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In this article, we review current state-of-the art software enabling statisticians to apply
design-based, model-based, and so-called “hybrid” approaches to the analysis of complex
sample survey data. We present brief overviews of the similarities and differences between
these alternative approaches, and then focus on software tools that are presently available for
implementing each approach. We conclude with a summary of directions for future software
development in this area.
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1. Introduction

Secondary analysis of survey data arising from complex sample designs is a ubiquitous

research methodology in many applied fields. The “complex” terminology refers to

features of sample designs that deviate from a design featuring simple random sampling

with replacement, which in a finite population sampling framework is in accord with the

theoretical notion of independent and identically distributed data. These complex design

features, which generally include unequal probabilities of selection into the sample,

cluster sampling, and stratification of the target population prior to sampling (Heeringa

et al. 2017), need to be accounted for by secondary data analysts and applied statisticians

who have many tools at their disposal for analyzing these types of data sets. A failure to

account for these design features in analysis can lead to substantially biased inferences

(e.g., Skinner et al. 1989; West et al. 2016; Heeringa et al. 2017). Over a period of more

than 80 years, many different methods have been proposed by statisticians and survey

methodologists for correctly accounting for these sample design features when performing

survey data analysis.

The variety of approaches discussed and proposed in the survey statistics literature can

generally be grouped into two main categories: design-based analysis, where the
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randomized selection mechanism underlying the probability sampling governs all

subsequent inference, and model-based analysis, where all inference depends on

probability models posited by the analyst (Hansen et al. 1983). More recently (e.g., Little

2015), statisticians have advocated “hybrid” approaches that combine optimal properties

of model-based and design-based approaches. A statistician responsible for analyzing

survey data therefore needs to select one or more of these approaches to employ,

depending on the objectives of a researcher’s study and the parameters of scientific

interest. And, once an approach has been selected, the statistician needs to identify

software that implements the selected approach. In the present article, we aim to provide

statisticians and survey researchers with an up-to-date review of state-of-the-art statistical

software capable of implementing each of these different approaches, depending on the

specific analysis of interest.

When thinking about these alternative approaches and the software tools implementing

them, one needs to consider the objectives of a given analysis of survey data. Is one merely

interested in generating descriptive inferences (means, proportions, totals, etc.), or is one

also interested in more “analytic” objectives (regression coefficients, odds ratios, etc.)?

The identification of appropriate software requires a cross-classification of “objective”

(descriptive vs. analytic) and “approach” (design-based vs. model-based); see Table 1. We

note that so-called “hybrid” approaches to analytic studies combine features of both

design-based and model-based approaches. In the discussion moving forward, we assume

that a formal probability sampling plan has been used to select a given sample from a finite

population, and that the analyst is weighing different analysis approaches with this sample

in hand. We do not consider software for analyzing data from non-probability samples,

which are currently receiving a great deal of research attention (e.g., Baker et al. 2013;

Elliott and Valliant 2017), in this article.

This article reviews state-of-the-art software tools in each of the five domains indicated

in Table 1. Modern survey statisticians need to speak multiple computing languages in

general, understanding the pros and cons of each, and effectively communicate software

alternatives for clients who desire to analyze survey data. Not all software packages share

the same capabilities for analyzing complex sample survey data, and we aim to review the

state of the art in this regard. The article is structured as follows. In each of Sections 2

through 6, we first present a brief overview of one of the five approaches in Table 1, and

then review current software tools that are available for implementing that particular

approach. We then conclude in Section 7 with a summary of important directions for

future software development in this area.

Table 1. Five possible combinations of research objectives and analysis approaches, to guide a review of

current software for the analysis of complex sample survey data.

Design-based
 approaches 

Model-based
 approaches 

Descriptive objectives 1 2

Analytic objectives 3 4
“Hybrid” approaches (5)
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2. Descriptive Objectives: Design-Based Approaches

2.1. Weighted Estimation

When analysts employ design-based approaches to the descriptive analysis of survey data,

their analytic objectives generally involve design-unbiased estimation (i.e., estimation that

is unbiased with respect to the probability sample design used) of simple descriptive

parameters characterizing a finite target population, such as means, proportions, totals,

percentiles, and row or column percentages in contingency tables. These approaches

generally feature weighted estimation of the parameters of interest, in addition to design-

unbiased, nonparametric estimation of sampling variance for the weighted estimates and

design-adjusted tests of associations between variables (e.g., Rao and Scott 1984). These

approaches are quite popular among nonstatisticians because they are widely implemented

in different statistical software packages, and they yield robust population inferences that

do not require parametric assumptions regarding the variables of interest.

In general, the respondent weights computed by organizations collecting and producing

survey data account for three key aspects of the sample design and the data collection:

1) unequal probabilities of selection into the sample for different population elements,

2) adjustment for nonresponse during data collection, and 3) calibration of the (possibly

adjusted) respondent weights to known population totals (Kish 1965; Kalton and

Flores-Cervantes 2003; Lohr 2009; Valliant et al. 2013; Lavallee and Beaumont 2016;

Heeringa et al. 2017; Haziza and Beaumont 2017). The first element of a respondent

weight is generally referred to as a design weight. The design weight for a given sampled

unit is defined as the inverse of the probability of inclusion for that unit in a given sample,

and these design weights can be computed for all sampled units in a probability sample

(where every population element has a known nonzero probability of inclusion), including

respondents and nonrespondents. Inference in design-based approaches is driven by these

probabilities of selection, and these components of the weight ensure that estimates

computed using the weights appropriately reflect the probability of selection for a given

case from a specified target population. Under an extremely unusual scenario where 100

percent of the sampled population units respond to a survey request, one could compute

population estimates of target parameters that are unbiased with respect to the sample

design using this single design weight.

Unfortunately, not all sampled population units will respond to a survey request. If

nonresponding units differ systematically from responding units in terms of key features of

interest, nonresponse bias in estimates computed using design-based approaches may

result. For this reason, the design weights are often adjusted to account for differential

nonresponse among different population subgroups, treating the probability of responding

as an additional stochastic stage of sample selection (Cassel et al. 1983; Särndal and

Swensson 1987; Ekholm and Laaksonen 1991), and multiplying the design weights for

responding units by the inverse of their response probability. Because these probabilities

of response are not known in practice, they need to be estimated. Given auxiliary data for

respondents and nonrespondents that are generally predictive of both the probability of

responding and key survey variables (Lessler and Kalsbeek 1992; Bethlehem 2002; Kalton

and Flores-Cervantes 2003; Little and Vartivarian 2005; Beaumont 2005; Groves 2006;
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Kreuter et al. 2010), the literature provides extensive guidance on optimal methods for

estimating these response probabilities and using them to adjust the design weights for

nonresponse (Little 1986; Ekholm and Laaksonen 1991; Eltinge and Yansaneh 1997; Grau

et al. 2006; Wun et al. 2007; Haziza and Beaumont 2007; West 2009; Kott 2012; Valliant

et al. 2013; Brick 2013; Flores-Cervantes and Brick 2016).

The next (and generally final) step in computing adjusted design weights is to calibrate

the (nonresponse adjusted) weights for responding units to sum to known population

control totals, ensuring sound population representation in terms of the marginal

distributions of (generally sociodemographic) population characteristics. There is a vast

literature on this topic (Deville and Särndal 1992; Lundström and Särndal 1999; Rao 2005;

Kott 2006; Kim and Park 2010; Kott 2011), and one can use a variety of approaches to

perform calibration adjustments in practice, including poststratification (Holt and Smith

1979), raking (Oh and Scheuren 1983; Deville et al. 1993), and generalized regression

estimation (Valliant et al. 2000), which can utilize population information for both

continuous and categorical variables. Kott and Liao (2012) outline a calibration procedure

implemented in the WTADJUST procedure of the SUDAAN software that builds on the

developments in prior calibration literature to provide “double protection” against

misspecification of either a substantive model or a response model (based on the auxiliary

variables used in the calibration adjustment) when using calibration for nonresponse

adjustment.

The WesVar software produced by Westat (https://www.westat.com/our-work/

information-systems/wesvarw-support), the calibrate() function in the R survey

package (Lumley 2010), the ipfraking user-written package in Stata (Kolenikov

2014), the sreweight user-written command in Stata (Pacifico 2014), and the

CALMAR 2 software developed by Le Guennec and Sautory (2002) are also capable of

computing calibration adjustments to design weights based on the methods described

above, given population information on the chosen auxiliary variables (see http://

vesselinov.com/CalmarEngDoc.pdf for more details on the various calibration options in

the CALMAR 2 software). The final calibrated weights may then be trimmed to minimize

the impact of weight variance on the precision of weighted survey estimates (Potter 1990;

Elliott and Little 2000; Kalton and Flores-Cervantes 2003; Beaumont 2008; see also

Asparouhov and Muthén 2007 for optimal weight trimming approaches using the Mplus

software). The weights that result from this process then need to be input by analysts into

software procedures enabling design-unbiased point estimation of population parameters

(see Subsection 2.4).

We note that the final overall respondent weights that result from this three-step

process are essentially adjusted versions of the design weights, but software procedures

enabling design-based analysis treat these final respondent weights as if they were design

weights that are “known” with certainty. Because estimates of response propensity are

often used to adjust the design weights for unit nonresponse, this uncertainty in the final

respondent weights should be accounted for in variance estimation. This is best handled

using replication techniques, as outlined in Subsection 2.2 below, where the adjustment

process (based on estimates) can be repeated for each replicate sample, and the variance

in the adjustments across replicates is incorporated into the final variance estimates

(Valliant 2004).
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2.2. Variance Estimation

Taylor Series Linearization (TSL) is a design-based variance estimation technique that is

widely implemented in different statistical software procedures and often serves as a default

variance estimation procedure in these procedures when applying design-based approaches

to complex samples. The basic idea behind TSL is to use a Taylor series expansion to

approximate a non-linear estimator (e.g., a ratio mean, a ratio estimator of total, a regression

parameter, a correlation coefficient) using a linear function of estimated sample totals. Once

the nonlinear estimator is “linearized,” then unbiased, design-based variance estimation

formulae reflecting the complex sampling features (stratification, cluster sampling,

weighting) can be applied to estimate the variance of the linear function of sample totals. The

variance of the linearized estimator is estimated within each stratum (if applicable), and the

stratum variances are combined to produce the total variance of the estimator. Wolter (2007,

Chapter 6) reviews the TSL literature and provides technical details.

There are two important issues that analysts need to handle carefully when employing

TSL for design-based variance estimation: subpopulation analysis, and “singleton”

sampling clusters. First, considering subpopulation analysis, complex sample designs

often employ the sampling of clusters of population elements within sampling strata for

reasons of cost efficiency. The clusters sampled at the first stage of random selection

(possibly within strata) are often referred to as primary sampling units, or PSUs, and these

could be geographic areas in area probability samples, naturally occurring groups of

population elements (e.g., colleges), or individual sampled elements if no cluster sampling

is employed (software enabling design-based analysis will estimate variances under this

assumption if no cluster ID variables are indicated). When analyzing subpopulations (e.g.,

elderly males) and using TSL for variance estimation, analysts need to explicitly form

binary variables indicating which sampled cases fall into the subpopulation of interest, and

use these indicators for variance estimation (which is often facilitated by “subpopulation”

options in the different software procedures, e.g., the subpop() option in Stata). This

approach enables PSUs with no sample from the subpopulation to still be accounted for in

the variance estimation (in that they contribute totals of zero for the variables of interest),

rather than being removed entirely. The physical removal of entire PSUs due to the

deletion of cases that do not belong to a subpopulation can lead to scenarios where

sampling strata only have a single PSU present, preventing variance estimation within that

stratum when using TSL (more on this below). See West et al. (2008) and Heeringa et al.

(2017) for more on this TSL-specific issue, which becomes irrelevant when using

replication methods for variance estimation (as clusters with no subpopulation sample

simply do not contribute to replicate estimates).

Second, considering the “singleton” sampling cluster issue, some PSUs may also be

selected with certainty, meaning (in a design-based setting) that they would be included in

every possible hypothetical sample that might be selected; that is, they have a probability

of inclusion of one. When employing TSL for variance estimation, there need to be at least

two PSUs present within a sampling stratum to estimate the contribution of that stratum to

the overall sampling variance, and certainty PSUs often define their own stratum (e.g., the

city of New York in the United States). Data producers can facilitate variance estimation

using TSL by dividing the sampled elements in a certainty PSU into multiple random
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groups (Wolter 2007), and providing codes for these “pseudo clusters” in a public-use data

set. If a data user for some reason encounters a stratum with only a single PSU code present in

such a data set, most design-based software will provide some form of ad-hoc solution for

estimating the contribution of that stratum to the overall sampling variance. For example,

Stata provides users with several choices via the singleunit() option in the svyset

command, which is used to identify PSUs for variance estimation; SUDAAN provides the

MISSUNIT option (see http://sudaansupport.rti.org/sudaan/page.cfm/Theory); and the

survey package in R provides the user with a variety of global options (see http://faculty.

washington.edu/tlumley/old-survey/exmample-lonely.html for examples).

Replication methods represent a second nonparametric design-based approach to

estimating the variance of a weighted estimate. In general, these methods involve dividing

the full sample into various subsamples, calculating an estimate of the parameter of

interest within each subsample, and calculating the variation among the subsample

estimates to estimate the variance of the full sample estimate. These methods can be

implemented in various forms, including the random groups method (RGM), Jackknife

repeated replication (JRR), balanced repeated replication (BRR), bootstrapping, and

various modifications of these methods (Wolter 2007; Shao and Tu 1995). A key

advantage of these replication methods is that they do not require the linearization of a

nonlinear estimator (Krewski and Rao 1981), and can generally be applied to many

different forms of estimators. These methods also enable survey organizations to

disseminate public-use survey data sets including (adjusted) weights for each of the

replicate samples in lieu of stratum and PSU codes, minimizing the risk of identifying

survey respondents within small PSUs. This requires the data user to employ variance

estimation software that supports the specific type of replication weighting scheme used

by the survey organization, and nearly all major statistical software packages with

procedures enabling variance estimation for complex samples currently enable the use of

these “replicate weights” (e.g., SAS, Stata, R). At present, the bootstrapping approach can

be applied to complex samples in Stata (Kolenikov 2010), R (Lumley 2010), Mplus

(Asparouhov and Muthén 2010), WesVar, SAS, and SUDAAN (Gagne et al. 2014).

So how does a survey statistician choose which variance estimation procedure to use

when employing a particular software procedure for design-based descriptive analysis?

Numerous studies have compared the performance of these alternative variance estimation

methods under different complex sample designs. These include Kish and Frankel (1968,

1970, 1974), Frankel (1971), Bean (1975), Campbell and Meyer (1978), Lemeshow and

Levy (1978), Shah et al. (1977), Rao and Wu (1985, 1987, 1988), Kovar et al. (1988),

Judkins (1990), Shao and Sitter (1996), Korn and Graubard (1999), Canty and Davison

(1999), Rao and Shao (1999), Shao (2003), and Heeringa et al. (2017). These studies have

consistently demonstrated that for many common types of survey estimates (e.g., means,

proportions, regression coefficients), all methods perform well and differences between the

methods are negligible. Exceptions include small samples, where linearization can be

unstable and perform worse than replication methods, and quantiles, where alternative

forms of linearization are needed given that quantiles cannot generally be approximated

using smooth functions of population totals or means (Woodruff 1952; Francisco and Fuller

1991; Sitter and Wu 2001). Many of the studies above demonstrate that BRR and the

bootstrap perform well for medians and functions of quantiles. In addition, linearization
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methods covering all possible nonlinear estimators (e.g., correlation coefficients) and

complex sample designs may not be readily programmed in all software packages.

2.3. Calculation of Degrees of Freedom for Confidence Intervals

Analysts often desire to form confidence intervals for population parameters when

applying design-based methods to complex samples. These intervals, which under an

assumption of large-sample normality of the sampling distribution for the weighted

estimator rely on a critical t-value, also require specification of the appropriate degrees of

freedom for the critical t-value. At present, most statistical software computes these

degrees of freedom based on the aforementioned assumption of large-sample normality,

setting the degrees of freedom equal to the number of clusters used for variance estimation

minus the number of strata (Heeringa et al. 2017). While this approach makes intuitive

sense, given that design-based variance estimates are driven by between-cluster variance

within strata and the standard deviation of the sampling distribution is estimated rather

than known, it is heavily dependent on the aforementioned assumption and can be severely

limited in certain cases (Valliant and Rust 2010). Valliant and Rust (2010) propose an

alternative estimator of the degrees of freedom for the critical t-value and show that it

leads to improved coverage in some cases, but more work in this area, including sensitivity

analyses, is certainly needed. Furthermore, the alternative estimator proposed by Valliant

and Rust has yet to make its way into any statistical software.

Dean and Pagano (2015) provide a recent review of several different methods for

computing confidence intervals for estimated proportions in the descriptive context, with

and without adjustment for the degrees of freedom according to a complex sample design.

Via simulation, these authors found support for use of the logit, Wilson, Jeffreys, and

Agresti-Coull intervals (Agresti and Coull 1998) in complex samples, especially when

proportions are very small or very large. Some of these methods (e.g., the logit approach)

are readily implemented in existing software (e.g., the svy: tab command in Stata).

While the other methods may not be as widely implemented, these authors provide clear

guidance on their computation in practice.

2.4. Software

We now consider state-of-the-art statistical software that is currently available for

implementing the design-based descriptive estimation and inference approaches outlined

above when analyzing complex sample survey data. Table 2 provides a list of presently

available software procedures and profiles their capabilities, in particular considering

1) percentile estimation, 2) variance estimation options, and 3) subpopulation analysis. All

procedures in Table 2 enable appropriate weighted estimation of various descriptive

parameters. A key take-away message from Table 2 is that weighted estimation of

percentiles, combined with design-based variance estimation for the weighted estimates

based on the aforementioned approaches, is not yet widely implemented across the

different software packages. Aside from this, most software packages offer similar

capabilities for design-based descriptive analyses of complex sample survey data.

Examples of the use of syntax for many of these procedures can be found at http://www.

isr.umich.edu/src/smp/asda.
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3. Descriptive Objectives: Model-Based Approaches

3.1. Overview

While descriptive inferences based on complex sample survey data sets generally tend to

arise from design-based approaches (Little 2004), model-based approaches to descriptive

inference have their relative merits as well. Design-based approaches can be heavily

affected by non-sampling errors, such as unit nonresponse, given that they are governed

by knowledge of sampling probabilities for all cases included in a sample. Unlike

design-based approaches, which are based on the notion of random sampling from a

finite population, strictly model-based approaches assume that some superpopulation

model exists, from which the finite populations in the design-based setting are actually

sampled. Interest lies in unbiased estimation of the parameters of that superpopulation

model. Model-based approaches to making descriptive inference generally involve the

specification of a probability model for a variable (or variables) of interest (where the

variable for which descriptive inference is desired is a dependent variable), estimation of

the descriptive parameters of interest (e.g., means) defined by the model, and estimation

of the variance of that estimate with respect to the specified model (Binder and Roberts

2003).

One can also employ model-based prediction approaches when making descriptive

inferences about finite populations. In this case, various auxiliary predictors available for

the larger population (usually in aggregate form) may be included in the specification of

the probability model for the variable of interest. In the case of complex sampling, these

auxiliary predictors can and should generally include some function of the probability of

selection, in addition to stratum identifiers (if these design features are relevant and

informative about the variable of interest; Hansen et al. 1983; Little 2004). In these cases,

predictions are computed on the variable of interest for nonsampled cases or

nonrespondents, using the auxiliary information and parameter estimates in the specified

model, and estimates are computed by combining the observed sample data on the

dependent variable and the model-based predictions for nonsampled or nonresponding

cases (Valliant et al. 2000). Variances of the resulting estimates are then computed with

respect to the properties of the model used. Predictions for the nonsampled cases and

measures of uncertainty for the descriptive parameter of interest may also be computed

based on Bayesian methods (Little 2003), where informative design features should again

be included in the specification of the model (likelihood) for the available data.

Särndal et al. (1992) describe an alternative approach that combines elements of design-

based inference and model-based inference known as model-assisted inference, where

design-based estimates of descriptive parameters (e.g., totals) are adjusted given known

auxiliary variables for the entire population and their relationships with the variable of

interest, and variances of the adjusted estimates are computed with respect to the

randomization distribution (as in design-based inference). The generalized regression

(GREG) estimator is a popular example of the model-assisted approach to making

descriptive inferences from complex sample survey data. Valliant et al. (2000) provide a

comprehensive theoretical overview of related model-based prediction approaches to the

descriptive analysis of survey data.
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Best practices in this area generally focus on how probabilities of selection/weights

should be accounted for in the models, how to make the most efficient use of auxiliary

information available for a finite population, and how to handle nonresponse. For example,

Elliott and Little (2000) discuss efficient model-based Bayesian approaches to

accommodating sampling weights in descriptive inference when large or highly-variable

survey weights may cause design-based approaches to become very inefficient. Little

(2004) presented a model-based approach to descriptive inference combining precision

weighting and probability weighting in a Bayesian framework. This was further expanded

on in Little (2012), who advocated “Calibrated Bayes” (CB) as a framework for survey

inference. The basic idea behind CB is to use a Bayesian model-based approach to produce

inferences that have good design-based properties. The CB approach is intended to

combine the strengths of both design-based and model-based perspectives by explicitly

accounting for survey design information in the model and using only weak prior

distributions that allow the observed data to dominate the inference. Inferences are

calibrated in the sense that they produce posterior credibility intervals that correspond to

their nominal design-based coverage in repeated sampling (Little 2006, 2011, 2012, 2015).

The incorporation of all key survey design features in the model is paramount to this

approach to minimize the effect of model misspecification.

Peress (2010) discussed the use of selection models in a model-based approach to

account for nonignorable nonresponse as a part of the modeling process in estimating a

proportion. Using a related approach, Barnighausen et al. (2011) applied a Heckman-type

bivariate probit selection model in estimating HIV prevalence estimates that adjusted for

nonignorable nonresponse based on a set of selection variables correlated with survey

participation. More recently, West and McCabe (2017) demonstrated how this approach

can be implemented using the Stata software to make descriptive inferences in a

longitudinal context, where nonignorable attrition may be occurring in the future waves of

a panel survey.

3.2. Software

Regarding available software for implementing these model-based approaches to

descriptive inference in surveys, there are not nearly as many “canned” software

procedures implementing these approaches as there are for design-based approaches,

meaning that statisticians would generally need to write code implementing these

approaches for nonstatistical clients. For example, Zheng and Little (2003), Little and

Zheng (2007), and Zangeneh and Little (2015) demonstrate the improvements in estimates

of population totals when using a penalized spline regression model over a design-based

Horvitz-Thompson approach when the sizes of nonsampled units are either known or

unknown, and error variances in the model of interest may be heteroscedastic. Zangeneh

and Little (2015) have developed R code implementing their proposed approach (available

from the authors upon request).

Chapter 8 of Lunn et al. (2012) discusses how the BUGS software (http://www.mrc-bsu.

cam.ac.uk/bugs/welcome.shtml) can be used to generate predictions for nonsampled cases

using a Bayesian approach, where again any complex sampling features would need to be

accounted for in the model specification (Little 2004). More recently, the Stan software
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(http://mc-stan.org/) has become a popular alternative for similar types of Bayesian

approaches, and this software can be readily used in R and Stata (among other platforms).

Interested readers can see http://rpubs.com/corey_sparks/157901 for an example of a

model-based descriptive analysis of survey data using a Bayesian approach in R (calling

the Stan software). Valliant et al. (2000) provided a comprehensive library of S-plus code

for implementing various model-based and model-assisted approaches, and these

functions can generally be adapted in the R software with ease (examples are available

upon request from the first author; see also Valliant et al. (2013) for additional examples).

In general, we recommend that statisticians compare standard errors for descriptive

estimates computed using design-based and model-based approaches, and determine

whether efficiency gains are possible when employing the model-based approaches

discussed in this section.

In more recent work, Si et al. (2015) presented model-based Bayesian methodology for

making robust finite population inferences about means or proportions of interest when

only final survey weights (and no stratum or cluster codes) are available for survey

respondents. This model-based approach simultaneously predicts the distribution of the

final survey weights among nonsampled cases in the population of interest and the values

of the survey variable of interest for these cases (as a function of the weights), enabling

simulations of the full population means or proportions based on posterior distributions

for these descriptive parameters (given the sampled cases and their data). These authors

demonstrated the advantages of this approach for the efficiency of descriptive finite

population estimates (for both full populations and subpopulations), and implemented this

approach in the Stan software (see http://www.isr.umich.edu/src/smp/asda for example

Stan code).

4. Analytic Objectives: Design-Based Approaches

4.1. Overview

Design-based approaches that utilize (adjusted) design weights to fit regression models to

complex sample survey data are in common use (e.g., DuMouchel and Duncan 1983;

Pfefferman 1993; Pfeffermann and Sverchkov 2009; Pfefferman 2011; Lumley and Scott

2017). In the simple case of estimating the parameters of a specified linear regression

model, the standard ordinary least squares (OLS) approach can be modified by

incorporating the final respondent weight into the objective function that minimizes the

finite population residual sum of squares. This weighted least squares (WLS) approach

provides a closed-form, model-unbiased estimator for the regression parameters that also

serves as a pseudo-maximum likelihood estimator for the regression parameters in the

finite population (Binder 1981, 1983; Pfeffermann 2011, Section 3.4). Lohr (2014)

describes how to estimate design effects in this context reflecting complex sampling

features.

For generalized linear models featuring nonlinear relationships between the predictors

and the expectation of the dependent variable of interest (e.g., logistic regression models),

closed-form solutions do not exist for estimation of model parameters. Furthermore,

“standard” maximum likelihood estimation is not possible with complex sample designs
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because the assumption of independent observations is violated by the stratification and

cluster sampling inherent to complex samples (Archer et al. 2007). Binder (1981, 1983)

proposed a pseudo-maximum likelihood estimation (PMLE) framework for fitting

generalized linear models to complex sample survey data. The basic idea of the PMLE

method is to estimate model parameters by replacing finite population likelihood

estimating equations with design-unbiased, weighted estimating equations for the

responding units. Positive evaluations of the PMLE method and its properties can be found

in several studies (Binder 1983; Chambless and Boyle 1985; Roberts et al. 1987; Morel

1989; Skinner et al. 1989; Nordberg 1989; Pfeffermann 1993; Godambe and Thompson

2009). PMLE is now the standard method implemented in many software procedures for

fitting generalized linear models to complex sample survey data.

Binder (1981, 1983) also proposed a general method for linearized variance estimation

for pseudo-maximum likelihood estimates of regression coefficients that is implemented

as the default method in many statistical software packages, and replication methods

generally work equally well in many regression settings, as noted earlier. Hypothesis tests

for regression parameters based on complex sample survey data are carried out by using

the design-based estimates of the variances and covariances and applying commonly used

test statistics, such as Student’s t and the Wald chi-square or Wald F-test. Rao and Scott

(1981, 1984, 1987) proposed a modified Wald chi-square statistic for survey data that

accounts for complex sample design features. This procedure is implemented in many

statistical software packages that support the analysis of complex sample survey data (e.g.,

the svy: tab command and the test post-estimation command in Stata).

4.2. Should Survey Weights Even Be Used to Fit Models?

The use of (adjusted) design weights to fit regression models has some limitations which

have provoked controversy among statisticians (see Pfeffermann 1993; Gelman 2007;

Pfefferman 2011; or Bollen et al. 2016 for reviews of the general issues). Design-based

estimation strategies utilizing probability-weighted estimators generally yield larger

variances than model-based estimation strategies (Korn and Graubard 1999). This loss in

efficiency is more notable for small sample sizes and cases where there is large variation

in the survey weights. For this reason, one best practice in this area is to examine the

sensitivity of the regression results by comparing weighted and unweighted analyses,

which is quite easy to do using current software. If these analyses yield notable

differences, then this may indicate model misspecification and the weighted estimates

should be reported to ensure that they are unbiased with respect to the sample design used.

A review of formal tests for differences between weighted and unweighted regression

analyses can be found in Bollen et al. (2016). It is also worth noting that the use of

probability weighting in the analysis of complex sample survey data is not customary in

some disciplines (e.g., economics) which favor the flexibility of explicitly featuring the

relevant design variables as part of the model-building process.

4.3. Software for Model Fitting

Table 3 presents a summary of available software procedures for fitting regression models

to complex sample survey data using design-based approaches. We emphasize software
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procedures in general-purpose statistical software packages, but other stand-alone

software tools primarily focused on modeling, such as Mplus (see http://www.statmodel.

com/resrchpap.shtml for examples) and Latent GOLD (see the Advanced/Syntax add-on

at https://www.statisticalinnovations.com/latent-gold-5-1/), can also easily fit common

regression models using design-based approaches.

Readily apparent from Table 3 are the following take-away points: 1) different packages

currently vary in terms of the different types of regression models that can be fitted

using design-based methods; 2) design-based post-estimation goodness-of-fit tests are

currently only implemented for logistic regression modeling in Stata; 3) design-based

quantile regression is only implemented in the R survey package and Stata add-on

commands at present; and 4) model diagnostics using design-based approaches are currently

only available for linear regression models in a working package in R (see http://www.isr.

umich.edu/src/smp/asda/svydiags-manual.pdf for details). Examples of the use of syntax

for many of these procedures can be found at http://www.isr.umich.edu/src/smp/asda.

4.4. Software for Model Evaluation and Selection

Numerous design-adjusted model evaluation tools have been developed to evaluate the fits

of regression models based on complex sample survey data. However, the implementation

of some of these tools in popular statistical software packages is not yet widespread. A

modified version of the R 2 statistic is often available for linear regression models, which

estimates the “weighted” proportion of explained variance in the dependent variable after

controlling for the independent variables. Residual diagnostics for complex samples more

generally is an active area of research. Li and Valliant (2015) document the latest advances

in this area and review their implementation in R; a working package for R entitled

svydiags is available from these authors upon request, and examples of the use of this

package are provided in Heeringa et al. (2017). Liao and Valliant (2012a, 2012b)

developed collinearity diagnostics for identifying excessively high correlations between

independent variables that explicitly account for complex sampling features; however,

these diagnostics have not yet made their way into popular statistical software packages.

Li and Valliant (2009, 2011a, 2011b) and Ryan et al. (2015) have proposed methods for

identifying influential data points in linear and logistic regression analyses based on

complex sample survey data, and these also need software development.

Model selection methods for complex samples have also seen recent development. For

instance, Lumley and Scott (2015) developed survey analogues of the popular AIC and

BIC information criteria for regression models fitted using pseudo-maximum likelihood

estimation methods. These methods have been implemented in the R survey package.

Archer et al. (2007) demonstrate that standard goodness-of-fit tests are not suitable for

complex sample survey data and propose alternative tests that account for complex design

features, including an F-test which is a survey analogue to the Hosmer-Lemeshow chi-

square test for logistic regression. Heeringa et al. (2017) provide Wald tests for comparing

nested regression models, following from Hosmer et al. (2013), who note that the standard

likelihood ratio chi-square test is inappropriate for complex sample survey data due to the

violation of key assumptions about the likelihood function that underlie the test. This issue

is addressed further by Lumley and Scott (2013, 2014), who developed partial likelihood
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ratio tests for Cox regression models in the survival analysis context and adapted the

Rao and Scott (1984) chi-square test to the case of design-based likelihood ratio tests in

arbitrary regression models fitted to survey data. These approaches are also currently

implemented in the survey package in R.

4.5. Software for Structural Equation Modeling and Classification Trees

There has also been some work on accounting for complex sample design features in

structural equation and latent variable models (e.g., Muthén and Satorra 1995; Kaplan and

Ferguson 1999; Stapleton 2002, 2006). These design-based approaches to fitting structural

equation models are currently implemented in the Mplus software, the lavaan.survey

package of R (Oberski 2014), the LISREL software, the svy: sem and svy: gsem

commands of Stata, the Latent GOLD software, and PROC LCA (a user-written add-on for

SAS). Some analysts of survey data may also be interested in building classification or

regression trees for generating finite population predictions, and the recently-developed

rpms package in R (Toth 2017) enables analysts to apply regression trees to complex

sample survey data. A more general summary of additional specialized procedures

for fitting models to survey data in R using design-based approaches can be found at

https://cran.r-project.org/web/views/OfficialStatistics.html.

5. Analytic Objectives: Model-Based Approaches

5.1. Overview

Model-based approaches for analyzing survey data given analytic objectives vary. These

approaches are typically implemented under a population- or sample-based modeling

perspective. Under the population modeling perspective, all population units (including

nonsampled units) are included in the analysis model, whereas under the sample-based

perspective, only the sampled (or responding) units are analyzed. Under the population

modeling perspective, one possible approach is to include all design variables and relevant

interaction terms as covariates in the analysis model and effectively integrate these

variables out (Pfeffermann 2011), leaving only the covariates of substantive interest.

Implementing such an approach can be difficult for secondary analysts, because design

variables for the entire population are typically not made available to secondary data users.

Model-based approaches for imputing both the design and substantive variables for the

non-observed portion of the population have been proposed (Feder 2011; Si et al. 2015),

though issues arise when the sample selection is dependent on the substantive variables of

interest – a situation realized in a non-ignorable sampling setting (Pfeffermann and Sikov

2011). A further complication, noted by Pfefferman (2011), is that modeling the

relationship between the design and substantive variables can be quite cumbersome, and

integrating the design variables out of the model may result in an analysis model that does

not reproduce the target model of substantive interest. Pfeffermann (2011) addresses this

issue by demonstrating that the analysis model can be estimated without integrating the

design variables out of the model. When not all design variables are available to the

analyst for the entire population, then the sample weight is sometimes used as a proxy for
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the design variables (DuMouchel and Duncan 1983; Rubin 1985; Chambers et al. 1998;

Wu and Fuller 2006). However, this still requires that the sample inclusion probabilities be

made available to the secondary data analyst for the entire population, which may not be

possible due to confidentiality or other data restrictions.

In contrast, approaches based on the sample modeling perspective need only make use

of the design variables known for the sampled (or responding) units. Model-based methods

employing maximum likelihood techniques estimate the unknown population parameters

using the likelihood of the joint distribution of the design variables and sample covariates

(Gelman et al. 2003; Little 2004). Alternative full-likelihood methods, which utilize the

Missing Information Principle (Orchard and Woodbury 1972), have been explored in

different contexts (Breckling et al. 1994; Chambers et al. 1998; Chambers and Skinner

2003, Chapter 2). Empirical likelihood methods have also been considered for complex

samples (Hartley and Rao 1968; Owen 2001). These methods, while generally more

computationally intensive than design-based approaches, can produce much more efficient

estimates of regression parameters with improved coverage properties (see Pfeffermann

et al. 2006 for an illustration).

5.2. Software

Given the considerations outlined in Subsection 5.1, model-based approaches to analytic

objectives can make use of existing software procedures for fitting regression models. There

is no need to use specialized software for design-based survey analysis to fit these models.

The important aspect of implementing these procedures is making sure that the design

features have been carefully accounted for in the design matrices of the specified models.

6. Analytic Objectives: “Hybrid” Approaches

6.1. Overview

So-called “hybrid” approaches to regression modeling of complex sample survey data

employ multilevel models, and are distinguished by the explicit desire of the researcher to

make finite population inferences about the components of variance in dependent variables

of interest attributable to the different stages of a multi-stage sample design. The theory and

methods for incorporating survey weights into pseudo-maximum likelihood estimation of

the fixed effect and covariance parameters defining a multilevel model were initially

described by Pfeffermann et al. (1998). These methods were later expanded on and evaluated

via simulation by Kovacevic and Rai (2003), Grilli and Pratesi (2004), Asparouhov (2006),

Rabe-Hesketh and Skrondal (2006), Carle (2009), and Pfeffermann (2011). Skinner and

Holmes (2003) and Heeringa et al. (2017) have elaborated on the appropriate use of survey

weights when fitting multilevel models to longitudinal survey data.

These methods for computing weighted estimates of the parameters in multilevel

regression models all require the following: 1) conditional weights at lower levels of the

data hierarchy (e.g., students within schools), which indicate inverses of the probability of

selection conditional on a given higher-level unit (e.g., school) being sampled, and 2) unit-

level weights at the highest level of the data hierarchy (e.g., counties), representing
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inverses of the probabilities of selection for the highest-level sampling unit. Pfeffermann

et al. (1998) and Rabe- Hesketh and Skrondal (2006) clearly describe how the likelihood

functions used to estimate these models are partitioned in a way that requires this

combination of conditional and unconditional weights for unbiased estimation of the

model parameters. More recently, Stapleton and Kang (2016) have described how to

estimate design effects in this context, representing the effects of complex sampling

features on the variance of estimated parameters in multilevel models.

This requirement that the conditional lower-level weights and unconditional higher-

level weights be available for estimation has limited these approaches from gaining

traction outside of the survey statistics literature (see West et al. 2015 for a recent case

study), given the need for public-use data files to include these “specialized” weights for

users, which could introduce disclosure risk concerns. The final respondent weights

provided in a public-use survey data set typically represent inverses of the products of the

probabilities of selection at all stages of a complex sample design; computation of the

conditional weights at lower levels requires dividing the final weights by the higher-level

sampling weights to determine the inverse of the conditional sampling probability required

for estimation. The computation of these weights therefore represents an additional burden

that survey organizations would need to take on for users interested in these “hybrid”

approaches. Chantala et al. (2011) provide important practical guidance and software tools

to assist with this process.

The conditional weights that are specific to each lower-level unit also need to be scaled

or normalized across all higher-level units, to reduce the varying magnitudes of these

weights across the higher-level units. This weight scaling is important because it

minimizes the bias in parameter estimates based on the models (Pfeffermann et al. 1998).

Pfeffermann et al. (1998), Rabe-Hesketh and Skrondal (2006), and Carle (2009) describe

alternative methods for performing weight scaling (e.g., normalizing the lower-level

weights by dividing all of the weights in a higher-level unit by their average, so that they

sum to the sample size within that unit). The literature to date has not demonstrated that

one weight scaling method is superior over another; there has, however, been consistent

agreement that weight scaling needs to be done to minimize bias, especially in the case

of generalized linear regression models (e.g., multilevel logistic regression models;

Rabe-Hesketh and Skrondal 2006). Weight scaling represents an additional data

processing step that may not be “automatic” in the software that is presently available for

these “hybrid” approaches (e.g., the mixed command in Stata); see Rabe-Hesketh and

Skrondal (2006) for worked examples.

6.2. Software

At present, these approaches for weighted estimation of multilevel models are not widely

implemented across statistical software packages. This kind of implementation will be

especially important for these “hybrid” model-based approaches to gain traction among

nonstatisticians. Software packages and specific procedures capable of implementing these

“hybrid” approaches for both linear and generalized linear regression models include Stata

(Version 15.1þ ), SAS (PROC GLIMMIX, SAS/STAT Version 13.1þ ; Zhu 2014), HLM

(Version 7.01þ ), MLwiN (Version 2.35þ ; see http://www.bristol.ac.uk/cmm/software/
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mlwin), Mplus (Version 7.4þ ; see http://www.statmodel.com), and thegllamm command

for Stata (www.gllamm.org). The online documentation for each of these packages provides

worked examples of implementing these “hybrid” approaches (e.g., type “help

mixed#sampling” in the Stata Viewer). Importantly, all of these tools are capable of

implementing either model-based approaches or “hybrid” approaches, depending on how

the survey weights are used.

7. Directions for Future Software Development

First, considering design-based approaches, additional software options enabling variance

estimation for quantile estimates are still needed, where BRR and bootstrap methods have

been shown to produce the best confidence interval coverage (Kovar et al. 1988).

Techniques for accounting for complex sample design features when evaluating the

goodness-of-fit of various regression models in the design-based framework (e.g., Archer

et al. 2007) also need theoretical and computational development. Furthermore, methods

for assessing regression diagnostics need further theoretical development (especially for

generalized linear models), and state-of-the-art diagnostic methods for linear regression

models need to be more widely incorporated in survey analysis software. Finally, more

research needs to consider whether there are better approaches to estimating the design-

based degrees of freedom associated with a given variance estimate when forming

confidence intervals, and implementation of alternative approaches (e.g., Valliant and

Rust 2010) in existing software is still needed.

Second, considering model-based and “hybrid” approaches, the literature currently

lacks a coherent theoretical framework enabling hypothesis testing for the variance

components in a multilevel model estimated using pseudo-maximum likelihood

estimation (see Zhang and Lin 2008 for a review of these methods). The recent work

by Lumley and Scott (2015) needs to be adapted to these types of tests based on multilevel

models estimated using sampling weights. Also important in this area will be the

development of diagnostics for fitted multilevel models (Claeskens 2013) that recognize

complex sampling features. Finally, there is still work to be done in assessing optimal

approaches for fitting multilevel models to longitudinal survey data (Thompson 2015); for

example, should time-varying weights be computed to adjust for differential attrition

at different waves? Or should only cases with complete data be analyzed when fitting

the multilevel models (Heeringa et al. 2017, Chapter 11)? Empirical and theoretical

developments in this area will be important moving forward.

Finally, this review has not touched on statistical analysis approaches involving item-

missing survey data, and how complex sampling features should be accounted for in this

context. Briefly, initial work in this area suggested that models for imputing item-missing

values should include the complex sample design features as covariates, similar to some of

the model-based approaches discussed above (Reiter et al. 2006). More recently, methods

have been developed for simulating synthetic populations, given the complex sampling

features available for a sample, and then imputing missing values using straightforward

methods in these simulated populations prior to making population inferences (Zhou et al.

2016b; Zhou et al. 2016c; see also Zhou et al. 2016a, for example R code). Alongside these

developments using model-based imputation methods, Kim and Fuller (2004) and Kim
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and Shao (2014) have developed fractional hot-deck imputation techniques for complex

sample survey data sets that may offer efficiency advantages over other competing

imputation approaches. These approaches have been implemented in the SURVEYIM-

PUTE procedure of the SAS software (Version 9.4). Future research should consider

the competing benefits and costs of the simulation-based imputation approaches and the

fractional imputation approaches in terms of computational costs and the efficiency of the

finite population estimates produced.
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