DE GRUYTER
OPEN

Journal of Official Statistics, Vol. 34, No. 3, 2018, pp. 671-694, http://dx.doi.org/10.2478/JOS-2018-0032

Estimation of True Quantiles from Quantitative
Data Obfuscated with Additive Noise

Debolina Ghatak' and Bimal Roy"

Privacy protection and data security have recently received a substantial amount of attention
due to the increasing need to protect various sensitive information like credit card data and
medical data. There are various ways to protect data. Here, we address ways that may as well
retain its statistical uses to some extent. One such way is to mask a data with additive or
multiplicative noise and revert to certain desired parameters of the original distribution from
the knowledge of the noise distribution and masked data. In this article, we discuss the
estimation of any desired quantile of a quantitative data set masked with additive noise. We
also propose a method to choose appropriate parameters for the noise distribution and discuss
advantages of this method over some existing methods.
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1. Introduction

In official statistics, the main goal of most studies is to analyze a data set to extract
different statistics like mean, median, variance and so on, which may help in various
statistical analyses. However, in case the data is sensitive (e.g., income data, medical data,
marksheet data, etc.), it may be completely impossible to publish it in its raw form. In such
cases, statistical agencies often release a masked version of the original data, sacrificing
some information. Data obfuscation refers to the type of data masking where some useful
information about the complete data set remains even after hiding the individual piece
of sensitive information. Therefore, the main objectives of data obfuscation are (i) to
minimize the risk of disclosure resulting from providing access to the data, and (ii) to
maximize the analytic usefulness of the data.

There are various ways of obfuscating data, such as “Top-coding”, “Grouping”,
“Adding Noise”, “Rank Swapping”, and so on. A detailed discussion on various ways of
obfuscating sensitive data may be found in the papers by Fuller (1993) and Kim and Karr
(2013). Here, we deal with the obfuscation of data using multiplicative or additive noise.
A typical problem involves a true quantitative data set X;, X5, . . ., X,;; Y,Y5, . . ., Y, is
a random sample from some known continuous distribution F(-), drawn independent of
{X; I = i = n}. Then the noised data looks as follows:

Zi=X;+Y;, i=1,2,...,n (Additive Noise Model), or (H
Z;=X;Y;, i=1,2,...,n (Multiplicative Noise Model) 2)
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Incase {X;, 1 = i = n} is known or assumed to follow a certain distribution, it is enough
to estimate the parameters of the distribution as discussed in the papers by Fuller (1993),
Mukherjee and Duncan (1997), and Kim and Karr (2013). If there is no distributional
assumption on {X;, | = i = n}, except that it is continuous, estimating statistics like
mean, variance or raw moments from a multiplicative noise model were studied by Zayatz
et al. (2011). However, the estimation of nonpolynomial statistics like quantiles may be a
problem of concern. Some Bayesian methods to do the same were discussed in the article
by Sinha et al. (2011). In the article by Poole (1974), he discussed the estimation procedure
of the Distribution Curve of the true population from the data collected through
randomized response, randomized with multiplicative noise of a particular form.

However, in all the above cases, authors have mainly concentrated on estimating the
quantiles from data, obfuscated with multiplicative noise. In our problem, we work on
estimating the quantiles in case the noise is additive instead of multiplicative. The goal of
our study is to suggest a procedure with “reasonable” masking of the data set that
may return a “good” guess of the quantiles, (one would prefer if estimation procedures of
other statistics like mean, variance and so on, are also not harmed by the suggested
method). We find an estimate of the distribution function for Normal, Laplace and
Uniform errors that may be equated to 0 < o < 1 to find the required quantiles. A similar
problem was discussed by Fan (1991) on a more general basis, popularly known as the
deconvolution problem. However, we present an alternative way to look at the problem.
We also propose (see subsec. 2.5) a technique for choosing the parameter for the noise
distribution (statement may be found in Proposition 2.4). This is a modest attempt at
solving the problem stated in the first paragraph of the introduction.

In Section 2, we describe our procedure with required proofs in the Appendix section,
and in Section 3, we give some simulation results in support of our procedure. In Section 4,
we give a real life example for further illustration. Finally, in Section 5, we conclude with
some discussions on the whole procedure.

2. Additive Noise Model: Obfuscation and Estimation

We have a data set {X;, ]| = i =< n} that is sensitive and hence cannot be released. We add
an error {Y;, 1 = i = n} to each value in the data set that comes from some known
distribution with a cumulative distribution function F(-). Z; = X; + Y;is the released data
known as obfuscated or masked data. F(-) is the obfuscating distribution.

Let G(-), H(-) be the cumulative distribution functions of X and Z, respectively. We assume
that (i) X and Y are independent, and (ii) X and Y (and hence Z) are continuous random
variables.

Our aim is to find the quantiles of X from the knowledge of Z and F(-). Since we are
interested in all the quantiles, we may try estimating the whole distribution curve G(-) of X,
which can be used to find the required quantiles.

2.1. Basic Problem

Since the problem is to estimate the distribution function of X, one may first think of
writing the cumulative distribution function of X, G(:) in terms of H(:) and F(-). But that
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will not be convenient, since Z and Y are not independent. Instead, we try writing H(-) in
terms of the others. For any real number z,

H(z)= P(Z =2)

=PX+Y =2

[e9)

= J PX +Y = z|Y = y)f(y)dy
where f(-) denotes the probability density function of Y. Since X and Y are independent, we
may write

HE) = J PXX = 2 — yf(y)dy

- J GGz — Y (y)dy

Thus our main equation is,
400

HE) = j Gz — W f()dy. 3)

— 00

This is an integral equation with an infinite range, where G(-) is the unknown function to
be solved, for fis known and H(-) is to be estimated from the data. Note that our equation
says that H is a convolution of f and G. It can alternatively be written as

400
H(z) = J f(z—y) G(y)dy “)
Various methods are known to solve integral equations of different kinds. In the
following subsections, we will deal with some special cases that arise in practical life.
Forms of estimated G(x) are given for Uniform, Normal and Laplace Error (all assumed to
have zero mean). Gaussian Kernel and Silverman’s Rule of Thumb bandwidth were used
to estimate the densities. Then these forms of G(x) are equated to 0 < o <1, to find the
ath quantile of X. Moreover, we discuss (see subsec. 2.5) the choice of appropriate
parameters of the Error Distributions, which minimize the risk of disclosure and error in
estimation. As far as we know, this is a novel approach to the stated purpose.

2.2.  Uniform Error

The following result holds if Y is Uniform(0,a); that is, if the density function of Y'is of the

following form,
1/a,0<y<a
fy)=

0, otherwise.



674 Journal of Official Statistics

Lemma 2.1. If h(:) is the density function of the obfuscated variable Z, then Yx € R
G(x) = ah(x) + ah(x — a) + ah(x — 2a) + - -

In our problem, A(-) is unknown; instead, we can use the kernel density estimate of A(-) to
get an estimate G(x) of G(x) for all x € R. Then, equating G(x) = afor0 <a <1 we get
the ath quantile of X.

Note: If Y has 0 mean, i.e., ¥ ~ Uniform(—%,%), the form of G(x) becomes

G(x)=ah<x—g> +ah(x—37a) +ah(x—57a> +.-

in a similar way.

2.3.  Normal Error

Here f(x) = ¢, (x) = ¢ (x, 0, o°) for x € R, where ¢(x, M, o?) is the normal density at

point x with mean w and variance o>,

Note that if the mean is u # 0 then
Z=X4+Y=Z—-—pn=X+ X — ), Y — p has mean 0, Z — w is known.

So without loss of generality, the mean can be assumed to be zero. The following
Lemma 2.2 gives an estimated form of the distribution function of X.
Before stating the next Lemma, we introduce the following assumption

(A1) The probability densities of X and Y are bounded.

We also let @(x, p,,(rz) denote the cumulative distribution function of the normal
distribution with mean p and variance o 2, evaluated at the point x.

Lemma 2.2. Assume that assumption (Al) holds. Then if Y ~ N(0, o%), an estimate of
G(x) is,

G(x)ziznjrp(x—zj,o,vm—ﬁ), VXER b>0

J=1

where b= 1.06n"1/54,

A= Min( Va\r(Z),IQlﬁ(f) >
o 1 n _ _ 1 n
Var2)=——> (=27 Z=-> 7
i=1 i=1

and,

IQR(Z) = Interquantile range of Z = Third quartile of Z — First quartile of Z.

Note: The restriction on o makes the result very weak since in most cases b > ¢ is not
likely to happen. However if one uses a different Kernel to estimate the density, the
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restriction may not hold in such cases. In the next subsection, we would like to suggest an
alternative way to deal with this problem such that there is no bound on the choice of o.

2.4. Laplace Error

The main reason behind the choice of such Error distribution is because the Laplace
distribution has an “ordinary smooth density” (as defined by Fan (1991)), unlike the
Normal or Cauchy distributions that possess the supersmooth density, which results in an
easy solution to the problem of estimating G(x) with Gaussian Kernel without any
restriction on the choice of parameter.

Lemma 2.3. An estimate of G(x), under assumption (Al) if Y ~ Laplace (0, o?), ie.,

L -
f(x)==—-e |91 VxER,
20
is given by,
1 " 5 2()c—Zj)/b
oo oy o 2
G(x)—;jzl: (1+bz><1>(x,zj,b) 3 J R (5)

1< o? o2 . (X_Z,)Z
:H; (l—l—l)z)(b(x,zj,b)—bz()j l—l—slgn(x—Zj)gG.l) <2b21) (6)

where G p)(x) is the cumulative distribution function of Gamma distribution with
parameters (a,3) at x.

Note: The density function of a Gamma distribution with parameters (o, B) is given below:

1
I'(w)re

0, otherwise.

y*le™,y>0
8ap(y) =

where I'(-) denotes the Gamma function.

2.5.  Choice of Parameters of Error Distribution

It is to be noted that if the variance of the Error distribution is very small compared to the range
of X, then the error behaves like a known constant which can be easily subtracted from Z; to get
a value very close to corresponding X;. Hence a very small variance means no obfuscation at
all. On the other hand, a very large variance may increase the error in estimation to a large
extent. Hence, we need a perfect choice of the parameters of the Error Distribution to efficiently
deal with the whole problem. Towards that, we make the following observation.

After obfuscating a particular value X; we cannot get it back from Z; = X; 4 Y;, but
since we know the distribution of Y;, we will get a confidence interval for each X.
Assuming the mean of Y; is zero, that is, Z; and X; has same mean, suppose for each X; we
want a minimum spread of & with confidence 100(1 — 8)%.
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Proposition 2.4. For fixed 6 > 0 and € > 0 suppose we want a 100(1— 6)% Confidence
Interval to be (Z,— €, Z; + €) (¢ moderately large), then the parameter o of the Error
distribution can be taken as the solution of the equation

B
Fole)=1-7

under the condition that F ; (-) is the cumulative distribution function of a random variable
symmetric about Q.

Proof. Since (Z; — &, Z; + €) is 100(1 — 8) % Confidence Interval for X;,

PlXie(Zi—eZi+e)]=1-8
SPI|Z-X|<e)=1-28

=Py <e)=1-6

Since F(:) is symmetric around 0, we can write
2F;(e)—1=1—96
=2F,(e)=2—0
0
=Fse)=1—=.
(e)=1-3
Hence given & and 6, we can find a value of ¢ from the equation

b)
Fole)=1-7.

Special Cases

Laplace(0, o'?) The c.d.f. is given by,

x|

Fs(x) =0.5+0.5sign(x)| 1 —e ¢

Hence from Proposition 2.4 the solution of o is
&

" logs’

P
x+5
o

Uniform(—%,%) The c.d.f. is given by Fs(x) =

solution of o is

. Hence from Proposition 2.4 the

_ 2¢e
T 1-8

(o

Note. For Normal Error the process only works if the solution is less than the bandwith of
Z. With 95% confidence, a choice of o is approximately &/1.65.
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3. Some Simulation Results

In order to apply the above problem, we simulate a non-normal sample of size n = 2,000,
with IQR/1.34 = 1,000, and then add an error Y; to each sample unit X;, such that (Z; —¢,
Z;+ €) is a 95% C.I. for X;. The parameter for the error distribution is chosen by the
formula in Proposition 2.4. For small e, we apply Uniform, Normal and Laplace Errors
to the sample, while for larger &, Normal is not applicable. We therefore check results
for Uniform and Laplace only. First, we check if the obfuscation is good enough. It is
obvious that obfuscation improves as € increases. In addition, for increasing &, we also
check how the estimation procedure works.

A sample of ten data points is taken from the data set and the corresponding obfuscated
values are given for different errors. In the following Table 1, & is assumed to be 200
(which is very small, since it is much smaller compared to the measure of dispersion of X ).

Figure 1 shows the graph of the true distribution curve {G(x), x € R} along with the
ones estimated from obfuscated data. Table 2 will show estimates of the true quantile
values which is computed from the knowledge of G(x) (Here, G(x) is Laplace(u = 10;
o = 1,000) using the function glaplace under package {rmutil} of R 3.3.2. The quantile
values are calculated from data X; X,, ..., X, using function quantile. Also,
estimated values of the quantiles are shown which we get by equating G(x) with (a: 0
< a < 1) by an iterative search method using the function uniroot; found in the package
{stats} of R 3.3.2.

Note that the true and obfuscated values in Table 1 are quite close, which makes it easier
for an intruder to guess the original value based on the obfuscated one. However, the
estimation works quite well.

Now, we try increasing the value of €. However, as the value increases, the Normal
distribution is no longer an option; larger £ will make o larger than the bandwidth of the
corresponding Z.

The following Table 3 shows the true and obfuscated values of the same data points from
Table 1 for increasing . Figure 2 will show how the estimated curve of G(x) deteriorates
with increasing €. Table 4 gives the estimated and true quantiles for increasing &.

Note that as € increases the obfuscation improves but the estimation deteriorates. This is
quite intuitive, since small & implies no masking at all. As & increases, both Uniform and
Laplace gives result unlike Normal, but from the graph (Fig. 2), we can clearly see that for

Table 1. Showing true and obfuscated values for ten data points selected from the 2,000 data points, € = 200.

No. Data point Uniform Laplace Normal

1 606.768 671.915 651.491 678.75

2 3139.892 3078.08 3166.548 3230.559
3 987.809 891.076 990.928 1023.493
4 2912.623 3120.068 2864.294 2714.819
5 - 1425.763 -1369.556 - 1470.395 -1518.552
6 - 185.086 -305.841 -68.098 -205.403
7 -940.958 -1097.012 -897.075 -804.884
8 -955.503 -964.716 -979.366 -1005.702
9 -224.565 -46.007 -228.214 -304.326
10 -511.614 -470.031 -469.044 -597.995
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Table 2. Estimated quantiles from obfuscated data, € = 200.

o TRUE Original Uniform Laplace Normal

“0.17 -1599.438 -1476.929 -1525.415 -1534.134 -1512.133
“0.2” -906.291 -847.771 - 895.061 -900.945 -893.431
“0.3” -500.826 -491.793 -521.976 -522.429 -525.321
“0.4” -213.144 -224.8 -240.816 -243.329 -245.115
“0.5” 10 -9.7 3.925 2.659 6.166
“0.6” 233.144 242.808 257.094 260.244 267.592
“0.7” 520.826 533.289 552.537 559.502 564.615
“0.8” 926.291 922.478 954.164 966.336 963.852
“0.9” 1619.438 1655.947 1687.02 1697.753 1698.098

larger quantiles the Uniform distribution gives very bad estimates, since the estimate of
G(x) at times even becomes decreasing, which is not at all desirable. However, Laplace
seems to give comparatively better results compared to the Uniform. A theoretical
explanation of the drawback of using Uniform Error is discussed in Section 5. Hence, we
here prefer the use of Laplace Error over Uniform and Normal for reasonably large e.

Hence, to investigate deeper into the statistical properties of such estimates, we note that the
estimate is consistent, as is the estimate by Fan (1991). To evaluate other properties, such as the
bias and mean square error in estimation, we find the Monte Carlo estimates of the bias and
root-mean-squared-error (RMSE) over a simulation of S error samples (We take S = 500, 800
and 1,000). The Tables 5-8 present estimates of bias and RMSE for growing e.

Compared to the dispersion of the data set (IQR = 1:34 = 1,000), the RMSE does not
seem to be very large for £ = 200, 500 or 1,000. £ = 2,000 gives very large bias and
RMSE but that large ¢ is rarely needed.

It can be easily observed that the bias and RMSE were consistent in the sense that 500,
800, and 1,000 simulations resulted in approximately similar values for all the cells in the
above tables 5-8.

Observing the tables 5-8, we note that the main error in estimation comes from the bias
of the estimate. Hence, an estimation of bias for the above problem can be a very
interesting problem and a useful result for future research work.

But from this scenario, it is not clear whether the estimator is consistent, that is, with
increasing n whether the bias decreases, although from Fan (1991) we can easily see that
theoretically the estimate of G(x) is consistent for all x € R. So, to investigate, we simulate
some other samples X;, X5, . . ., X,, using the same distribution as before, but larger n (we
take n = 5,000, 10,000), and obfuscate using Laplace error similarly to find the Monte
Carlo estimates of bias and RMSE, using S = 1,000.

One may easily observe from the tables (Table 7 and Table 8) that there is a decrease in
the value of absolute bias and RMSE with larger n. Hence, with increasing n, ideally, the
error tends to vanish.

4. A Real Life Example

For further illustration, we consider a real life application of the problem. We collect a data
set of grades achieved by 445 students in the second year of the Masters of Statistics
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Fig. 1. True and estimated distribution curve with € = 200.

program at the Indian Statistical Institute Kolkata over ten years, from 2006—2015. As
grades are sensitive data, they cannot be released in raw form. We therefore apply the
above problem to this data and try to find the results. Standard variation of the data was
checked to be approximately 100, so we assumed an & = 200. The bandwidth values from
Uniform and Laplace data was found to be 48.68 and 41.15. The following Table 9
represents true and obfuscated values of ten data points to show how the values are masked
with Uniform and Laplace Errors. From the obfuscated values, the true distribution and
quantiles are then estimated as shown in Figure 3 and Table 10 respectively.

In this problem, o was chosen according to Proposition 2.4 with &€ = 200. Without
access of the obfuscated data, all one knew about the marks of an individual was that it
ranged between 0 to 1,000. Consider the first individual in Table 9. Its masked value after
masking with Laplace(O,o'z) is 733.93. Now, we can say X; € (533.93; 933.93) with 95%
confidence. Hence, a disclosure takes place here. Note that, as per our knowledge, Z; is the
best estimator of X;, based on the available information. However, if the intruder has an
algorithm that can be used to find a better estimator of X; using the knowledge of the
obfuscating distribution and obfuscated data, this disclosure risk may not be valid (it can
easily be shown that if true variance of Y is greater than .25 times the true variance of X,
then Z is a better estimator of X; than Z;; that is, the mean squared error of Z about X; is less
than that of Z; about X; but such a case is rare as o usually does not need to be so large).
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Fig. 2. True and estimated distribution curves with increasing e.
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Table 9. True and obfuscated values for ten data points selected from the 445 data points, € = 200.

No. TRUE Uniform Laplace
“1” 814 960.562 733.931
“2” 750 695.214 829.526
“3” 764 656.395 591.158
“4” 574 704.041 599.055
“5” 614 670.67 586.944
“6” 669 595.926 670.136
“1” 616 553.873 533.097
“8” 674 748.607 677.74

“9” 714 595.295 658.648
“10” 740 883.885 764.591

In this case, Y; is the error in estimation, and there is no risk of disclosure. However, there
is a probability that the error is very small. Hence, the risk of disclosure with error less than
d, is given by,

PllZ; — Xi| < d] = P[lY,| <d]
For § = 1,000 simulations, an estimate of this risk is

S
> izeni-axira
S

where Z; is the masked value of X; for sth simulation and I}, ; = I, if event A occurs and
zero otherwise. The following Table 11 shows estimates of disclosure risk for growing
error values at ten selected points (the points in Table 9), and also a column giving the true
risk value. We see the estimated risks are quite close to the theoretically determined risk at
all the selected points.

5. Conclusion

Given the simulation results and also the real life example one can easily see that an
increase in the value of &, that is, an increase in obfuscation, results in weakly reliable

Value of epsilon is 200
1.0 o
0.8 -
0.6 -
=
© 0.4 -
02 4 —a— TRUE
- a- UNIFROM
0.0 = .- LAPLACE
’ 1 1 I 1 1 I
0 200 400 600 800 1000

X

Fig. 3. Showing estimated distribution curve from TRUE and obfuscated data sets.
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Table 10. Showing estimation of quantiles from original and obfuscated data.

No. Original Uniform Laplace
“0.17 580.8 578.394 555.663
“0.2” 612.8 622.305 596.067
“0.3” 645.2 650.741 633.059
“0.4” 675.6 673.521 664.011
“0.5” 700 695.237 693.693
“0.6” 727 720.346 734.52

“0.7” 750 762.636 770.46

“0.8” 786 831.202 809.933
“0.9” 826.6 888.999 879.513

estimates for both Laplace and Uniform Errors. However, we would prefer the use of
Laplace over Uniform Error, since the Uniform has a serious drawback, as explained in the
next paragraph.

In the case of Uniform Error, the estimate of G(x) is given by the expression

G(x) =%§n:§w:d)(x,zj+ <m+%)a,b>

j=1 m=0

which is nondecreasing if,

200 =%ZZ¢’<x7zj+ <m+%>a,b> =0,

=1 m=0

that is if,

(o)
—Ezn:i (x—Z- - (m—i— l)a) e =0
n j=1 m=0 ! 2
where c is a positive constant.

However, this term may become negative for certain cases. G(x) can therefore decrease
at times, which is not at all desirable, since it is an estimate of a cumulative distribution
function. In our simulations, we found that this problem arose several times, while in case
of Laplace Error, this problem never arose. However, theoretically Equation (5), resulting
from Laplace noise distribution, could not be proven to have a nondecreasing distribution
function, either.

We have currently checked results for Uniform and Laplace distributions. However,
the choice of an optimal density function for obfuscation and estimation has not yet
been properly defined. It would be a challenging problem to define the optimal criterion
and find a density that is capable of satisfying the criterion. The same challenge applies to
finding an optimal & (as defined in subsec. 2.5) for a given data set (X;, X5, . . ., X,).

As discussed in Section 3, the error in estimation is mainly a result of the bias of the
estimate. Hence, an estimation of bias and its correction should lead to a better resolution
of the problem.
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Moreover, as mentioned in Section 4, if the boundary values of the original data are
known, the obfuscation in the boundary region degrades. There is no known solution to
this problem.

Having obtained a quantile estimate, computation of a confidence interval for the
unknown population quantile could be an interesting problem for future work.

However, the problem discussed can easily be applied to many real life problems. The
technique used to solve the above problem can be applied to solve the equations for other
error distributions too. Unlike the historical technique to solve such problems, as given in
Fan (1991), this technique can be applied to cases where the characteristic function of the
Error distribution may take nonpositive value in some regions over the real line.

Appendix

Proof of Lemma 2.1

Proof. Putting the form of f (y) in Equation (3), we have
1 a
H(z) = p G(z — y)dy
0

Now differentiating with respect to z we have
1
h(z) = E{G(Z) — Gz —a)},

which gives
G(z) = ah(z) + G(z — a).
Now, from this relation we have
G(z — a) = ah(z — a) + G(z — 2a).
Inserting this in the expression for G(z) we find
G(z) = ah(z) + ah(z — a) + G(z — 2a)

Repeating this by putting the values of G(z — ma) form = 1,2, . . . in a similar way, we
arrive at the given result.

Proof of Lemma 2.2

Proof. The lemma is proved using the following result from Polyanin and Manzhirov
(Polyanin and Manzhirov 2008).

Result: Consider the equation fojoo K(x — ty(t)dt = f(x), —oco < x < 0o where y(-) is the
unknown function to be determined. Suppose,

@ fO),y(x) € Lr(—00,0)
(i) K(x) € Li(—00,00)
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where the function space Li(S) for some set S and integer k, is the set of all real-valued
Sfunctions {f :S—R, [, LFoolfdx < oo}.

©  fu

oo %) e™du, where f is the Fourier Transform of f, K is the Fourier

Then, y(x) = %T
Transform of K.

Now to apply the given result in our problem note that our equation is
HO = | 60)butz =9y = | G = oty

But H(:) and G(-) are not L,(—o00, 00). So taking the derivative w.r.t. z, we get

(e8]

d
h(z) = = Gz — y)bs(y)dy.

3 >

Now, since g(-) is bounded, for some real 0 < M <o, we have,

d
jZ(G(Z — MDA Y) = 8z — Y)o(y) < My (y)

Now Jiom Mdos(y)dy =M < co. Hence we can interchange the integration and
differentiation sign which gives us,

hz) = J ¢ — Vo )dy

Here, we have used the Leibniz rule for infinite range.

Now, since g(-) and h(-) are bounded by assumption (A1), they are L, — bounded by
Lemma 2.3 of the book “Deconvolution Problems in Non-Parametric Statistics” by
Meister (2009). Also, ¢, € Lj(—00,00).

Hence, applying the last result, in our problem,

But 4 is not known. So, we replace it by h, the Kernel Density Estimate of 4 using standard
Gaussian Kernel and bandwidth selected by Silverman’s “Rule of Thumb”. The general
form of such kind of estimators with an arbitrary kernel function K(-) was discussed by Fan
(1991) where the kernel estimators of mixture densities were studied along with their
asymptotic properties. It is given by

. 1 & —z
h(x) = anK(xbf) (7)
=
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where K(x) = J%r e /2 b=1.06n"3A as defined in the statement of the Lemma.

b

x (1 -Z; '
k) = J - K(x J) e "Ry
nb = b

Plugging in, we get,

Since

1T T =7

—ikx —ikx 2
— K dx = e e 2b*  dx,
b J ( b ) \/27Tb J

which is the characteristic function of a normal random variable with mean Z; and standard

. 2,2
deviation b at the point (— k) and we know that to be equal to e —ikz—tg=
Also, note that
00
- 1 _ —i
¢bo (k) = J 5o 202 g ik gy
\2mo
— 00
_k2 2
252
DY A n o202 —02) o2 2
Therefore, 5(2) === %ijl e T € [)(—,00) if b7 — ¢° > 0,
that is, b > o e 2
If b > o, then,
0 k22 —a?)
1 1< —ikzj— ——— .
g(x) _ 2_ J L e i 2 ezxkdk
T ) n¥
e T
(=2

e 2(b2—(r2
—— UZZ

where we have changed the order of summation and integration. This is nothing but the
mean of n normal p.d.f.s with mean Z; and variance b? — o?. Hence, we get the form given

in Lemma 2.2.

Proof of Lemma 2.3

Proof: Proceeding in the same way as in Lemma 2.2, we have

k22
X 1N —ikzi— ——
hk = —

J=1
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and the Fourier transform at point k of the Laplacian error density with scale parameter o,
denoted as 7,(k), is given by,

~ 1 .
7 y(k) = J %e*'xl/"e*"“‘dx =1+ a%k>!

Hence, the ratio becomes
kb2

hy 1 ) g ikt
= =-Y (1+0%k)e 2
7@ ns

This function is now in Ly(—o0, ) Vb, o. After taking the inverse Fourier transform,
we have

1]1
o= 1N
0 n;,

where

00 k2h2

1 ik(x—Zj)— ——
=5 J (1+Kka%e 2 dk

— 00

=1 + Iy,

% kb2
1 ik(x—2;)— ——
I =— J e "2 gk, and,

k2b2

ik(x—Z)— ——
e ! 2 dk.

Note that the integrand in /;; is nothing but a constant multiple of the characteristic
function of N(0, 1/b) at (x — Z;) and hence, it can easily be shown that

Ilj = ¢(X, Zj7b)

It should now be noted that

0 —k2p2
2
Iy= ;LW J K2e 2 {cos(k(x — Z;)) + isin(k(x — Z;))}dk

—00

Since the sine function is odd and the cosine function is even, we can write

0 _k2p2

o2 e
I = — J cos(k(x — Z;))k*e 2 dk
0
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Defining ¢; = %i(x — Z;) and making a change of variables, we get the expression

V2| -
L = ?ﬁj cos (cj/y)/ye Vdy
0

Next, expanding cos (cj \/V) by a Taylor series and changing the order of summation

and integration, we have

2m 3
Z( (z ) (m+§>

where I'(x) denotes the Gamma function evaluated at the point x. Using the properties of
the Gamma function that I'(x + 1) = xI'(x) and T'(}) = /7 we can further calculate

fy = b32< " om >'< +;>(m_%)%r(%>
wb3z( " om >'( %)(m_%)%r@

2 =9 sz 0o sz
_1\yn J _1\n J
mb3{2m§_:l( " = 247D 22m(m)!}
_ o (%), (Y
— {2(—1)(2) 2 e V2
0.2

_ ~@/2°1] — 2(e. /D)2
Nl [1-2(c;/2)]

b2 b

where we inserted the expression ¢; = g(x — Z;) in the last step. Thus, we can conclude

that
2 1 n 1 N 2
§x) = (1 +%) {;Z ¢<x,zj,b>} - "—252 ( ) $x, Z;, b
i=1 i=1

d)(-xv Zj7 b)
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Hence, integrating g(u) over (—o0, x) we get Equation (5). Moreover, making a simple

change of variable % =y in the term
x—Z;

b
J u? P(u)du

one can easily check whether it is equal to

.. x— 7\’
05+0.5 szgn(x - Zj)g(g,/z’l) (bj>

as stated in Equation (6).
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