Equation (14). Efficiency gain should be expected since this estimator
uses more information on the population level. By viewing the problem as a two-phase
sampling problem, the method can be readily extended to multiple sampling phases. This
extension is useful because the database A; can come from alarger sample within the
database. This case covers the common situations where detailed treatment and outcome
data is available for only a subsample of the data such as a subsample with medical chart
adjudication of claims records or a subsample constructed by merging multiple sources of
claims records and electronic medical records.

3. Asymptotic Normality and Variance Estimation

. . AR2) . . .
Since 0 can be written as a special case of 0( ), in Subsection 3.1 we derive the

2
asympt0t1c normal dlstnbutlon for 0:, : only, and in Subsection 3.2 provide a linearized

2 N¢l
variance estimator for 0 . Subsection 3.3 gives a replication variance estimator for 0
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3.1. Asymptotic Normality of é;z)

The asymptotic normality of ég(z) is established in Theorem 1 by combining two
randomizations from the finite population level and the superpopulation level. For the
finite population level, we consider a sequence of samples and finite populations indexed
by N, where the sample size n— o as N — oo (Isaki and Fuller 1982). To define the
regularity conditions, we introduce the notation Fy to represent an element of the
sequence of finite population with size N. To distinguish between the two randomizations,
we use the notation “|Fy” to indicate that the reference distribution is with respect to
repeated sampling conditional on the finite population size N. For example, E( - | Fy) and
V(-|Fy) denote the conditional mean and variance with respect to the randomization
generated from repeated sampling from F . And we use E¢(-), Varg(-) and Cove(-, +)
to denote mean, variance and covariance with respect to the randomization from the
superpopulation & The proof of Theorem 1 uses a result given in Theorem 1.3.6 of Fuller
(2009) that shows how to combine two asymptotic normalities from the finite population
and the superpoulation levels. Because of the importance of this theorem to our results, we
state this theorem as Fact 1:

Fact 1 (Theorem 1.3.6 of Fuller 2009): Suppose 6, is a true parameter on a
superpopulation level, Oy is its analogous part on a finite population level, and 6 is
an estimator of 6, calculated from a sample. If (é — Oy)|Fn £ N(0, V1) almost surely
(a.s.) and (Oy — 6)) = N(O,Vy), then, (6 — 6) = N (0,V,, + Va). Here (6 — 6y)]
Fn = N(,Vy) a.s. means that 6— Oy converges in a distribution to a random variable
with the distribution of N(0, V1) almost surely with respect to the process of repeated
sampling from the sequence of finite populations as N — 0. V| is the asymptotic variance
of 6 on the finite population level, while V,, is the asymptotic variance of 6y on the
superpopulaton level.

The key step in our proof of Theorem 1 is to obtain an asymptotic equivalence of
ﬁlZﬂ'g(og)’

1 m;
ﬂlzﬂ'g(og) = N Z 4lg(0g)

= i T2ig

1 6,’6,’11’1,‘0 1 8,’6,'_’771‘ _
= _ZL&’(S’) - _ZMEg(mig(ggﬂxi) +o0,(n" 7).

=0 T Mig NiEU i Tig
)
Define

Hig(agv M) = [mig(og)azi - Mz]Ta (18)

and similary we can show an asymptotic equivalent form of Hy,(0,, u,) as,

1 Z Hi (O, p) lz 81;02igHig(0,, ;) lz 01i(02ig — T2ig)
= i Thig v T Mig & T

X E(Hig(0, po)lXi) + 0,(n~1/%) (19)

_ 1 nig(ogaﬂz) -1/2
—NZT'F%(” ),

i€A, Li
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where

82 0y
nig(ogvl"“z) zg(oga/“*z) 28 + (1 7T2g>MHg(Xza ogwuz)a and

Mig 2ig (20)
M’Hg(Xh og) = Ef(Htg(ogy /‘Lz)lxz)
Thus we can write H,,4(0,, u;) in (14) as,
T
1 ig(Og, o) 1 M
H,o(0g, 1) = |+ 87,
Ni;g 7Tll7T2tg N;:I Lt
(0 - - 2n
i y M - Mz _
= l an 8 7= NZ p- +0,(n"1/2).

= i€A, L

Then the large sample theory for é;z) is derived based on the asymptotic form of
H,.(0,, u;) in Equation (21). We now state Theorem 1:

Theorem 1: Under the regularity conditions in the Appendix, for any g =1,. . .G,

é(z) 0
8 L 0 0
el | F |- SN(0,V, (67, 17) ),
P R e (R AC)
where
3 -1
VB, ) = [T1(0),,0(0,, pmT7(0,)] (22)
8H, (0>M) aHl (07#’)
(0, = |E|—8 8" F,|—& 27 ¢ -1 23
g( g) { §[ 808 ] §{ O > s (23)

and 2:'Hg(agvl-”z) = |:211(0g7/~1'z) 212(05,'7/-’%); Elrz(agnu’z) 222(”’2)] 24

Here the notation [a1y, a12; a21,a22] represents a 2 X 2 block matrix with blocks a;;. The
term 2 ,(@,, u;) in Equation (24) is related to the asymptotic variance of the first element
in Equation (21) and is defined as,

. n
Ell(aga M) = A;H}'olovng,N(oga M) + N Var§(nig(0g7 ), (25)

where V., n(0,, u) = nN "~ 2227“” i,

ievjev T

Nig(Og, p) M (O, ). (26)

The term 35,(w,) in Equation (24) is related to the asymptotic variance of the second
element in Equation (21) and is defined as,

. n
() = Jim Ve () + N Var«(Z)), 27
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where  Von(u) =nN 2y S T 7 - )7~ p). (28)

IEUjEU i

The term 2 15(0,, w.) in Equation (24) is related to the asymptotic covariance between the
two elements in Equation (21) and is defined as,

. n
p3 12(0g7 M) = Iégrolocnz,N(agv M) + N COVg(Thg(ﬂg, ), Z;), (29)

ot T
where  Cpon(Bg, pe) =nN 2> > g (0, w)(Z; — p). (30)

ievjer MiT;

Equation (25) is connected to Fact 1 stated above, where its first term is
nV(N_1 ZieAl Wfiln,-g(ﬂg)l}'jv> on the finite population corresponding to V;; in Fact
1, and its second term is nV (N e mg(Og)) on the superpopulation level
corresponding to Vo, in Fact 1. The limit sign in the first term of Equation (25) indicates
this is the limit with respect to the process of repeated sampling from a sequence of finite
population as N — oo. Similar connections can be seen in Equations (27) and (29). The
proof of Theorem 1 uses results from Pakes and Pollard (1989) (Theorems 3.2 and 3.3)
which provides a general central limit theorem for estimators defined by minimization of
the length of a vector valued random criterion function. The justification of Theorem 1
takes into account the finite population asymptotic framework and the semiparametric
estimation of 7»;,. The asymptotic equivalence of my.,(0,) in (17) is analytically similar
to the mathematical forms of the doubly robust (DR) estimators when m;,(0g) = Y, — fe,
see Kim and Haziza (2014), Haziza and Rao (2006), Tan (2006), and Robins et al. (2007).
One difference is that the consistency of the DR estimators requires one of the response
model and the outcome model to be correctly specified, while our estimators estimate both
the self-selection probabilities ,;, and the outcome model semiparametrically. The
regularity conditions on the sample design and tuning parameters for the semiparametric
estimation are provided in the Appendix, and an outline of the proof for Theorem 1 can be
found in Appendix A.

3.2. Variance Estimation Based on the Asymptotic Normality

We use the asymptotic variance V (007 MO) in (22) to estimate the variance of 0 To
estimate 2 y,(0,, u.), an estimator of nlg(ﬂg, W) is obtained by,

A ) i ) i
nig(oga /J“z) = Hig(og, I-Lz) Azg + <1 2g)”’Hg (X,, 08, l-*k) 3D
Mig Mig

where py, (X;, 0,) is also estimated semiparametrically using the same bases R (X;), thatis

. AT
Prg(Xi; Og, p2) = B, (O, w)R(X;), and (32)

Be(Og, 1) = | >y A R (X)Rk (X)) Zw;,lwszK(x,-)H?;(og,m 33)

i€A, i€A
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An estimator of V, (0;, ,u?) is calculated as follows,

A (A, AT (AONQ LA N\l [ A2\ !
(i) = [ (6)500 02 02)]
where
. aH, ) 1 OHig (0g, 1
B0 = L | Sy Pl Zzwl,mgaigz); 0 -1
lEAzg i€Ay, M

and S8 1) = (311001 S12(0, 0 S50, ().

The term ﬁl 1(0,, u;) is estimated using

N A n —
211(0g7 /-Lz) = V’r]g,N(agv /"Lz) + N Var§ (nig(aga M’Z))a

A T T
_ -2 lij — Ty A

where V. n(0,, ) = nN E E _— =

€A, jea,

0 0 ,
p———— lg( ga/-‘*z)"]]g( gaﬂm)

and
— I— ., .
Varg (mig(0, 1) = > 7 Mig(Og, )i (0, i)

€A,
T

N2 Zﬂ-ll 7’18(087/’L2) 27711 nzg(oga,U«z)

€A i€A|

The term izz(,uz) is estimated using

N N n—
222(“1) = VZA,N(/“LZ) + Nvalf (Z),

A _ i — T
where  V_n(u;) = nN ZZ ZM(Z; — u)Z; — mz), and
€A, jea, T
T

Varg(Z)— Zﬂ'lll(l — ) — N2 Zm, (Zi— ) Zﬂ'fil(zi_ﬂz) )

lEA[ 1EA; €A
The term 2, 15(0,, ;) is estimated using

N A n —
3 12(0ga/‘LZ):CUZ,N(oga/'LZ)+]T]COV§ (mg(ﬂg,Mz),Zi),

T ;T
where Cppe (0, p)=nN 2y Y g

lg(0g7MZ)(Z o)
I€EA| JEA, T T

(34)

(35)

(36)

(37

(38)

(39)

(40)

(41)

(42)

(43)

(44)
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and

_ 1 o
Cove (Mig(Og, o), Zi) = 3. > ;' Mig (B, i) (Zi = )

i€A,
(45)
N2 Z’?Th nl¥(0g7 /-Lz) th (Z /J’Z)
€A €A
To construct a joint estimator for @ = [0y, . . ., 0;17, one can simply stack H,,,(0,, u;) in

the quadratic form of Equation (13). Define H;(0, w.) as the stacked vector of H;,(0,, u)’s
in Equation (18) and 1,(0, u,) as the stacked vector of 1;,(8,, u;)’s in Equation (20). The
asymptotic theory and the variance estimator for 6@ can be derived by simply replacing
H;,(0,, u,) by H;(0, u.) and 1;,(0,, u,) by ;(0, u.). Then we can obtain an inference for
the treatment effects or any linear combination of treatment parameters, A7 0.

3.3.  Replication Variance Estimation

In surveys conducted on land, for example surveys about natural resources (soil, forest,
water, etc.), non-responses hardly occur. However, in surveys with high non-response
rates, such as almost all surveys conducted on people, the joint inclusion probabilities are
typically not available because sampling weights have to be appropriately adjusted for
nonresponse. After such adjustments, the joint inclusion probabilities change and are
hard to be derived. In practice, a set of replicate weights are often provided instead,
because (1) design weights are often adjusted due to nonresponse issues and a set of
replicate weights are provided to account for the weight adjustment; (2) sometimes a few
design variables are masked from users to keep confidentiality. An example of such
design variable is location which is used for defining design strata in a study, but the
specific location is omitted from the analyst because of concerns associated with
confidentiality. In this subsection, we show how to use the replicate weights to construct
a Jackknife variance estimator for é:,l) Note that 0 @ depends on the joint inclusion
probabilities 7ry; which are typically not available when replicate weights are provided.
We propose to use the Jackknife (JK) variance estimator for a two-phase sampling
design discussed in Fuller (2009) and Kim et al. (2006). Assume that there is a replicate
variance estimator that gives a consistent estimator for the variance of the total estimator

based on the first-phase sample. We write the replication variance estimator as,
[b] A AlD] A . . A

VJK1(01) = Zh \Cb (01 01)(01 — 0,)7, where B is the number of replicates, 6, =
. . . A[b]

ZleA wliX ; is the total estimator of variable X using the first-phase sample, 0, =

Doie A wll 1X; is the estimated total for the b"replicate, w[lll’] is the b™ rephcate welghts in
the first-phase, and ¢, is a factor associated with replicate b such that VJK1(01) is a
consistent estimator for the variance of 6. Suppose the second-phase total estimator is,
0, = i A, WIiTT; |111Xi, where ,y; is the conditional probability of selecting i for the
phase 2 sample glven that i is in the phase 1 sample, and A, is the phase 2 sample. Define
the b replicate of 02 as, G[h] = Z w[llj] 7T21|11X A Jackknife variance estimator for 02
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N N " N R NT
can be calculated as, Vjk,(0,) = Zf;lcb<02[h] - 02) (02[};] — 02) . Kim et al. (2006)

showed that VJKz(ég) is a consistent estimator for the variance of 92.

Following the idea of Fuller (2009 Subsection 4.4), let b be the index for the deleted
Jackknife groups and the corresponding replicate version of m;,,(6,) be,

_ 1 R
@100 =+ > wi (#4]) miy(0,), (46)

iEAzg

where ﬁz[f; is olbtained by replacing wy; by w{l[’] in Equation (7). Then the replicate

estimator for Og is,
~(1)[b] . _ Tr_
6" = arg min [mgﬂg(og)} [mgﬂg(og)], (47)

8

. . . . A(1) .
and the replication variance estimator for 0g is calcualted as,

B

2, A A(DIb] A [ A(DID] O

T (07) = a0, - 8,7) (0, - 6,) . 48)
b=1

Examples of w[ﬁ] and ¢, for a variety of designs are given in Sdrndal et al. (1992). For
example, if the first-phase sample is drawn from a multi-stage cluster design, the Jackknife
technique is usually applied at the primary sampling unit (PSU) levels. Assuming there are
BPSUs and S, is the 5™ PSU deleted in the b™ replicate sample, the b replicate weight for
the first-phase is defined as,

0 if i€S,
bl _ B
wy; = e , (49)
——wy; if i E&S
B—1 li b
and ¢, = B~!(B — 1). As mentioned in Sirndal et al. (1992), for stratified sampling
designs, w?! and ¢, need to be defined with care. We discuss this situation in Section 5 of
the empirical study. If the first phase replicate weights are provided in practice, one can
directly use them as w[ﬁ'. One thing to note is that Kim et al. (2006) assume 77,;, are known
in their two phase replication variance estimator. The consistency theorem in Kim et al.
(2006) needs to be modified to account for the variation from estimating 7»;, in our JK
variance estimator, which can be our future study.

4. Simulation Study

In this section, we evaluate the performance of our estimators and variance estimators
under four different simulation set-ups. We consider three treatment levels, and a
population size of N = 10,000 and an expected sample size of n = 1,000. We generate
i.i.d. realizations, (Y;, 8y, 62, X;,Z;); i=1,...,N, according to the following super-
population set-ups.

(1) Covariates: simulate covariates Z; = [Zy;,Z,;]] where Z;; ~N(2,1) and
Zoi ~ N(10, 1), and X; = [X,;, X»;] where X;; = Z; and X»; ~ N(0.5,0.3%).
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(2) Potential response outcomes: the superpopulation model for potential outcomes is
Yie = we(Z)) + 04(Z)eiq, Where

3

€;

we(Zi) = Beo + Be1(Z1i — 0.5) + Bea(Z1; — 0.5)% + B3 Zai,

g N, D), O'g(Zi) = |/-Lg(Zi)|’ and [BgOaBglaBgZaBgﬂ equals to [5, 4, 2, 1] for

g=1,[0,1,0,0] for g =2, and [—5, —4, —2, —0.5] for g = 3.
First phase sampling: we consider two sampling designs, non-informative
stratification sampling and informative Poisson sampling.

Stratification (STS): population units are sorted by values of Z;, and then the
population is divided into two subpopulations U; and U, with equal sizes.
Simple random sampling is used to draw 80 percent of the sample from U,
and 20 percent from U,. For units in stratum s (s =1 or 2), m; = N;lns and
mj = {Ns(Ns — 1)} 'ng(ny — 1), where n, and N, are the sample size and the
population size in stratum s. The joint inclusion probability for two units in
different strata is the product of their first order inclusion probabilities.
Informative Poisson (Informative): the first-phase sample design is Poisson
sampling with selection probability,

_exp(—1.5 = 25Xy +0.07|[Y,]l)
1+ exp(—1.5 — 2.5X5 + 0.07[Y,1l)’

i

where [[Y;]l = /Y% + Y% + Y%. Modeling 7, as a function of Y; is a common
way (i.e., Pfeffermann and Sverchkov 1999) to represent joint dependence of Y;
and 7y; on a design variable that is not contained in (X;, Z;). In this specification,
we assume ||Y;|| is known at the design stage of the survey, but is unavailable at the
analysis stage.

(4) Second phase self-selection probability models: we consider two models for my,.

Logit Linear (LogitLinear):

exp (g0 + do1X1i + P2 X2i)
G )
Zgzlexp (g0 + o1 X1i + 2 X2i)

Mig =

where [¢q0, ¢,1, be2] equals to [—0.5,0,0] for g = 1, [0.3, —0.3, —0.3] for g = 2,
and [0, —0.5,0.5] for g = 3.
Jump (JUMP):

[’772,'1, M2, i3] = [090,005,005] if Xii+Xy = 3
=[1/3,1/3,1/3] if 2=X;+X» <3
= [0.05,0.05,0.90] if X+ Xy < 2.

The JUMP model violates the differentiability assumption of 7, in Condition
B(2) in the Appendix. It is deliberately included in the simulation to see if our
semiparametric approach can estimate a nonsmooth multiple treatment selection
probabilities well.
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For each i € U, & is simulated from multinomial(1; 1, i, mi3). For i # j,
ary; = ;7. For STS design which is noninformative, SMAR holds and we set b; = Wfil
in Equation (7) to estimate 7. For Informative design, SMAR fails and we use b; = 1 in
Equation (7) to estimate 7;g.

We first simulate a finite population with size N from the superpopulation and then use
indicators generated in (3) and (4) to obtain the first and second phase samples. We repeat
the process to produce 1,000 MC samples. We are interested in estimating five parameters
for each group, 0, = [Pg, Mg, ng,Rg,Dg} ,where P, = Prob(Y;, = 0), u, = E(Y},), 0'
Var(Y;,) and R, = Corr(Y,,Z5;), and D, = E[E(Yiglzli = 0.65)]. The corresponding
estimation equations m;,(8,) can be found in Equations (5) and (6). For each MC sample,
we calculate the following four estimators:

° é(l)' the estimator defined in (11). When m,(0,) = Y, — ps, é;,l) corresponds to the
estlmator in Yu et al. (2013) asymptotically.
° 0 : the estimator defined in (13).

° é; the estimator defined in (9), and is included to see what happens when the survey
weights are ignored in analyses.

° 0p the estimator calculated the same way as 0 , except that 7, are estimated using
a parametrlc multinomial regression. This estimator is introduced in order to have
plausible comparisons in context of three treatments between our
estimators and others that use parametric logistic regression to estimate propensity
scores, see DuGoff et al. (2014), Zanutto (2006), Ashmead (2014), and Ridgeway

et al. (2015).

We use a cubic spline base of X;; for Rg(X1;), as suggested by Breidt et al. (2005) which
mentions that setting the degree of the spline equal to three is a popular choice in practice.
Condition 4(B) in the Appendix gives a practical guidance for the choice of K, the number
of knots in the spline. Condition 4(B) requires K = O(n"), where v has an upper bound
v = (4n+2)~! with n = 1/2 for spline bases. In our simulation studies, the sample size
n = 1,000, suggesting n" = 5.6. The choices of K =15,4,3,2 are tried and the
corresponding 7, curves are plotted. It is found that there is not noticeable change in the
Thig curves until K decreases to 2. So K = 3 is used and the locations of the three knots
correspond to the 25¢h, 50th, and 75th quantiles of observed X;’s. A cubic spline base for
Rx(X5;) is constructed the same way. And the semiparametric bases are Rg(X;) =
[RE(X 1), RE(X)]

If the dimension of (X;, Z;) is big, in practice we suggest to run a multinomial regression
using &,; on (X;,Z;) to select covazr)lates that are most significant, and then use them for
estimation of 7;,. When using 6’ , one can run a multiple linear regression of Y;, on
(Xi,Z;) in Ay, to identify covariates that are most useful for explaining the outcome Y,
and then add their first and second phase means in the estimation equations. It is not
impossible to obtain a very small 77;, computationally, which leads to extreme weights. A
solution is to truncate such 7;,’s to a small constant L (which is set to be 0.0001 in our
study), then adjust the truncated 7r,;, by calibrating the second phase mean of U; to its first

. ~ _ At _ N At -
phase mean, that is 7, = F 7, where Fy = (ZieAleU;) ZiEAng”(W%g) U;,

and 'ﬁ'éig is the truncated propensity score which equals to L if 7»;, < L, otherwise remains
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unchanged. Here the variable U; can be an important covariate chosen by users, or a
weighted mean of (X;, Z;) where weights indicate importance of the covariates. We use the
average of the covariate X; as U; in both of the simulation studies and the empirical study.

Figures 1—4 show side-by-side boxplots of MC estimates of the four estimators for all
treatment effects. Each figure represents one of four simulation setups: (STS-
LogitLinear), (STS-JUMP), (Informatlve LogltLrnear) and (Informative-JUMP). In each
subplot the ﬁrst two boxplots are for 0 and 0 , and the third and fourth boxplots are
for 0 and 0 respectwely When comparing our estimators Og(l and 0 w1th 0 0”W
is hrghly brased in most of parameters and scenarios, due to 1gnor1ng the survey werghts
The variances of 0 in general are smaller than those of 0 o and 0 & , which is expected
especially when the survey weights are very different from each other The coefficient of
variation (CV) of the weights for the STS design is 0.75, and the CV of welghts for the
Informatlve design is 4.77. When comparlng our estimators 0; and 0(2) with 0 biases
of 0 are comparable to those of 0 and 0 ) for the LogitLinear model because in this
scenario 6 correctly assumes a parametrrc model for ;.. However, in the situation of
JUMP models 0 has larger blases than 0g and 0;2) because 7, is misspecified
parametrically. When comparing 0 W1th 0(2) both of their biases are comparable in all
scenarios. However, the plotg)show that 0 cons1stently has smaller variances than 0
The variance reduction of 0 over 0 1ndlcates that efficiency gain occurs after addrng
the first and second phase means of covariates to the estimation equatlons Wthh
confirms Remark 2. Additionally, it is promising to see that both 0 and 0 have
relatively small biases even if the JUMP model fails to satisfy the dlfferentlability
assumption in the theory, indicating our semiparametric approach of estimating ;e
works well for the nonsmooth function considered. We also tabulate the MC results into
four tables for readers who prefer to see numbers rather than Figures (see Supplemental
file, Tables 1-4).

2Tables 1-2 contain the coverage probabilities of the 95 percent confidence intervals for
0 based on its asymptotic normality and its linearized variance estimator in Subsectron
3. 2 and the coverage probabilities of the 95 percent confidence intervals for 0 and énw
based on the JK approach discussed in Subsection 3.3. The replication variance estrmator
for én is calculated by replacing wy; by N/n in Equation (49). This gives inappropriate
variance estimation for 0; under an unequal probability sampling, but mimics what
people do when they ignore survey weights. To create the JK replicates, we delete one unit
at a time and set B = 1,000. The coverage probabilities for é;z) using the linearized
variance estimator seem to work well, except for the marginal mean u, under (STS-
LogitLinear) and the marginal proportion P, under (STS-JUMP). The rest of coverage
probabilities arel)reasonably close to the nominal size 95 percent. The JK variance
estimator of 0 gives very good coverage probabilities. However the coverage
probabilities for 0 using the JK variance estimation are far away from the nominal size,
especially under the Informative-JUMP model where the coverage probabilities are
severely underestimated. Those under-coverages are due to the biases in 0", or
inappropriate variance estimation, or both.

Our simulation studies demonstrate the validity of our estimators and variance
estimators.
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Fig. 1. STS-LogitLinear: Boxplots of MC estimates of the four estimators for all treatments. Each row
represents a parameter, and each column represents a treatment. In each subplot, the four boxplots
are for é;l s 6;2), ég and é:w respectively in order. The horizontal line is located at the value of the true
treatment effect.
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Fig. 2. STS-JUMP: Boxplots of MC estimates of the four estimators for all treatments. Each row
represents a parameter, and each column represents a treatment. In each subplot, the four boxplots
are for é;l), ég(z), 0;, and é:w respectively in order. The horizontal line is located at the value of the true
treatment effect.
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Fig. 3. Informative-LogitLinear: Boxplots of MC estimates of the four estimators for all treatments. Each
row represents a parameter, and each column represents a treatment. In each subplot, the four boxplots
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Table 3. Empirical study with weights in estimation of 7, The treatment effect estimates using estimators
é;w and ég(” defined in Subsection 2.3. The parameter of interests are 05? = E(Y;,) and 05? = E(Y,-glld,- =1

where 1y; is the indicator for the domain of interest that contains respondents who have sick or very sick physical
condition. The standard errors are in parentheses and calculated using the Jackknife variance estimator, and the

95 percent confidence intervals are in brackets.

(a) Treatment mean effect estimates for 0;) =E(Y;)

Estimators Public — Private Public — No insurance Private — No insurance

0. 1349.57 (215.90) 300.408 (28.23) — 1040.165 (698.47)
[926.40 1772.74] [254.07 364.74] [—2409.17 328.84]

0, 1210.57 (353.50) —21.45 (29.17) —1232.03 (56.56)
[517.71 1903.44] [—78.61779 35.71] [—1342.88 —1121.18]

(b) Treatment domain mean effect estimates for 0;) =EYilly=1)

Estimators Public — Private Public — No insurance Private — No insurance

0. 3214.18 (32.22) 811.56 (38.69) —2402.62 (46.48)
[3151.03 3277.34] [735.73 887.39] [—2493.73 —2311.52]

0" 3320.93 (9.97) 4.49 (2.69) —3316.43 (240.85)
[3301.39 3340.47] [—0.77 9.76] [—3788.50 — 2844.37]

5. Empirical Study

In this section, we investigate the feasibility of our method in estimating the mean annual
medical expenditures under different choices of health insurance types in China. We use
the data from the Chinese General Social Survey (CGSS) conducted by the National
Survey Research Center at the Renming University of China in 2010. The population
consisted of all Chinese adults (184 ) in mainland China. A sample of 12,000 adults was
drawn for the base questionnaire and a subsample of 4,000 adults was drawn for the health
care questionnaire. Data were collected by in-person interviews. The sample for the CGSS
survey was selected using a multi-stage cluster sampling design. In the first stage, the
primary sampling units (PSUs) were districts which were divided into two strata. Stratum
1 contained 67 districts in five major cities (Shanghai, Beijing, Guangzhou, Shenzhen and
Tianjin), and Stratum 2 contained 2,795 districts in the rest of the area of China. In both
strata, a probability proportional to size (PPS) design with the resident population size as
the size variable was used to select the PSUs (40 PSUs were selected in Stratum 1, and 100
PSUs were selected in Stratum 2). In the second stage, the secondary sampling units
(SSUs) were communities. A PPS design with resident population size as the size variable
was used to select 2 SSUs within each selected PSU in Stratum 1 and 4 SSUs within each
selected PSU in Stratum 2. In the third stage, the ultimate sampling units (USUs) were
households. In each selected SSU, 25 households were drawn by a systematic sampling
method. Then a respondent was selected randomly within each household. Totally 12,000
households responded to the base questionnaire. Then every third household respondent in
each SSU was selected to answer the health care questionnaire. The subsample of 4,000
was used in our investigation.
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Table 4. Empirical study without weights in estimation of 7i»;,: The treatment effect estimates using estimators
OA;M" and GA;]) defined in Subsection 2.3. The parameter of interests are 0;,) = E(Y,) and 0: = E(Yiglld,- =1)
where 1;; is the indicator for the domain of interest that contains respondents who have sick or very sick physical
condition. The standard errors are in parentheses and calculated using the Jackknife variance estimator, and the
95 percent confidence intervals are in brackets.

: 0 _
(a) Treatment mean effect estimates for 0g = E(Y;,)

Estimators Public — Private Public — No insurance Private — No insurance

0. 1301.04 (150.81) 298.02 (42.79) —1003.02 (169.31)
[1005.45 1596.63] [214.15 381.89] [—1334.87 —671.17]

0, 1205.295 (259.68) —13.23 (55.84) —1218.52 (260.12)
[696.32 1714.27] [—122.68 96.22] [—1728.36 —708.68]

(b) Treatment domain mean effect estimates for 0; = E(Y, iglldi =1)

Estimators Public — Private Public — No insurance Private — No insurance

0. 2519.35 (239.67) 829.45 (87.41) ~ 1689.90 (257.46)
[2049.60 2989.10] [658.13 1000.77] [—2194.52 —1185.28]

é:w 3207.10 (17.14) 4.092 (4.30) —2343.00 (180.83)
[3173.51 3240.69] [—4.34 12.52] [—2697.43 —1988.57]

The response variable in our study is the annual medical expenditure. The treatment
variable is the health insurance type (public health insurance, private health insurance, and
no health insurance). Public health insurance is sponsored by Chinese government and is
the main health insurance type in China. Six relevant covariates are chosen from the health
care questionnaire in our study: age, household register (urban, rural, other), annual
household income, physical condition (healthy, just so-so/or a little sick, sick, very sick),
chronic disease (yes, no), and treatment to illness (self-treatment, go to hospital, no
treatment). Due to some nonresponse units, the final data had a sample size of 3,866. The
data weights were adjusted to deal with the nonresponse issue.

We are interested in estimating the following parameters, 0;,) = E(Y;,) and 0;) =
E(Y |l = 1) where 1 is the indicator for the domain of interest that contains respondents
who have sick or very sick physical condition. When estimating 7, we use b; = 1 in
Equation (7) to obtain conservative estimates since it is difficult to verify SMAR
assumption. For comparison, we also report the results using b; = wi;! in Equation (7).

Estimators é;l) and é; " are calculated and the Jackknife v?(rzi)ance estimator discussed
in Subsection 3.3 is used to calculate their standard errors. @, * is not included into the
empirical study becauser; are not available. Since the design is a stratified multi-stage
cluster design, we use the districts (PSUs) in different strata as the deleted Jackknife
groups S,. The Jackknife variance estimator is,

— (é;“[b] ~ é“)) (é(l)[b] _ éa))T’ (50)

O
VJK(og )_ By g g g

2
h=1
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where é; bl is the minimizer of Equation (47) and the replicate weight in the first-phase is
defined as,
0 it i€S),
! if i&S,andh(i)# hb
T b (i) # h(b) 51)

B
! it i @ S, and A(i) = h(b).
By — 1

[b]

Here h(i) is the stratum where unit i belongs to, 4(b) is the stratum where the b deleted
group S, belongs to, and [B;,B,] = [40,100]. The replicate estimator é;w[b] for the
estimator é;w without survey weights and the variance estimator ‘A/J]((é;”v) can be
obtained in the same way by simply replacing 7r; by 1N ~ " in (51). A spline base of degree
2 with 8 equally spaced knots in the data range is constructed for the two continuous
variables (age and annual household income). Dummy variables are created for the
remaining categorical variables and added to the model.

Table 3 and 4 contain the estimated treatment mean effects and estimated treatment
domain mean effects for physical condition, along with standard errors (in parentheses)
and 95 perecnt confidence intervals (in brackets), for b;=1 and b; = wfi' cases
respectively. The treatment effect estimates in Table 3(a) indicate that, when the data
weights are neglected, the estimated mean medical expenditure of the public health
insurance group is not significantly different from that of the no health insurance group.
However, when the data weights are incorporated, the public health group is found to
spend significantly more on the medical expenses than the no health insurance group. This
makes sense because people who have no health insurance might be reluctant to spend
money to see doctors. This trend is also seen in the domain treatment effects estimates in
Table 3(b). In addition, when the data weights are neglected for the treatment mean effect
estimates, the estimated mean medical expenditure of the private health insurance group is
significantly different from that of the no insurance group, while incorporating the data
weights finds these estimated means not significantly different. Table 4 gives the same
story as Table 3 when comparing the public health insurance group versus the private
health insurance group, and comparing the public health insurance group versus the no
health insurance group. However, when comparing the private health group with the no
insurance group, Table 4 reports significant difference in the treatment mean effect for
both estimators 0 and 0 . Note that the standard errors of the unweighted estimator are
not consistently smaller than those of the weighted estimator because the variation of
weights in the real data is small (the CV = 0.45).

This study demonstrates that our method is feasible in real data application and suggests
that ignoring the weights of an observational data might lead to a misleading conclusion.

6. Conclusions

In this article, we consider a GMM estimators 0 " and 0 " to estimate treatment effects
defined through an estimation equation in an 0bservat10na1 data set that is a sample drawn
by a complex survey design. The estimators é(l) and 0 1nclude both the first-phase
sampling probabilities and the estimated second phase selectlon probabilities to remove
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the biases due to ignoring unequal sampling design in the first-phase and the selection
biases in the second-phase. The self-selection probabilities are estimated using a
semiparametric approach in Cattaneo (2010) to deal with the situation with multiple
treatments. Our simulation studies demonstrate that neglecting the first-phase design
and handling only treatment selection could lead to erroneous treatment effect estimation.
The proposed estimator is designed to handle multiple treatments and do not require
strong model assumption of the selection probability as in a fully parametric solution. The
estimators 0;1) and ég(z) can be readily extended to multiple sampling phases as well when
the data set is a subsample of a larger survey sample.

Appendix

The notation of |- | represents the norm of a matrix, defined as |A| = \/trace(A’A) and
the notation of || - || denotes the sup-norm in all arguments for functions.

We first give regular conditions on the sample designs in both phases. The following
notations, I;, m; and 7,
probabilities either for the first-phase design or for the second-phase design. For example,
I; = y; or I; = 8y, for any g, and m; = my; or m; = ;e for any g, depending on whether
the design if the first-phase design or the second-phase design.

denote the sampling indicator, the first and second inclusion

Condition A:

(1) Any variable v; such that E[|Vi|2+5] < oo, where &>0, satisfies
Jn@ur — WWIFy 5 NO, V) as., where  (byr,vy) = N 'SV (7w Wnili, v),
Ve = limy—Vy, and Vy = nV(¥yr|Fy) is the conditional variance of the
Horvitz-Thompson estimator (Horvitz and Thompson 1952), vy, given Fy.

(2) nN~'—>fe €10,1].

(3) There exist constant C;, C, and C; such that 0 < C; = nN’lﬂ'l.’1 < 00, and

n(m; — 7Ti7Tj)7Tl~7177.']-71 =C3; < a.s.

Condition A(1) and A(2) are regular conditions assumed for a survey design in a finite
population framework. Condition A(3) is used in Fuller (2009). The part of condition A(3)
related to the joint selection probabilities is used in the proofs to bound sums of covariance
induced by the sample design. Condition A(3) holds for simple random sampling, where
(5 — mﬂ;)rri’l 71}71 =n"'(n—1)N—1)"'N—1, and for Poisson sampling, where
(myj — mm)m, ! 71']»’1 = 0, and can hold for cluster sampling and stratified sampling. Fuller
(2009) explains that a designer has the control to ensure condition A(3). Note that for the
second-phase design in our situation, (7rj,, — 2ig Wjg) ;4 75, = O for any g because our
second-phase design is a multinomial extension of Poisson sampling.

Next we give regular conditions on the tuning parameters of the semiparametric basis.

For simplicity, we consider the special case of power series and spline series.
Condition B:

(1) The smallest eigenvalue of E[Rg(X;)Rg(X;)") is bounded away from zero uniformly
in K.
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(2) There exists a sequence of constant {(K) such that ||[Rx(X;)|| = ¢(K) for K — oo and
UK)K Y 2n=12 =0,

(3) For all g, m(X;) and pe(X;, 0,) = E[m,-g(ﬂg)IX,-] are s-time differentiable with
sd_' =5m/2+1/2, where d, is the dimension of X;, and n=1 or n=1/2
depending on whether power series or spline series are used as basis function.

4) K =0m") with 4sd;1 —6m=v! =4n+2, where n=1 or n = 1/2 depending
on whether power series or spline series are used as basis function.

Condition B(1) and B(2) are standard assumptions and are automatically satisfied in the
case of power series or spline series. Condition B(3) and B(4) describe the minimum
smoothness required as a function of the dimension of X and the choice of basis, and the
relationship between the sample size and the number of bases. Under B(3) and B(4), by
Lorentz (1986), there exists a K-vector 7; ¢ for any g such that

WZig(X)

G
1= miX)

where R%(X)y;’,( is the best L, approximation for the logarithm of the odds ratio of
treatment g to the base treatment. The property (52) is used to derive the convergence rate
of g t0 Ty, as follows,

log

~ REX)v,| = O(K ), (52)

1721 — maigll = O (EKIK *n~1% + EK)K 2K /%) = 0,(1). (53)

For details, see Theorem B-1 of Cattaneo (2010).
Next we give regular conditions on the estimation equation function m;g(Y g, Z;; 0,).

Condition C:

(1) m(Y;e, Z;; 0,) is differentiable with respect to ,.

(2) Both my,(Yie, Z;; 0,) and its first derivative with respect to 6, have bounded 2 + 6
moments. More specifically, E[|h(Y;, Z;; 0)|2+6] < M, where h(Yi,Zi; 0) denote an
element of m;,(Yie, Z;; 0,) or an element of its first derivative with respect to 6,.

3 I, 059 is full rank.

(4) Assume that hyr(@) — hy(0) converges to O uniformly in @, where hyy(0) =
NS L h(Y i, Zi; 0), hy(@) =N ~'SN hi(Y;,Zi;0), and hi(Y:,Zi; ) has
the same interpretation as in condition C(2) above. This condition means that for
all € > 0, there exists a 8 > 0 such that Pro(|hzr(0) — hy(0)] > €) < §, for all N
greater than some value M, and for all 6.

A: Proof of Theorem 1

The proof of Theorem 1 proceeds in two steps. The first step is to show that the asymptotic
equivalence of My, (Og),

_ 1 01i02igM;g(0g) 1 81(82ig — T2ig) ~12
T 0, =— § - m Xi; 0 ’
Mo (0) N = i Mig N i TMig Prng( g) +opn )

(A1)
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where o (Xi; 0,) = E(mg(0,)|X;). In order to show (A.1), we first decompose
m; .. (0,) into

N

1 mig(og) — l {82igmig(0g) _ 62igmig(0g) + 82igmig(0g)
€A,

iy — Mig)
~ ~ 5 ( ig ig
iEx, Mitig N i Tig i Tig i g

+— —L;zg(ﬂzig — Tig) +M(mi8 ™ Taig)
N &= TiTig g
t= {_ w(m:g — Tig) + M(Sz’%’ ~ Mig)
= i M2ig i Maig
1 [ 82imig(6,) (Xi; 0¢)
+N { igMig\Ug)  PmglAis Yg (le'g - '772ig) .
iem L MiTig i

(A2)
By the result in (53), the first three terms in (A.2) can be shown to have order o,(n v 2)
asymptotically, which leads to Equation (A.1). Similar arguments can be used to show
I:Iz,,g(ﬂg) = %Ziem Wfilmg(Og) + o,,(n’l/z). The justification of those orders follows
Cattaneo (2010), and we refer readers to Cattaneo (2010) for details.

The second step is to show the following two conditions of Pakes and Pollard (1989)
hold: (1) supgggglrhzﬁg(ﬂg) — E(m;,(0,))| = 0,(1), and (2) for every sequence of real
numbers 8, — 0, sup|g, _go|=5, [M2mg(B;) = EMig(6,)) = Momg (0 )| = 0,(n~"/%). By
Equation (A.1), we can show that

2
_ 1 —myo(0,)81;62, 1 —=M;g(0,)(02ig— m2ig)
(m277g (mg(eg)) N,‘é(] i Taig Né(] Tig (ng(og))
(A.3)
+o(n~1?)

<2Ty+2Toy+o(n"1/?),

2 2
where T1N=E(ﬁzieui‘“fﬁﬁﬂjﬁ'@m—E(m,-g(og)) and T2N=E(%ZiEUmmwg)gzm—w) It
is easy to show T y=OWN~"!") and To,w=OW !). Then we have
E(M7g(0,)— E(m y(0,)))*=0 (L) =M17,(0,) — E(m,(8,))=0,(1). Condition (1) of
Pakes and Pollard (1989) holds. Similarly, we can show that sup(gg#:)IHZWg(Og,MZ)—
E(H (0, 1)) =0,(1).

By Equation (A.1), we can also show that m,(0,) — E(mg(0,)) — Moy, (Ogo) =

ievu i Mig

T3N - T4N + Op (n_l/z) s where T3N = %Z (m;g(ﬂg)—m;g(ﬂgf)))ﬁlﬁzfg - E(m,g(ﬂg) — my,

Mig

(0;3)) and Tyv = %ZieUE[(m"g(G”')fm"" (07) )] (32“’7772’3@). When ‘og - 05(')’ = 4,

we have
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ol o) oy -

Tig i " N
(Ad)
E(T2,) = Nz;E(m,g ~my, (00 X)z
= E;E{(mig(ﬂg) - mig(ago))z‘x} < ;]0(‘06, - 9;”2) = 0<;]>
(A.5)

Then we have T3y = 0,(n~"/?) and T4y = 0,(n ~'/?) when |@ — 0°| =< §,, thus Condition
(2) of Pakes and Pollard (1989) is verified. Similarly, we can show that for every sequence
of real numbers &, — 0,

P o1 T907|  |Hams(Oesttc) ~E(Hiy(8)) ~Bam (00,10) [=0p(n ). (A6)
[ ¢ — i =6,
Mz M,

For a vector c=[c;,c2]", we know |¢| = +/2(|¢1|+]ca]). Therefore, Condition (1) and (2) of
Pakes and Pollard (1989) in terms of H,¢(0,,u.) can be verified. The details of the proof
can be obtained upon request.
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