
Accounting for Spatial Variation of Land Prices
in Hedonic Imputation House Price Indices:

a Semi-Parametric Approach

Yunlong Gong1,2 and Jan de Haan2,3

Location is capitalized into the price of the land the structure of a property is built on, and land
prices can be expected to vary significantly across space. We account for spatial variation of
land prices in hedonic house price models using geospatial data and a semi-parametric method
known as mixed geographically weighted regression. To measure the impact on aggregate
price change, quality-adjusted (hedonic imputation) house price indices are constructed for a
small city in the Netherlands and compared to price indices based on more restrictive models,
using postcode dummy variables, or no location information at all. We find that, while taking
spatial variation of land prices into account improves the model performance, the Fisher house
price indices based on the different hedonic models are almost identical. The land and
structures price indices, on the other hand, are sensitive to the treatment of location.
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1. Introduction

The construction of house price indices is difficult because houses are traded infrequently

and because properties are unique in terms of their location and structural characteristics.

Hedonic regression and repeat sales methods both deal with these problems. The repeat

sales method controls for location and unchanged structural characteristics as the prices of

the ‘same’ properties are tracked over time (in a regression framework). However, this

method suffers from several problems. For example, since only houses that are sold at least

twice in the data set are used, it ignores single sales and is prone to sample selection bias.

Also, the repeat sales method cannot provide information on the shadow prices of the

property characteristics and thus does not allow the estimation of, for example, price
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indices of the land the structure sits on. Given these problems with repeat sales methods,

we focus on hedonic regression methods.

The hedonic regression method has its limitations as well. A general problem in the

context of housing is omitted variables bias; it is not possible to include all the structural

characteristics into the model, even if data on these characteristics were available (which is

usually not the case). In addition, the true relationship between housing characteristics and

house prices is unknown. The treatment of location is an important issue. One may for

instance include locational variables in the model, such as distance to the city center and

amenities. However, this is a rather data intensive method, and listing all the nodes of

interest within the area is virtually impossible. Instead, researchers often include dummy

variables at some aggregate level, such as postcode areas, to approximate the location

effects. This is obviously a crude approach and could potentially lead to “location biases”.

In this article, we focus on the use of geospatial data, that is information on the exact

location of properties in terms of geographic coordinates, to measure the effect of location.

Not properly accounting for location is likely to result in spatial correlation of house

prices, which will impact on the precision of parameter estimates in hedonic models.

Spatial correlation can be modeled in various ways, for instance via spatial lags or spatial

errors, where a spatial weight matrix is designed to relate the feature of a point in space to

the features of neighboring points. Such spatial econometric methods have been applied in

time dummy hedonic models to estimate house price indices (Hill et al. 2009; Dorsey et al.

2010). Spatial error modelling has also been combined with state-space house price

models which allow the parameters to follow a stochastic process along the time

dimension; the price index can then be constructed through imputations (Rambaldi and

Rao 2011, 2013). Others have directly extended the spatial filter by including time so that

both spatial and temporal correlations are accounted for; these spatiotemporal

autoregressive (STAR) models can generate a price index surface (Pace et al. 1998; Tu

et al. 2004; Sun et al. 2005).

A disadvantage of the above methods is that the value of location and land is not

explicitly modeled. For some purposes, like taxation and national accounting, being able

to decompose the property value into land and structures values would be quite useful

(Diewert et al. 2015; Rambaldi et al. 2015). In the present article, we attain this

decomposition using a simplified version of the so-called builder’s model (Diewert et al.

2011, 2015). We further assume that the value of location is capitalized into the price of

land but not into the price of structures so that land prices are expected to vary across space

whereas the price of structures is ‘fixed’. The spatial variation of land prices is estimated

by Geographically Weighted Regression (GWR), a nonparametric method proposed by

Brunsdon et al. (1996) and Fotheringham et al. (1998b). Combining the land and structures

components, we form a semi-parametric house price model and estimate it by Mixed

Geographically Weighted Regression (MGWR). The (annual) house price index and its

land and structures components are subsequently constructed in an imputation framework.

Our article tries to fill a gap in the Handbook on Residential Property Price Indices

(Eurostat et al. 2013) in which the use of geospatial data to estimate hedonic house price

models is not well covered. Geospatial data has been used before to estimate house price

indices using a semi-parametric method. Clapp (2004), for example, estimated the value of

location and overall property price change by Local Polynomial Regression (LPR). Our
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work differs from Clapp’s approach in a number of ways. The most important difference is

that we incorporate the value of location into land prices and hence are able to construct a

land price index, whereas Clapp treats it as an additive term to house value and thus cannot

distinguish between land and structures values.

The article proceeds as follows. Section 2 outlines some basic ideas about the hedonic

house price model that decomposes the property value into land and structures values and

about the inclusion of additional structural characteristics into the model. Section 3

explains how we treat location; the GWR and MGWR approaches will be discussed in

detail. Section 4 describes how we calculate the hedonic imputation indices. Section 5

presents empirical evidence for the Dutch city of “A” and discusses the results. Section 6

concludes and identifies some potential improvements.

2. A Simplification of the ‘Builder’s Model’

2.1. Some Basic Ideas

Our starting point is the ‘builder’s model’ proposed by Diewert et al. (2011, 2015). It is

assumed that the value of a property i in period t, pt
i, can be split into the value of the land

a tzt
iL

� �
, the value of the structure b tzt

iS

� �
and a random error term ut

i with zero mean:

pt
i ¼ a tzt

iL þ b tzt
iS þ ut

i: ð1Þ

The land and structure values are assumed to be proportional to the plot size zt
iL and the

size of living space zt
iS, respectively. The shadow prices of land and structures in (1), at

and bt, are the same for all properties, irrespective of their location. In Section 3 we relax

this assumption and allow for spatial variation in the price of land.

When applying Model (1) to the data of a sample St of properties sold in period t, a few

problems arise. First, the model has no intercept term, which hampers the interpretation of

R2 and the use of standard tests in Ordinary Least Squares (OLS) regression. Second, a

high degree of collinearity between land size and structure size can be expected, so that at

and bt will be estimated with low precision. To resolve these drawbacks, Equation (1) is

divided by structure size zt
iS, giving

pt *

i ¼ a trt
i þ b t þ 1t

i; ð2Þ

where pt *

i ¼ pt
i=zt

iS is the normalized property price, that is, the value of the property per

square meter of living space, r t
i ¼ zt

iL=zt
iS is the ratio of plot size to structure size, and

1t
i ¼ ut

i=zt
iS. The model now has an intercept term and a single explanatory variable. In

what follows, we focus on this normalized model.

2.2. Adding Structures Characteristics

Models (1) and (2) only incorporate structure size and plot size, which may lead to omitted

variable bias. Here we discuss the inclusion of additional characteristics for the structures

by linearizing the method proposed by Diewert et al. (2015).
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We first consider the age effect and assume a straight-line depreciation model. The

adjusted value of the structure is b t 1 2 d tat
i

� �
zt

iS, where d t is the depreciation rate and at
i is

age of the structure. It is assumed that structure age is available in the data set as an ordinal

(categorical) rather than continuous variable. Using multiplicative dummy variables Dt
ia

that take on the value 1 if in period t property i belongs to age category a ða ¼ 1; : : : ;AÞ

and 0 otherwise, and after reparameterizing to eliminate the term b tzt
iS, the adjusted value

of structure can be expressed as
PA

a¼1g
t
aDt

iazt
iS, where g t

a represents the unit price of a

structure belonging to age category a. While using discrete age may be somewhat

problematic, it introduces some flexibility in that age dummies will not only reflect

depreciation of structure but also capture vintage effect.

When incorporating another attribute, such as the number of rooms, the new value of the

structures becomes b t 1 2 d tat
i

� �
1þ m tzt

iM

� �
zt

iS, where mt is the parameter for the number

of rooms zt
iM . Using dummies Dt

iM for the number of rooms ðm ¼ 1; : : : ;MÞ, and

reparameterizing again, the new adjusted value of structure becomesPA
a¼1 g

t
aDt

iazt
iS þ

PM
m¼1 l

t
mDt

imzt
iS þ

PA
a¼1

PM
m¼1 h

t
amDt

iaDt
imzt

iS. To save degrees of free-

dom, we ignore the second-order interaction terms Dt
iaDt

im and obtain the normalized

model

pt *

i ¼ u t þ a trt
i þ
XA21

a¼1

g t
aDt

ia þ
XM21

m¼1

lt
mDt

im þ 1t
i: ð3Þ

In this model, an intercept term u t is included by excluding dummy variables for age class

A and category M. For a property belonging to age class a ða ¼ 1; : : : ;A 2 1Þ and

category m ðm ¼ 1; : : : ;M 2 1Þ for number of rooms, the unit price of structures equals

u t þ g t
a þ l t

m. Additional categorical variables for the structures can be incorporated in a

similar way.

3. Land and Spatial Heterogeneity

3.1. Location and the Price of Land

It is widely accepted that the value of location is capitalized into the price of land. In most

empirical studies it is assumed that the price of land varies across postcode areas but is

the same within each postcode area. An example is Diewert and Shimizu (2013) who

estimated the ‘builder’s model’ for Tokyo. Applying the same strategy to postcode dummy

variables Dik as was used in Subsection 2.2 for adding structure characteristics, an

improved version of Model (3) for the normalized property price is

pt *

i ¼ u t þ
XK

k¼1

at
kDikrt

i þ
XA21

a¼1

g t
aDt

ia þ
XM21

m¼1

lt
mDt

im þ 1t
i: ð4Þ

Each postcode area now has its own land price at
k. This might be still too crude, however,

depending of course on the level of detail of the postcode system. A more general version

of Model (4) is found by assuming that the price of land can differ at the individual

property level, that is, at the micro location. We denote the property-specific land price
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by a t
i , yielding

pt *

i ¼ u t þ at
ir

t
i þ
XA21

a¼1

g t
aDt

ia þ
XM21

m¼1

lt
mDt

im þ 1t
i: ð5Þ

This model obviously cannot be estimated by standard regression techniques. In

Subsection 3.2 below, we discuss a semi-parametric approach that enables us to estimate

Model (5).

3.2. Mixed Geographically Weighted Regression

The parameters for the structures characteristics (u t, g t
a, and lt

m) in Model (5) are constant

across space, whereas the land price at
i

� �
differs between properties. In other words, we

account for spatial heterogeneity, or spatial nonstationarity as it is often referred to

Brunsdon et al. (1996), of the price of land. One method that deals with spatial

heterogeneity of parameters is the ‘expansion method’ (Casetti 1972; Jones and Casetti

1992). In our case, the price of land would be viewed as an unknown function of the

property’s location in terms of latitude xi and longitude yi or a similar geographic

coordinate system. This function can then be approximated using a Taylor-series

expansion of some order; typically, second-order approximations are applied. Although

the expansion method makes use of geospatial data, it is basically parametric because it

calibrates a prespecified parametric model for the trend of land prices across space

(Fotheringham et al. 1998a).

In this article, we adopt a truly nonparametric approach, namely Geographically

Weighted Regression (GWR), to dealing with spatial heterogeneity of parameters

(Brunsdon et al. 1996; Fotheringham et al. 1998b). Let us for a moment ignore the

structures characteristics to explain how the property-based land prices can be obtained.

Defining ai ¼ aðxi; yiÞ and using matrix notation, Model (5) without structures

characteristics can be written as

p* ¼ r +aþ h; ð6Þ

where p* ¼ ð p*
1; p

*
2; · · ·; p*

nÞ
T , r ¼ ðr1; r2; · · ·; rnÞ

T , a ¼ ðaðx1; y1Þ;aðx2; y2Þ; : : : ;

aðxn; ynÞÞ
T , h ¼ ðh1;h2; · · ·;hnÞ

T , and + is an operator that multiplies each element of a

by the corresponding element of r. We have dropped the superscript t for convenience; it

should be clear that we estimate models for each time period separately. In Model (6), the

land price at point i is a realization of the continuous function a(x,y) at that point.

Model (6) can be estimated using a moving kernel window approach, which is

essentially a form of Weighted Least Squares (WLS) regression. To obtain an estimate for

the price of land aðxi; yiÞ for property i, a WLS regression is run on a subset of properties

close to i on the premise that a property j which is closer to property i has a bigger

influence in the estimation of aðxi; yiÞ. That is

aðxi; yiÞ ¼ ðr
T wðxi; yiÞrÞ

21rT wðxi; yiÞp
*; ð7Þ

where wðxi; yiÞ ¼ diag½w1ðxi; yiÞ;w2ðxi; yiÞ; : : : ;wnðxi; yiÞ� is an n by n spatial weighting

matrix. In this way, we are able to estimate land prices not only for observed properties,
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but also for any imaginary location within the study area, enabling us to plot a continuous

surface of land prices. The predicted values of the house prices are

p̂* ¼ r +a ¼ sp*; ð8Þ

where the so-called hat matrix s is given by

s ¼

r1 rT w x1; y1

� �
r

� �21
rT w x1; y1

� �

r2 rT w x2; y2

� �
r

� �21
rT w x2; y2

� �

..

.

rn rT w xn; yn

� �
r

� �21
rT w xn; yn

� �

2

66666664

3

77777775

:

The weights wij (i – j ) should follow a monotonic decreasing function of distance

between ðxi; yiÞ and ðxj; yjÞ. There is a range of possible functional forms from which we

have chosen the frequently-used bi-square function

wij ¼
1 2 d2

ij=h2
� �2

if dij , h

0 otherwise

8
<

:
; ð9Þ

where h denotes the bandwidth. The choice of bandwidth involves a trade-off between bias

and variance. A larger bandwidth generates an estimate with larger bias but smaller

variance whereas a smaller bandwidth produces an estimate with smaller bias but larger

variance. The usual solution is to select the optimal bandwidth by minimizing the cross-

validation (CV) statistic

CVðhÞ ¼
Xn

i¼1

p*
i 2 p̂*

–iðhÞ
� �2

; ð10Þ

where p̂–iðhÞ is the predicted price of property i where the observation for i has been

omitted from the calibration process.

The above nonparametric GWR approach to dealing with spatial heterogeneity of

land prices has to be extended by including structures characteristics with spatially fixed

parameters, as shown in Model (5). This leads to a specific instance of the semi-

parametric Mixed GWR (MGWR) approach discussed by Brunsdon et al. (1999), where

some parameters are spatially fixed and the remaining parameters are allowed to vary

across space. The estimation of the MGWR model is more complicated than that of the

GWR model. To outline the estimation procedure, we write Model (5) in matrix

notation as

p* ¼ r +aþ DSbþ 1; ð11Þ
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where p*, r and a have the same meaning as in Equation (6), DS is the matrix of structures

characteristics included in Model (5), given by

DS ¼

1 Da
11 · · · Da

1;A21 Dm
11 · · · Dm

1;M21

1 Da
21 · · · Da

2;A21 Dm
21 · · · Dm

2;M21

..

. ..
. . .

. ..
. ..

. . .
. ..

.

1 Da
n1 · · · Da

n;A21 Dm
n1 · · · Dm

n;M21

2

66666664

3

77777775

;

and b ¼ ðu; g1; · · ·; gA21; l1; · · ·; lM21Þ
T is the vector of coefficients relating to DS to be

estimated.

We use the estimation method proposed by Fotheringham et al. (2002), which is less

computationally intensive than the method described in Brunsdon et al. (1999). If the

parameters b were known, the GWR approach (7) could be used to estimate a by

regressing r on p* 2 DSb. Similarly, OLS estimates of b could be obtained by regressing

DS on p* 2 r +a if the property-based parameters a were known. In practice, a four-step

estimation procedure is followed; for details, see Fotheringham et al. (2002), Mei et al.

(2006) and Geniaux and Napoléone (2008). This four-step procedure involves:

(1) regressing each column of DS against r using the GWR approach described by (7) and

then computing the residuals Q ¼ ðI 2 sÞDS,

(2) regressing the dependent variable p* against r using the GWR approach (7) and then

computing the residuals R ¼ ðI 2 sÞp*,

(3) regressing the residuals R against the residuals Q using OLS in order to obtain the

estimates b̂ ¼ ðQT QÞ21QT R,

(4) subtracting DSb̂ from p* and regressing this part against r using GWR approach in

(7) to obtain estimates âðxi; yiÞ ¼ ½r
T wðxi; yiÞr�

21rT wðxi; yiÞðp* 2 DSb̂Þ.

The predicted values for the property prices in Equation (11) can be expressed as

p̂* ¼ sðp* 2 DSb̂Þ þ DSb̂ ¼ Lp*; ð12Þ

with L ¼ sþ ðI 2 sÞDS DT
S ðI 2 sÞT ðI 2 sÞDS

� �21
DT

S ðI 2 sÞT ðI 2 sÞ, which is the hat

matrix for Equation (11).

As discussed above, the parameter estimates and the predicted property prices depend

on the choice of weights, hence on the choice of bandwidth h. The optimal value for h is

determined by minimizing the CV statistic given by (10). In the case of MGWR, the CV

statistic is equivalent to (Mei et al. 2006)

CVðhÞ ¼
1

n

Xn

i¼1

p*
i 2 p̂*

i ðhÞ

1 2 liiðhÞ

� 	2

; ð13Þ

where p̂*
i ðhÞ is the predicted price for property i and lii(h) is the ith diagonal element of

matrix L in Equation (12).
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4. Hedonic Imputation Price Indices

This section addresses the issue of estimating quality-adjusted property price indices.

Suppose sample data is available for periods t ¼ 0; : : : ; T , where 0 is the base period (the

starting period of the time series we want to construct), and suppose Model (5) has been

estimated separately for each period. The predicted property prices are given by

p̂t
i ¼ ât

iz
t
iL þ û t þ

PA21
a¼1 ĝ

t
aDt

ia þ
PM21

m¼1 l̂
t

mDt
im

h i
zt

iS. For short, we write the predicted unit

price of structures, û t þ
PA21

a¼1 ĝ
t
aDt

ia þ
PM21

m¼1 l̂
t

mDt
im, as b̂

t

i and the predicted overall

property price as p̂t
i ¼ ât

i z
t
iL þ b̂

t

i zt
iS ðt ¼ 0; : : : ; T Þ.

We denote the sample of properties sold in the base period by S0. The

hedonic imputation Laspeyres property price index going from period 0 to period t is

defined by

P0t
Laspeyres ¼

X
i[S 0

p̂tð0Þ
iX

i[S 0
p̂0

i

; ð14Þ

Equation (14) may need some explanation. All quantities are equal to 1, reflecting the fact

that each property is considered unique. The index is not affected by compositional change

because it is based on a single sample. Most, if not all, of the properties sold in period 0 are

not resold in period t, and the ‘missing prices’ have to be imputed by p̂tð0Þ
i . We also

replaced the observed base period prices p0
i by the predicted values p̂0

i , a method known as

double imputation. Hill and Melser (2008) discussed different types of hedonic imputation

methods in the context of housing. For a general discussion of the difference between

hedonic imputation indices and time dummy indices, see Diewert et al. (2009) and de

Haan (2010).

The p̂tð0Þ
i are estimated period t constant-quality property prices, that is, estimates of the

prices that would prevail in period t for properties sold in period 0 if the properties’ price-

determining characteristics were equal to those of the base period, which serves to adjust

for quality changes of the individual properties. These constant-quality prices are

estimated by p̂tð0Þ
i ¼ ât

iz
0
iL þ b̂

tð0Þ

i z0
iS, where b̂

tð0Þ

i ¼ û t þ
PA21

a¼1 ĝ
t

a D0
ia þ

PM21
m¼1 l̂

t

mD0
im

denotes the estimated constant-quality price of structures.

Substitution of p̂0
i ¼ â0

i z0
iL þ b̂

0

i z0
iS and p̂tð0Þ

i ¼ ât
iz

0
iL þ b̂

tð0Þ

i z0
iS into (14) yields

P0t
Laspeyres ¼

X
i[S 0

ât
iz

0
iL þ b̂

tð0Þ

i z0
iS

h i

X
i[S 0

â0
i z0

iL þ b̂
0

i z0
iS

h i ¼ ŝ0
L

X
i[S 0

ât
iz

0
iLX

i[S 0
â0

i z0
iL

þ ŝ0
S

X
i[S 0

b̂
tð0Þ

i z0
iS

X
i[S 0

b̂
0

i z0
iS

; ð15Þ

where
P

i[S 0 â
t
iz

0
iL=
P

i[S 0 â
0
i z0

iL is a price index of land and
P

i[S 0 b̂
tð0Þ

i z0
iS=
P

i[S 0 b̂
0

i z0
iS is

a price index of structures. Equation (15) decomposes the overall house price index into

structures and land components; the weights ŝ0
L ¼

P
i[S 0 â

0
i z0

iL=
P

i[S 0 â0
i z0

iL þ b̂
0

i z0
iS

h i
and

ŝ0
S ¼

P
i[S 0 b̂

0

i z0
iS=
P

i[S 0 â0
i z0

iL þ b̂
0

i z0
iS

h i
are estimated shares of land and structures in the

total value of property sales in period 0. The double imputation method ensures that the

weights sum to unity.
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An alternative to the Laspeyres index is the hedonic double imputation Paasche price

index, defined on the sample St of properties sold in period t ðt ¼ 1; : : : ; T Þ:

P0t
Paasche ¼

X
i[S t

p̂t
iX

i[S t
p̂0ðtÞ

i

: ð16Þ

The imputed constant-quality prices p̂0ðtÞ
i are estimates of the prices that would prevail in

period 0 if the property characteristics were those of period t, which are estimated as

p̂0ðtÞ
i ¼ â0

i zt
iL þ b̂

0ðtÞ

i zt
iS, where b̂

0ðtÞ

i ¼ û0 þ
PA21

a¼1 ĝ
0
a Dt

ia þ
PM21

m¼1 l̂
0

mDt
im denotes the period

0 constant-quality price of structures. By substituting the constant-quality prices and the

predicted prices p̂t
i ¼ ât

iz
t
iL þ b̂

t

iz
t
iS into (16), the hedonic imputation Paasche index can be

written as

P0t
Paasche ¼

X
i[S t

ât
iz

t
iL þ b̂

t

iz
t
iS

h i

X
i[S t

â0
i zt

iL þ b̂
0ðtÞ

i zt
iS

h i ¼ ŝtð0Þ
L

X
i[S t

ât
iz

t
iLX

i[S t
â0

i zt
iL

þ ŝtð0Þ
S

X
i[S t

b̂
t

iz
t
iS

X
i[S t

b̂
0ðtÞ

i zt
iS

; ð17Þ

where
P

i[S t â
t
iz

t
iL=
P

i[S t â
0
i zt

iL and
P

i[S t b̂
t

iz
t
iS=
P

i[S t b̂
0ðtÞ

i zt
iS are Paasche price indices

of land and structures, which are weighted by ŝtð0Þ
L ¼

P
i[S t â

0
i zt

iL=
P

i[S t â0
i zt

iL þ b̂
0ðtÞ

i zt
iS

h i

and ŝtð0Þ
S ¼

P
i[S t b̂

0

i zt
iS=
P

i[S t â0
i zt

iL þ b̂
0ðtÞ

i zt
iS

h i
. The weights are now of a hybrid nature

and reflect the shares of land and structures in the estimated total value of property sales in

period t, evaluated at base period prices.

A drawback of the above indices is that they are based on the sample of either the base

period or the comparison period t, but not on both samples. When constructing an index

going from 0 to t, the sales in both periods should ideally be taken into account in a

symmetric fashion. The double imputation Fisher price index

P0t
Fisher ¼ P0t

Laspeyres £ P0t
Paasche

h i1
2

ð18Þ

does so by taking the geometric mean of the Laspeyres and Paasche price indices. The

Fisher index formula is not consistent in aggregation, which means that decomposing

the Fisher property index into structures and land components like Equation (15) and

(17) is not possible. In other words, the Fisher property index can only be derived

directly from house price relatives, but not from aggregating the Fisher structures

index and land index, whereas the Laspeyres and Paasche indices can be obtained in

both ways.

Double imputation Laspeyres, Paasche, and Fisher property price indices and the land

price indices based on the more restrictive hedonic Models (4) or (3) are found by

replacing â0
i and ât

i in (15) and (17) by the corresponding postcode-specific estimates â0
k

and ât
k or the city-wide estimates â0 and â t. In the latter case, the estimated land price

index of course equals â t=â0, irrespective of the index number formula used.
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5. Empirical Evidence

5.1. The Data Set

The data set we utilize was provided by the Dutch Association of Real Estate Agents. It

contains residential property sales for a small city (population is around 60,000) in the

northeastern part of the Netherlands, the city of “A”, and covers the first quarter of 1998

to the fourth quarter of 2007. Statistics Netherlands has geocoded the data. We excluded

sales of condominiums and apartments as the treatment of land deserves special

attention in this case. The resulting total number of sales in the data set during the ten-

year period is 6,058, representing approximately 75 per cent of all residential property

transactions in “A”.

Our data set contains information on time of sale, transaction price, a range of

structures characteristics, and land characteristics. We included only three structures

characteristics in our models, that is, usable floor space, type of house and building

period. Note that, because a sample period of ten years is relatively short and building

period is available in decades only, we decided to use building period in the models

rather than approximate age of the structures (from building period in decades and time

of sale). For land, we used plot size and postcode or latitude/longitude. We deleted 43

observations with missing values or prices below EUR 10,000, properties with more

than ten rooms and those with ratios of plot size to structure size (usable floor space)

larger than ten as well as transactions in rural areas. Finally, we removed 32 outliers or

influential observations detected by Cook’s distance and were left with 5,983

observations during the sample period.

Table A1 in the Appendix reports summary statistics by year for the numerical

variables. The average transaction price and the price per square meter of floor space

increased significantly from 1998 to 2007. Average land size and usable floor space were

quite stable over time. The urban area of the city of “A” seems to have expanded along the

east-west axis; the standard deviation of the x coordinate in later years is generally much

larger than that in earlier years.

5.2. Estimation Results for Hedonic Models

Given the small size of the city of “A” and the resulting low number of observations, we

decided to use annual rather than biannual or quarterly data. We estimated three

normalized hedonic models: Model (3), which does not include location and has a fixed

land price across the city (denoted by FLP), Model (4) with nine postcode dummy

variables, hence with postcode-varying land prices (PCLP), and Model (5) with location-

varying land prices (LLP).

The FLP and PCLP models were estimated by OLS, while the MGWR approach

described in Subsection 3.2 was used to estimate the LLP model. When applying the

MGWR approach, a key point is the selection of the bandwidth in Equation (9) to decide

which neighboring transactions will be used in the estimation of the land price for a

specific property. Given that the transactions in our data set are not evenly distributed

across space, using transactions within a certain distance may not be good practice:

properties located in the densely-populated area will have many neighbors while other
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properties will have only few. We therefore constructed the weighting scheme using the

adaptive bi-square function where the bandwidth relates to a fixed number N of nearest

neighbors that are used in the estimation process. When computing the weights given by

Equation (9), h equals the distance to the Nth nearest neighbor and changes with the

target properties. In practice, the choice of N nearest neighbors is equivalent to the choice

of window size, that is the fraction of the sample used. To find the optimal value, we

varied the window size from ten per cent to 95 per cent using a five per cent interval and

selected the size that yielded the lowest CV score as given by Equation (13). Each annual

sample then has a unique optimal window size. The CV scores indicated that a ten per

cent window size was preferred for most of the years, except for 1999, 2000, and 2002,

with an optimal size of 15 per cent, and for 2003, with an optimal size of 30 per cent.

However, for the construction of price indices we prefer the same window size for all

years, in particular because the number of sales is almost evenly spread across the whole

period. So we chose a window size of ten per cent for each year, leading to 60 nearest

neighbors that were used in the estimation of the LLP models.

As an illustration, Table 1 contains the 2007 parameter estimates for the structures

characteristics. Almost all of the estimates differ significantly from zero at the one per cent

level. To some extent they vary across the different models. For example, the FLP

intercept term is relatively high compared to the PCLP and LLP intercepts. Since dummy

variables for houses built after 2000 and for detached houses were not included, the

intercept measures the price in euros of structures per square meter of living space for

detached houses built after 2000. In accordance with a priori expectations, detached

dwellings are more expensive than other types of houses. For all models, there is a clear

tendency for the structures to become less expensive as they are older.

Table 2 contains summary statistics for the estimated price per square meter of land

from the three models. The three average land price series exhibit a similar pattern over

time, which differs substantially from the changes in the average transaction price of the

properties (see Table A1 in the Appendix). After a sharp increase in 1999, the estimated

average land price fluctuated during a couple of years, experienced a dramatic drop in

2003, and then increased again.

As mentioned earlier, a virtue of MGWR approach is that it allows us to plot a

continuous map with estimated prices of land per square meter. To produce the map, we

first divided the city of “A” into 50 (meters) £ 50 (meters) grids and retrieved the

coordinates of each cell, and then estimated the unit land price of each grid based on

their coordinates. For the year 2007, such a map is depicted in Figure 1, where the land

prices were rescaled to the range [0, 1]. The postcode areas are indicated as well. While

the spatial pattern in Figure 1 is largely consistent with the pattern found using the

PCLP model (shown in Figure A1 in the appendix), the land prices estimates from the

LLP model do vary within some of the postcode areas. This suggests that the use of

postcode dummies, as in the PCLP model, is a rather crude strategy to incorporate

spatial variation of land prices.

To formally compare the performance of the three hedonic models, two statistics were

calculated, the Corrected Akaike Information Criterion (AICc) and the Root Mean Square

Error (RMSE). The AICc takes into account the trade-off between goodness of fit and

degrees of freedom. The AICc expressions for the FLP and PCLP models can be found in
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Hurvich and Tsai (1989); for the LLP model, it is defined by

AICc ¼ 2n ln ðŝÞ þ n ln ð2pÞ þ n
nþ trðLÞ

n 2 2 2 trðLÞ


 �
;

where ŝ is the estimated standard deviation of the error term and trðLÞ the trace of the hat

matrix described in Subsection 3.2. The RMSE measures the variability of the absolute

prediction errors of the models and is given by

RMSE ¼
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i

X
ð pi 2 p̂iÞ

2

s
:

Table 3 shows the AICc and RMSE and their differences for the three models. A rule of

thumb states that if the difference in the AICc for two models is larger than three, a

significant difference exists in their performance (Fotheringham et al. 2002). It can be seen

that the PCLP model performs much better than the FLP model in all years, as we would

expect, and in turn that the LLP model outperforms the PCLP model (except for 2003,

when the difference is insignificant). The same ranking is found if the RMSE is used to

assess the various models. These results confirm the earlier finding that land prices vary

across space, both between and within postcode areas.

Although LLP is obviously better suited to model the variation of land prices and to

predict property prices, the PCLP model does a good job too. In several years, for example

in 1998, 1999 and 2003, the inclusion of postcode dummy variables accounts for the major

part of the variance in overall property prices, almost as much as the LLP model does. This

does not come as a surprise though, given that the MGWR approach used for estimating

the land price of a particular property in the LLP model utilizes the information of

neighboring properties, most of which are likely to be located in the same postcode area.

Table 2. Summary statistics for estimated land prices.

PCLP LLP

FLP Mean S.D. Max Median Mean S.D.

1998 116.80 131.50 31.14 231.03 122.66 125.49 28.66
1999 154.64 178.50 34.85 223.66 174.07 167.77 30.39
2000 239.77 239.41 36.24 319.32 251.34 241.83 44.27
2001 214.54 235.58 47.59 295.01 229.52 226.70 48.77
2002 234.77 245.11 38.41 323.63 255.05 242.23 40.89
2003 166.07 185.11 44.23 248.23 179.93 172.26 44.55
2004 186.40 197.19 29.75 254.20 197.70 195.41 33.78
2005 226.13 224.11 36.55 299.74 214.19 205.89 35.17
2006 202.84 195.77 30.85 274.24 207.43 201.27 32.05
2007 214.87 236.73 27.96 286.91 235.07 229.25 30.99

Notes: For FLP, the land price estimates are reported. For PCLP, the columns show the weighted mean and

standard deviation of the estimated land prices for 9 postcode areas where the weights are equal to the share of

transactions within each postcode area. For LLP, the columns provide summary statistics for the land price

estimates of all transacted properties.
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5.3. Hedonic Imputation Price Indices

Changes in average property prices, and changes in their land and structure components,

are affected by compositional change in the traded properties. Our hedonic house price

indices and the land and structures components control for this. We estimated chained

rather than direct price indices because the value shares of the land and structures will then

be updated at an annual frequency. A drawback of chaining is that the resulting indices

cannot be exactly decomposed because they are not consistent in aggregation.

In Figures 2–4, the estimated double imputation hedonic Laspeyres, Paasche, and

Fisher price indices for the overall property are plotted, based on the three models (FLP,

PCLP, and LLP). A comparison of Figures 2 and 3 shows that, for each model, the chained

Laspeyres index sits above the Paasche index, as expected. The Laspeyres and Paasche

indices based on PCLP and LLP are very similar; for the Laspeyres index, the difference

can even hardly be noticed. This result is in accordance with our previous finding that the

PCLP model captures the spatial variation of land prices reasonably well.

Not using location information at all does make a difference, at least for the Laspeyres

and Paasche house price indices. The FLP-based Laspeyres and Paasche indices seem to

be biased downwards and upwards, respectively. However, the biases almost cancel out in

the Fisher indices, as can be seen in Figure 4: the FLP-based Fisher index is very similar to

the PCLP-based and LLP-based Fisher indices. In other words, the hedonic imputation

Fisher house price index is insensitive to the treatment of location in the hedonic model,

which is a surprising result.

Legend
Rescaled land price

0.0000–0.3330
0.3331–0.4743
0.4744–0.6227

0.7716–1.0000
0.6228–0.7715

N

0 0.5 1 2
Km

Fig. 1. Price of land per square meter, 2007.
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Figure 5 plots the Fisher price indices for land. The PCLP- and LLP-based indices,

which explicitly account for location, are similar, though the LLP-based index is less

volatile, at least during 2003–2007. The FLP-based index seems to be significantly

upward biased. For example, between 1999 and 2000 as well as between 2003 and 2005,

the FLP-based index rises much faster than the other two indices. A possible explanation

is the following. Suppose specific locational attributes improved over time or that

consumers’ preferences changed towards locations with specific characteristics. This will

have caused land prices in some areas to appreciate significantly relative to other areas. If,

as in the FLP model, such heterogeneity is not accounted for, bias in the average estimated

land price is likely to occur. The treatment of location in the FLP model may not only have

produced biased levels of land prices, it might easily have led to a biased trend as well.

100

120

140

160

180

200

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Paasche index 

FLP PCLP LLP

Fig. 3. Hedonic imputation Paasche house price index.
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200

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Laspeyres index

FLP PCLP LLP

Fig. 2. Hedonic imputation Laspeyres house price index.
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Figure 6 shows the Fisher price indices for structures based on the three models. Again,

the PCLP-based and LLP-based indices are similar. The FLP-based index sits below these

two indices, which is not surprising given the above results for land. Since the hedonic

model in this paper leaves out many structural characteristics, which may be correlated

with location, the decomposition of house price index is not strictly orthogonal. In this

sense, upward bias in estimated land prices using the FLP model is therefore likely to

result in downward bias in structures prices.

Figure 7 shows the LLP-based value share estimates for both structures and land. Prior

to 2003, these shares are quite volatile, but from 2003 on they remain fairly constant. The

average estimated shares for structures and land across the entire sample period are 0.67

and 0.33. The FLP- and PCLP-based shares exhibit similar patterns and levels; the value
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Fig. 4. Hedonic imputation Fisher house price index.
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Fig. 5. Hedonic imputation Fisher price indices for land.
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shares for structures are 0.68 and 0.66, respectively, hence for land 0.32 and 0.34. Given

that the estimated value share of structures is twice as large as that of land, overall house

price indices are affected most by changes in structures prices. Yet, combining Figures 4,

5, 6, and 7 suggests that the increase in house prices between 1998 and 2001 was driven

mainly by the increase of land prices: both the (average) price of land and its value share

show a sharp increase.

5.4. Discussion

Figures 5, 6, and 7 raise a number of issues. The first issue is the volatility of the land and

structures price indices. Volatile series can be expected with sparse data (without
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Fig. 6. Hedonic imputation Fisher price indices for structures and official construction cost index.
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Fig. 7. Estimated value shares of land and structures, LLP model.
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smoothing). Another potential cause is multicollinearity. Diewert et al. (2015) found that

multicollinearity between land and structure size led to price changes for land and

structures which consistently had opposite signs. To deal with this type of

multicollinearity, they incorporated exogenous information in the hedonic models; see

also (e.g., Diewert et al. 2009; Diewert and Shimizu 2013; Francke and van de Minne

2017). More specifically, their (final) models did not endogenously determine a price

index of structures but used the published construction cost index as the measure of

structures price change. We did not follow their approach for two reasons: an

endogenously estimated trend in the price of structures does not necessarily have to be

equal to that of construction costs, and multicollinearity does not seem to be the most

important issue.

In Figure 8, the LLP-based Fisher price indices for land and structures from Figures 5

and 6 are copied. In some years, for example in 2003 when the land price index suddenly

falls and starts to sit below the structures price index, the price changes for land and

structures have opposite signs, but in other years the price changes are in the same

direction. The variance inflation factor (VIF) for the ratio of plot size to structure size did

not point to significant multicollinearity either. Further, there is a considerable amount of

variation in these ratios in our data set; see Table A1. We therefore suspect that

multicollinearity is not the main issue.

The second issue is whether the trends of the (Fisher) price indices for land and

structures are plausible. For land, this can hardly be checked since information on the price

change of land covering our sample period is not available for the Netherlands. Rambaldi

et al. (2015), using an unobserved component approach, estimated an endogenous monthly

land price index for the city of “A” from August 2003 to June 2008, denoted by RMF

index. We converted their series into an annual series by averaging the monthly indices,

rebased the resulting index to 2004, and then spliced it on to the LLP land price index for

2004 (see Figure 5). Our LLP hedonic land price index in 2005, 2006, and 2007 is very

similar to the RMF index, which is reassuring, except that the latter index is smoother.
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Fig. 8. Chained Fisher price indices for land and structures, LLP model.
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For structures we use the nationwide construction cost index (CCI) for new dwellings

published by Statistics Netherlands as a benchmark. This price index, rebased to

1998¼100, is shown in Figure 6 as well. Our hedonic structures price indices appear to

rise much faster than the construction cost index. As mentioned above, a construction cost

index does not necessarily have to coincide with an implicit price index for structures

derived from a hedonic model. In a competitive market, where developers also have

sufficient time to meet demand, construction cost is believed to be equal to the market

value of the structure (Davis and Heathcote 2007; Davis and Palumbo 2008). However, in

reality the market is characterized by restrictions on new construction and high costs of

replacing old structures by new ones. In this case, a markup on construction costs can be

expected. During a housing boom, like our study period, the mark up may well be growing

over time. Kuminoff and Pope (2013), who estimated land values for US metropolitan

areas using a hedonic approach, indeed found that in some (though not all) areas the

increase in the market value of the structures exceeded the increase in replacement costs

in the booming period.

Omitted variables bias, resulting in quality-change bias, may have played a role as well.

We included only a few structures characteristics in the hedonic models. Unless they

would be highly collinear with included variables, adding characteristics will lead to better

quality adjustment for structures and lower the hedonic price indices for structures if the

average quality of structures improved over time.

Importantly, the major part of the differences between our hedonic indices and the

construction cost index stems from a big increase in our indices in 2003; as of 2003, the

deviation is relatively small. We reproduced the RMF price index for structures estimated

by Rambaldi et al. (2015) in Figure 6 and, as was the case for land, their index is very

similar to our LLP structures price index in 2005, 2006, and 2007.

The sudden increase in estimated structures prices and drop in estimated land prices in

2003 are worth examining in more detail. At first glance, sample selection bias might

matter, for example if the spatial distribution of transacted properties in 2003 was very

different from that in other years, or if unique properties, like properties with a very large

of plot size to structure size ratios, were transacted in 2003. However, after a careful check

of the data, we exclude this possibility. It could be that the 2003 results are “real” in the

sense that a shock affected households’ decision-making in the Dutch housing market or

perhaps in the local market of “A”. This is quite plausible given that the house price

appreciation rate suddenly dropped from above ten per cent to around four per cent at the

time around 2002 or 2003. But it is not clear to us what that shock might have been.

The third issue concerns the low share of land in the value of properties sold, which was

estimated at roughly one third across the sample period. Rambaldi et al. (2015) estimated

the land value share for the city of “A” during the period 2003–2008 between 0.30 and

0.40. van de Minne and Francke (2012) estimated the share of land for properties

(excluding apartments/condominiums) sold during 2003–2010 in the Dutch city of ‘s

Hertogenbosch at 0.39 on average. In a follow-up study (Francke and van de Minne 2017),

where they made a distinction between the part of the land plot that the structure sits on

and the part used as gardens, the estimate was almost 0.50. It is not unreasonable to find

that the value share of land for the city of “A” is lower than that for ‘s Hertogenbosch. The

city of “A” lies in a less prosperous part of the Netherlands with fewer amenities, and we
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expect this to have a downward effect on the price of land but not on the price of structures,

hence on the value share of land.

De Groot et al. (2015), who also used hedonic modeling to decompose property values

into land and structures components, estimated the price of land for most Dutch cities,

though unfortunately not for “A”. They found substantial cross-city differences. For

example, the price per square meter of land in 2005 was estimated at EUR 717 for the

capital city of Amsterdam, EUR 308 for ‘s-Hertogenbosch, and EUR 184 for

Leeuwarden. Like “A”, Leeuwarden is a city in the northeastern part of the Netherlands

but bigger. In light of their findings, our MGWR estimates of the average price of land

for the city of “A”, EUR 206 in 2005 (Table 2), and the value share of land are not

surprisingly low after all.

6. Summary and Conclusions

Hedonic house price models used for constructing house price indices usually do not

explicitly model the value of land. In the present article, we assumed that the value of

location is capitalized into land and attempted to account for spatial variation of land

prices in the construction of hedonic imputation house price indices. We linearized the

‘builder’s model’ proposed by Diewert et al. (2015), allowed the price of land to vary

across individual properties, and estimated the model for the normalized property price

(the property price per square meter of living space) by MGWR, a semi-parametric

method, on annual data for the Dutch city of “A”. We then constructed chained imputation

Laspeyres, Paasche and Fisher indices, and compared these indices with price indices

based on more restrictive models, that is a model where land prices vary across postcode

areas and a model with no variation in land prices, both estimated by OLS.

The Fisher house price indices were quite insensitive to the choice of model, but the

Laspeyres and Paasche indices for the ‘fixed’ land price model differed from those for the

models where location was explicitly included. The use of postcode area dummy variables

produced price indices very similar to indices obtained by MGWR. Hill and Scholz

(2017), who treated location as a ‘separate characteristic’ in their hedonic models in that

they estimated property-specific shift terms for the overall property price, also concluded

that the use of geocoded information did not significantly improve hedonic imputation

house price indices compared to indices based on models with postcode dummy variables.

This result is reassuring for statistical agencies that do not have the expertise or resources

to apply more sophisticated methods. It should be noted that the similarity between PCLP-

based and LLP-based house price indices could also be due to the small size and

homogeneity of the city “A” where relatively little variation of land prices can be

expected.

Apart from being able to capture spatial variation of land prices at the property level, the

MGWR-based LLP model has two additional advantages. A potential problem with the

PCLP model is that if a large number of postcode areas are distinguished, observations in

some areas may not be available, leading to difficulties in the construction of hedonic

imputation price indices. The LLP model deals with this problem by using data of the

nearest neighbors which are not necessarily confined to a particular postcode area. Most

importantly, The LLP model can generate a continuous map of land prices for a city,
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which will be more informative than a discrete map that only shows differences between

postcode areas.

For some purposes, separate price indices for land and structures are needed. As was

demonstrated already by Diewert et al. (2015), the decomposition into land and structures

using hedonic modeling is not straightforward and raises several statistical and functional

form issues. First, our LLP-based price indices of land and structures for the city of “A”

are a bit volatile, compared to indices produced by smoothing methods such as the

unobserved component approach (Rambaldi et al. 2015). The volatility may be due to

sparse data and also to multicollinearity (though we believe the latter is less important).

Second, the structures price index increases faster than the official construction cost index,

perhaps due a failure to fully control for changes in structures characteristics. Third, the

estimated large drop in land prices and increase in structures prices in 2003 seems a bit

unusual. While these results could be caused by methodological issues, they could also

reflect the impact of a housing market shock which affected households’ preferences.

Finally, at first glance, the estimated value share of land seems to be rather low. The

above-mentioned issues may have played a role here, but the low land share could also be

a real phenomenon: households may not value a square meter of land in the city of “A” as

much as they do in more prosperous cities with more and better amenities. In future work it

would be useful to re-examine our models and compare the results for the city of “A” with

those for bigger cities in the western part of the Netherlands, like Amsterdam, Rotterdam

or The Hague. Having more observations might also enable us to estimate biannual or even

quarterly price indices.

We did not address functional form problems. The original ‘builder’s model’ is

nonlinear, in particular due to the treatment of net depreciation. We linearized the model,

which basically means we ignored interaction terms, and replaced age by building period

in the empirical estimation. Another potential type of misspecification arises from the

linear relation between land price and plot size in our models. As Diewert et al. (2015),

Francke and van de Minne (2017) and others have argued, the marginal price of land tends

to decrease with plot size. Diewert et al. (2015) accounted for this form of nonlinearity by

using linear splines. In future work we may modify our normalized models by using linear

splines as well and estimate different parameters for the plot size to structure size ratio for

different categories of lot size or by explicitly specifying some nonlinear function of this

ratio. Furthermore, it would be useful to explicitly allow for net depreciation, as in the

original models.
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