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The quantity and quality of administrative information available to National Statistical
Institutes have been constantly increasing over the past several years. However, different
sources of administrative data are not expected to each have the same population coverage,
so that estimating the true population size from the collective set of data poses several
methodological challenges that set the problem apart from a classical capture-recapture
setting. In this article, we consider two specific aspects of this problem: (1) misclassification
of the units, leading to lists with both overcoverage and undercoverage; and (2) lists focusing
on a specific subpopulation, leaving a proportion of the population with null probability of
being captured. We propose an approach to this problem that employs a class of capture-
recapture methods based on Latent Class models. We assess the proposed approach via a
simulation study, then apply the method to five sources of empirical data to estimate the
number of active local units of Italian enterprises in 2011.

Key words: Multisource integration; capture-recapture models; latent class models;
missing data.

1. Introduction

Traditionally, official statistics use primary data obtained from sample and complete

enumeration surveys, whereas secondary data (namely administrative data) are auxiliary

sources of information. Nowadays, National Statistical Institutes (NSIs) are investigating

the possibility of producing official statistics solely from administrative data, such as

register-based statistics (Wallgren and Wallgren 2007). However, since administrative

data are gathered by other organizations for their specific aims, units and variable

definitions may not align perfectly with those of the official statistics program (Zhang

2012; Zhang 2015).

In this article, we focus on population size estimation that uses multiple data sources,

where all sources are incomplete (they do not list all units, and some unobserved units are

not registered in any list), and overlapping (a unit can be registered in several sources). Our

methodological framework is capture-recapture modeling with multiple lists, where the

event of being captured corresponds to the event of being registered in one or more lists.

This scenario is frequently encountered in practice, as the number of available

administrative data sources for NSIs has been constantly increasing. On one hand, the
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increased number of administrative data sources provides the opportunity to use and refine

existing statistical methodologies that exploit the information redundancy. On the other

hand, the different sources of administrative data are rarely of uniform quality. In these

cases, we have a trade-off between the number of sources included in the analysis, and the

overall quality of our data. That is, if we order the sources by quality (according to our past

experience or according to a set of quality indicators), as the number of lists included in the

construction of population estimates increases, the likelihood of violating the classical

assumptions of a capture-recapture setting grows correspondingly. In particular, the main

coverage issues that we encounter in practice are:

1. partial information, where the list only contains information on a specific

subpopulation (subset) of our target population (“incomplete sources/lists”). This

occurs often, as many of the new available sources are obtained from organizations

collecting data for their own purposes, typically targeting a specific set of units (e.g.,

specific categories of workers, enterprises having certain legal form);

2. misclassification, which may be due to differences in the definition of the units or to

delays in the registration/cancellation from a list.

The first problem leads to subsets of units with null probability of being included in

some lists; the second leads to “false captures”, that is, units that do not belong to our

target population, but are erroneously included. As a consequence, each separate list may

be subject to under- and overcoverage. In the vast literature of capture-recapture, these two

problems have rarely been addressed and, to the best of our knowledge, have never been

addressed simultaneously.

The problem of incomplete lists is studied in Sutherland (2003), Sutherland and

Schwarz (2004) and, in different terms, in Zwane et al. (2004). These studies show that

ignoring the incompleteness of the lists, that is, treating the uncatchable units as sampling

zeros for the incomplete lists results in biased estimates of the population size. They

suggest treating the unobservable captures of the units not covered by the incomplete lists

as missing information under a Missing at Random (MAR) assumption. Then, each such

unit is considered as partially classified, that is, as if the capture history is partially

missing, and an Expectation-Maximization (EM) algorithm is presented to estimate the

missing part. Note that this approach allows us to use all records even in the presence of

incomplete lists. This is particularly important for us, since the model we are proposing

requires a certain minimum number of sources to be identifiable (details will be given in a

later section). Hence, in many cases, we cannot avoid using such incomplete lists. If we

wanted to limit the estimation of the model on the subset of the population where all

sources operate, we would have a great loss of information. In fact, we frequently

encounter situations where the missing patterns in the lists are complementary and there is

little or no subset where all sources operate.

As for the second point, in practice, overcoverage is often preliminarily treated by

clerical review of spurious events and duplicated records, or by ad hoc studies that

identify and remove units not belonging to the target population according to a set of

deterministic rules. Afterwards, capture-recapture methodologies are applied to the

treated data, which have been classified as entirely comprising target units. Sometimes, ad

hoc surveys are deployed to estimate the overcoverage. This approach is common in
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censuses, where O-sample coverage surveys are an integral part of the process (Zhang

2015). For example, in the 2008 Israeli Population Census, a 20% sample was selected to

independently validate the correctness of the individual legal address in the Population

Register. The sample is used to estimate individual weights representing under- and

overcoverage parameters. Finally, coverage estimates are based on an extension of the

classic Dual System Estimation, where “false captures” in the Population Register are

accounted for by means of the weights (Kamen 2005).

Whenever a training set of validated data (such as a sample survey) is not available,

we cannot fit a supervised model, and the possibility of an unsupervised approach can be

considered. We treat overcoverage as being entirely induced by misclassification,

without further analysis of the source of error, and propose the use of an unsupervised

approach based on Latent Class Models (LCM), as LCM are particularly suitable for

handling misclassification errors in an unsupervised fashion (e.g., Biemer 2011). The use

of finite mixture models in capture-recapture applications to account for unobserved

heterogeneity in capture probabilities is well known. The logic behind this is to improve

the goodness of fit of the model by partitioning units into two or more homogeneous

groups, according to a discrete latent variable (see e.g., Pledger 2000). In particular, the

use of LCM in capture-recapture dates back to Agresti (1994). Since then, several

extensions to the LCM models have been proposed to include covariates to model

observed heterogeneity, and to relax the local independence assumption of the LCM, that

is, the hypothesis of independence of captures of the same unit in different sources

conditionally on the latent variable (e.g., Bartolucci and Forcina 2001). Relaxing the

local independence hypothesis is of particular interest in our applications, as it is, in most

cases, hardly tenable. For example, consider the case where it is a legal obligation to be

registered on a source in order to be registered in a second source (e.g., any enterprise

registered in the Chambers of Commerce should have a VAT and be registered in the

Tax Revenue Agency). For these reasons, we opted for a generalization of the LCM that

includes dependencies between captures in different lists. These models are sometimes

called Local Dependence Models (Hagenaars 1988) or modified Lisrel models

(Hagenaars 1993) and can be expressed as loglinear models with a latent variable. For

the use of these models in capture-recapture, see Biggeri et al. (1999), and Stangehellini

and Van der Heijden (2004).

The use of a latent variable to directly model overcoverage has been largely ignored in

the literature. A contribution is given in Biemer (2011, Ch. 6.3), who proposes the use of

these models for a Triple System Estimate, in which the classical Dual System Estimator

based on Census data and a coverage survey is extended to a situation where a third

administrative source is added.

In this article, we present some results on the use of these models to jointly estimate

under- and overcoverage in the presence of incomplete lists. The article is structured as

follows. In Section 2, we describe the model used for the estimation of population size

with incomplete lists and false capture, and then we illustrate the algorithm used to

estimate unknown parameters. Section 3 presents a simulation study designed to assess the

performance of the proposed estimation method. An application on empirical data from

an Istat business survey is presented in Section 4. In Section 5, we provide general

conclusions and discuss areas of future research.
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2. Model and Estimation

First of all, let us formalize a simple capture-recapture problem based on loglinear models.

Suppose we have f lists, and let Y1; : : : ; Yf be the binary random variables (r.v.s)

associated with each list such that Yi ¼ 1 when a given unit is observed in the ith list, and 0

otherwise. The set composed of the union of the observations included in the lists has size

nobs and can be arranged in a 2 f contingency table T ¼ n
Y1; : : : ;Yf
y1: : :yf

h i
y1: : :yf [{0;1} f

where

each cell represents the number of observed units presenting a certain pattern ð y1; : : : ; yf Þ

of inclusion in the lists (also known as capture history). Hereafter, the superscript of n is

omitted when the reference to the r.v.s is clear from the context. Cell n0: : :0, corresponding

to ðY1 ¼ 0; : : : ; Yf ¼ 0Þ, is a structural zero cell, since no units can be observed for this

combination. Our goal is to estimate the population size N, where N ¼ nobs þ n0: : :0.

The use of loglinear models is typical in situations where each list has a different

capture probability and captures of the same unit in different lists are not independent.

Actually, in a loglinear model we explicitly model the dependencies between the r.v.s

Y1; : : : ; Yf by means of interaction parameters. The estimate of the unobserved count

n0 : : : 0 (and, in general, of any structural zero cell) is obtained by the maximum likelihood

(ML) estimates of the loglinear model conditional on the observed data (Fienberg 1972).

For ease of understanding, we describe the problem in the simplest case of two lists. The

structure of the data is defined as in Table 1, where the generic cell represents nY1Y2
y1y2

for

y1; y2 [ {0; 1}2. For instance, n10 represents the number of units captured only by list Y1.

We denote the row sum by niþ and the column sum by nþj, where the subscript “þ”

denotes the sum over the index it replaces. The shadowed cells in Table 1 are the observed

counts (their sum is nobs), while the structural zero cell is n00.

In our problem, units observed in the lists do not all belong to the target population. In

order to model this, we add a dichotomous latent variable X, identifying the in-scope and

the out-of-scope units, to the loglinear model, letting

X ¼
1 when a unit is in the target population;

0 otherwise:

(

In this scenario, we are interested in estimating the target population size, that is, the

number N1 of units for which X ¼ 1, N1 þ N0 ¼ Nð Þ.

In every loglinear model considered, the latent variable X interacts with all observed

variables Y1; : : : ; Yf . Hence, the simplest model that we look at (corresponding to a

simple LCM) is:

½XY1�½XY2� : : : ½XYf �; ð1Þ

Table 1. Example of the contingency table defined by two lists Y1 and Y2.

Y2

Y1 Included Not included Total

Included n11 n10 n1þ

Not included n01 n00 n0þ

Total nþ1 nþ0 N

Journal of Official Statistics560



where we use the classic notation of hierarchical loglinear models reporting only the

higher order interaction terms. Then, each additional interaction parameter with respect to

(1) represents a deviation from the local independence assumption of a LCM. The term

Local Dependence Model is generally used for this setting.

A necessary condition for any such model to be identifiable is that the number of

parameters is not smaller than the number of degrees of freedom of the observed

contingency table. As a consequence, we necessitate at least four lists. Note that it is

possible to use three lists by introducing constraints on the parameters (e.g., see Biemer

2011).

To clarify things, we describe the case of two lists (previously introduced in Table 1)

with the introduction of the latent variable X. The complete contingency table is illustrated

in Table 2, where the generic cell is nY1;Y2;X
y1y2x for y1; y2; x [ {0; 1}3, and for instance n101

represents the number of in-scope units captured only in list Y1. The shadowed cells in

Table 2 are the observed counts, and their sum is nobs, while the structural zeros cell are

n001 and n000. The target population size is N1 ¼ nþþ1.

Next, we address the presence of incomplete lists. As described in the introduction, in

the subpopulations where the incomplete lists do not operate, cell counts are treated as if

part of the capture history is missing. This is formalized by defining a stratifying random

variable S, taking values in a finite set S ¼ {s1; s2; : : :}, that partitions the observed

population into different strata where different sets of incomplete lists do not operate. For

example, if we have just an incomplete list, we have two strata: one where all lists operate,

and one where the incomplete list does not operate. Note that we assume a perfect

knowledge of the target population of each list; that is, we can distinguish without

uncertainty whether a unit is not captured in an incomplete list by chance or because it is

out of the scope of that list.

In Table 3 we continue the example of Table 2 by introducing the stratifying variables S.

The two strata are s1, where both lists operate, and s2, where the incomplete list Y2 does not

operate. The complete contingency table is illustrated in Table 3, where the generic cell is

nS;Y1;Y2;X
sy1y2x for y1; y2; x [ {0; 1}3; s [ s1; s2f g, for instance ns1101 represents the number of

in-scope units captured only in list Y1 in strata s1. We remark that an asterisk (*) in the

subscript of n indicates that the corresponding list does not operate in that stratum. For

example, ns21*þ denotes the number of units captured in the first list in stratum s2 where the

second list does not operate. The observed counts are the ones shadowed in the table and

their sum is nobs. In s2 we observe only ns21*þ ¼ ns211þ þ ns210þ.

Table 2. Example of the contingency table defined by two lists Y1, Y2 and a latent variable X.

X

Y1 Y2 In scope Out of scope Total

Included Included n111 n110 n11þ

Not included n101 n100 n10þ

Not included Included n011 n010 n01þ

Not included n001 n000 n00þ

Total nþþ1 nþþ0 N
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In the presence of incomplete lists, there will be more than one structural zero cell to

estimate. The number of structural zero cells varies in each stratum depending on the number

of incomplete lists. More formally, let S ¼ s indicates the stratum where Y1; : : : ; Yk do not

operate. Then, for that stratum we have the following 2k structural zero cells:

n
S;Y1; : : : ;Yk ;Ykþ1; : : : ;Yf

sy1: : :yk0: : :0

n o
ð y1; : : : ; ykÞ[{0;1}k

: ð2Þ

Taking into account also the latent variable X, the number of structural zero cells for each

stratum is 2kþ1. In the example of Table 3, we have two structural zero cells in stratum s1

(ns1001 and ns1000), and four in stratum s2 (ns2011, ns2010, ns2001 and ns2000).

By restating the problem in the general frame of inference with missing data, we can

easily handle both incomplete lists and the latent variable X. We assume the existence of a

complete contingency table T * ¼ nsy1 : : : yf x

� �
of which we observe the marginal counts T,

and we want to estimate

N1 ¼

y1; : : : ;yf [{0;1} f

s[S

X
nsy1: : :yf 1 ¼ nþ: : :þ1:

In this setting, it is not difficult to jointly estimate the cells affected by missing data

(excluding structural zero cells) and the missing dimension X, conditional on T. For this,

we define a loglinear model for T * with parameters {l}, and use the EM algorithm

(Dempster et al. 1977) iterating over the following two steps:

Table 3. Example of the contingency table defined by two lists Y1, Y2, the latent variable X, and the stratifying

variable S.

X

S Y1 Y2 In scope Out of scope Total

s1 Included Included ns1111 ns1110 ns111þ

Not included ns1101 ns1100 ns110þ

Not included Included ns1011 ns1010 ns101þ

Not included ns1001 ns1000 ns100þ

s2 Included Included ns2111 ns2110 ns211þ

Not included ns2101 ns2100 ns210þ ns2
1*þ

Not included Included ns2011 ns2010 ns201þ

Not included ns2001 ns2000 ns200þ

Total nþþþ1 nþþþ0 N

Algorithm 1
E-step: compute the expected counts of cells affected by missing data in T * conditionally

on the observed marginal T and the current estimate of {l}. Note that the
structural zero cells are not considered in this step;

M-step: update the MLE of the parameters {l} of the loglinear model over the frequencies
in the current estimate of T * computed at the E-step.
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In the M-step, we used the Iterative Proportional Fitting (IPF) algorithm to obtain the

MLE of the loglinear parameters (Fienberg 1970).

Once the EM algorithm converges, the current MLE of {l} are used to estimate each

cell of T * including the structural zero cells and, consequently, N1. The structural zero

cells of interest in this context are the unobservable cells for which X ¼ 1, that is, we are

interested in:

n
S;Y1; : : : ;Yk ;Ykþ1; : : : ;Yf ;X
sy1: : :yk0: : :01

n o
ð y1; : : : ; ykÞ[{0;1}k

: ð3Þ

We remark that one cannot easily treat the estimates of the partially missing lists and of

the latent variable X separately, at least not in the context of loglinear models. In fact, one

could be tempted to estimate the complete table T 0 ¼ nsy1 : : : yf

� �
, and then the complete

table T * ¼ nsy1 : : : yf x

� �
conditionally on T 0, by using two loglinear models. However, the

model for T 0 would not be a submodel of the one for T *. In fact, loglinear models are not

“reproducible” or “collapsible”, that is, if X; Y; Z
� �

have joint distribution described by the

loglinear model with parameters {l}, the joint distribution of (Y, Z) would not be readily

derivable from {l}. Even null interaction parameters can have non-zero values in the

marginal model. So, two independent models should be selected and estimated, resulting

in an unpractical procedure.

As an alternative to the EM algorithm implementation presented above, it is

possible to adopt two nested EM algorithms, where the outer one initializes and

updates the structural zero cells (2), while the inner one updates T * including cells (3).

This second approach would maximize the unconditional likelihood, while Algorithm

1 is based on the maximization of the conditional likelihood (see Fienberg 1972).

However, we opted for the conditional likelihood approach since it is computationally

much easier.

3. Simulation Study

In the simulation presented here, we use four lists, the minimum number for any Local

Dependence Model to be identifiable. For the sake of a simpler notation, we denote the

four lists as A, B, C, and D. The probability distribution of our model will be denoted as in

the classic notation of LCM:

PrðA ¼ a;B ¼ b;C ¼ c;D ¼ d;X ¼ xÞ ¼ p ABCDX
abcdx

with a; b; c; d; x [ {0; 1}5. The superscript of p will be omitted where the reference to the

r.v.s is clear. The conditional probabilities PrðA ¼ a jX ¼ xÞ will be denoted as p AjX
ajx

.

Note that the probability p AjX
1j0

represents the overcoverage rate of list A, while p AjX
0j1

represents its undercoverage.

We test our model in four different scenarios. In all scenarios, we use the following

values and coverage rates: N ¼ 106, pX
0 ¼ 0:4, pX

1 ¼ 0:6, and
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p AjX
1j0
¼ 0:25; p BjX

1j0
¼ 0:2; p CjX

1j0
¼ 0:21; p DjX

1j0
¼ 0:29;

p AjX
0j1
¼ 0:3; p BjX

0j1
¼ 0:18; p CjX

0j1
¼ 0:14; p DjX

0j1
¼ 0:17

ð4Þ

The four scenarios, presented in order of complexity are:

Scenario 1. The generating model is a simple LCM with an additional interaction

parameter between C and D. C and D have a correlation of about 0.72 both under X ¼ 1

and X ¼ 0.

Scenario 2. We enhance Scenario 1 by adding a parameter of interaction between A and

B, leaving parameters (4) substantially unchanged. A and B have a correlation of about

0.6 both under X ¼ 1 and X ¼ 0.

Scenario 3. List A is now incomplete. We add S indicating the subpopulation where all

lists are available (S ¼ s1), and the subpopulation for which list A does not operate

(S ¼ s2). S is independent of all other variables, and p S
s1
¼ p S

s2
¼ 0:5.

Scenario 4. We add a parameter of interaction between S and D indicating a

different capture probability for D in the two subpopulations. S and D have a

correlation of 3%.

All lists are complete in Scenarios 1 and 2, whereas in the remaining two Scenarios

there is a single incomplete list A which operates just over half of the population. In

particular, in Scenario 3 the missing mechanism can be considered missing completely at

random (MCAR), as S does not interact with other variables, whereas the missing

mechanism is MAR in Scenario 4.

For each scenario, we specified the generating model for the complete contingency table

T * ¼ ½nsabcdx� with fixed probabilities Pr Nsabcdx ¼ nsabcdxf g ¼ psabcdx and generated 200

independent realizations (samples) of T *. For each sample, we registered the generated

(“true”) values of N1 (the target population size), and of nABCDX
00001 ¼

s

P
nSABCDX

s00001 , (the

undercoverage in the target population), then derived the marginal “observed” counts T on

which we fitted various models.

Table 4 describes the statistical properties of the estimated values of N̂1 and n̂00001 for

each studied model by scenario. The bias and root mean squared error (RMSE) for each

estimate are computed with respect to the corresponding true population values. So, let

N1ði Þ and n00001ði Þ be the “true values” generated in the i–th sample, while N̂1ði Þ and

n̂00001ði Þ are the resulting estimates. Then, bias and MSE reported in Table 4 respectively

are:

BiasðN̂1Þ ¼
X200

i¼1

N̂1ði Þ2 N1ði Þ

200
; Biasðn̂00001Þ ¼

X200

i¼1

n̂00001ði Þ2 n00001ði Þ

200
;

MSEðN̂1Þ ¼
X200

i¼1

ðN̂1ði Þ2 N1ði ÞÞ
2

200
; MSEðn̂00001Þ ¼

X200

i¼1

ðn̂00001ði Þ2 n00001ði ÞÞ
2

200
:

Relative bias (RB) and relative RMSE (RRMSE) are computed with respect to bias or

error respectively of estimates specified with the generating model (indicated with an
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asterisk), so that

RBðN̂1Þ ¼
BiasðN̂1Þ

Bias N̂
*

1

� � ; RB n̂00001ð Þ ¼
Bias n̂00001ð Þ

Bias n̂*
00001

� � ;

RRMSEðN̂1Þ ¼
RMSEðN̂1Þ

RMSE N̂
*

1

� � ; RRMSE n̂00001ð Þ ¼
RMSE n̂00001ð Þ

RMSE n̂*
00001

� � :

Thus, when the estimating and generating model coincide, both RB and RRMSE equal unity.

Note that a simple LCM in this case is equivalent to the loglinear model

½AX�½BX�½CX�½DX�: ð5Þ

The results shown in Table 4 indicate that our estimation strategy works well both

in terms of bias and variance even in presence of various interaction parameters and

incomplete lists when the estimating model is the same as the model generating the

simulations. On the other hand, whenever the estimating model does not coincide with the

generating model, the estimates can be very biased. In particular, models with missing

interaction parameters severely underestimate both N1 and the undercount. Note that an

overparameterized model (see Scenario 1) leads to a less severe deviation from the true

values than the underparameterized models.

Turning to model selection, in Scenarios 1 and 4, the values of the AIC and BIC favor

the correct model in all 200 samples. However, in Scenarios 2 and 3, the AIC and BIC

criteria occasionally favor the second model. In detail, the second estimating model has

a lower AIC in about 25% of samples and a lower BIC in 30% in Scenario 2; the

percentages rise to 40% and 50% in Scenario 3. The simple LCM is never preferred in

any Scenario.

To illustrate the estimation procedure, we refer to Generating Model 3 in Table 4:

lg nsabcdx ¼ lgðNpsabcdxÞ ¼

¼ lþ lx þ la þ lb þ lc þ ld þ ls þ lax þ lbx þ lcx þ ldx þ lab þ lcd

ð6Þ

Here, A and B are independent from C and D conditionally on X and the model can be

defined in terms of conditional probabilities by the following equations:

psabcdx ¼ pxpabjxpcdjxps

psabcd ¼
x[{0;1}

X
pxpabjxpcdjxps

where pabjx and pcdjx are restricted by means of the absence of the second order loglinear

interaction parameters [ABX ] and [CDX ]. The observed marginal counts T correspond to

½ns1abcd�< ½ns2bcd�. The log-likelihood of the observed incomplete data is:

a;b;c;d

X
ns1abcd logps1abcd þ

b;c;d

X
ns2bcd logps2bcd
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while Algorithm 1 is specified in the following way:

After convergence, we have to estimate the structural zero cells nSABCDX
s100001 , nSABCDX

s200001 , and

nSABCDX
s210001 .

4. An Application to Business Statistics

In this section, we present an application of our method to estimate the number of active

local units of Italian enterprises of large dimensions (50 or more employees) in 2011 using

solely administrative data. We compare our model results to the official counts obtained

by a yearly complete enumeration survey on local units of Italian enterprises (IULGI)

conducted by Istat (Consalvi et al. 2008).

We have five administrative sources containing information on the local units of Italian

enterprises that can be used to model the annual measures, namely:

A. The register of enterprise and local units owned by the Italian Chamber of

Commerce, containing compulsory declarations to be submitted by anyone who

wants to open a new local unit.

B. The Yellow Pages owned by SEAT, supplying all the business addresses that have

at least one telephone line.

C. Territorial Insurance Position owned by the agency for the insurance against

work-related injuries, consisting of information on the number of employees with

insurance against accidents per local unit.

D. The Bank register owned by Bank of Italy, holding the addresses of all the bank tellers.

E. The Big Distribution Division Register, owned by NIELSEN, containing the

addresses and the employees of the local units of enterprises operating in the sector

of Big distribution.

In addition to these sources, we have at our disposal the results of the field survey IULGI

conducted to verify the presence of the local units and to obtain selected information on

their characteristics. In the 2011 edition, the survey included all the approximately 30,000

enterprises with more than 50 employees. Since we are focusing on those enterprises,

IULGI constitutes a total enumeration survey. As a consequence, we use it to evaluate the

single sources quality, and the model results.

Table 5 presents the results of a coverage analysis of each single administrative source

with respect to the survey. These results are indicative of high coverage error in all

1. initialize at random an estimate of the posterior probabilities p̂xjs1abcd

� 	
and p̂xajs2bcd

� 	
;

2. estimate the complete contingency table T̂* ¼ nsabcdx½ � excluding the structural zero
cells by computing

n̂s1abcdx ¼ ns1abcdp̂xjs1abcd; ; cells s:t: ða; b; c; dÞ – ð0; 0; 0; 0Þ
n̂s2abcdx ¼ ns2bcdp̂xajs2bcd ; cells s:t: ðb; c; dÞ – ð0; 0; 0Þ;

3. estimate loglinear model (6) on T̂* via IPF conditionally on the unobservable structural
zero cells;

4. update the current value of the observed log-likelihood and of the posterior probabilities
estimate;

5. repeat 2–4 until convergence.
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sources. In particular, source A has high overcoverage level, whereas sources B, C, and

D are mainly affected by undercoverage errors. Note that the values of sources D and E

in Table 5 are constrained to the Bank sector and to the Big distribution sector

respectively.

Table 6 presents the observed counts of the capture profiles of the administrative lists.

The capture profiles are classified according to the operating strata (S ), and the asterisks

(*) indicate where the lists do not operate. In the application, only three strata are observed

since the lists D and E target on not overlapping populations, for instance in s1 only the

lists (A, B, C) operate. The total amount of observed units (nobs) is 298,253.

The data at hand fit perfectly the range of problems addressed in this article. In fact, all

five sources have both under- and overcoverage, lists D and E are incomplete lists of

defined subpopulations, and the capture probabilities of an individual unit are not

independent among the lists. Moreover, there is a credible benchmark given by the

Table 5. Coverage of the administrative sources with respect to the survey.

IULGI

List Not observed Observed

A 0 – 38,109
1 104,570 158,478

B 0 – 145,040
1 6,581 51,547

C 0 – 108,394
1 33,228 88,193

D 0 – 2,811
1 1,190 4,754

E 0 – 3,142
1 3,352 28,325

Table 6. Frequencies (nABCDE) of the capture profiles of the administrative lists by operating strata S.

s1 s2 s3

n001** 24,865 n0001* 1,058 n000*1 662
n010** 2,721 n0010* 2,188 n001*0 596
n011** 2,148 n0011* 493 n001*1 166
n100** 125,459 n0100* 13 n010*0 58
n101** 40,884 n0101* 23 n010*1 62
n110** 20,200 n0110* 17 n011*0 60
n111** 29,414 n0111* 16 n011*1 59
– – n1000* 5,338 n100*0 3,349
– – n1001* 15,220 n100*1 1,491
– – n1010* 1,575 n101*0 767
– – n1100* 29 n110*0 455
– – n1011* 13,984 n101*1 2,030
– – n1101* 250 n110*1 444
– – n1110* 22 n111*0 474
– – n1111* 633 n111*1 1,030
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complete enumeration survey, which allows us to compare and evaluate the results of the

proposed strategy.

The first step is the identification of the model that better fits data. We restricted our

choice of candidate loglinear models to the class of hierarchical model, starting with the

simple LCM and adding interaction terms in an increasing order of complexity. An

exhaustive search is obviously not possible because of the huge number of potential

models. Out of the approximately one hundred models examined, the following models

performed the best in terms of AIC and BIC:

ðM1Þ LCMþ ½S�½AB�½AC�½AE�½BC�½ABX�½ACX�½BCX�

ðM2Þ LCMþ ½S�½AC�½AE�½BC�½BE�½CD�½ACX�½BCX�

ðM3Þ M1þ ½BE�

where LCM indicates the latent class model [AX][BX][CX][DX][EX].

The estimates of undercount, overcount and in-scope population size N1 obtained

with models M1, M2, M3, and LCM are presented in Table 7. For each model, the

goodness-of-fit measures (log likelihood, AIC, and BIC) are provided. For evaluation

purposes, we have also included the official values given by the survey IULGI (first

column of Table 7). Undercount and overcount are calculated comparing the local

units captured by at least one administrative list and IULGI’s list. So, a local unit

captured in a list which is not in IULGI is overcount, while a local unit captured in

IULGI which is not in any administrative list is undercount. Note that the estimate of

N1, obtained by summing the estimate of all cells of T * having X ¼ 1, equals nobs

(298,253 in this case) minus the estimate of the overcoverage plus the estimate of the

undercoverage.

The simple LCM has a poor fit and the estimated counts are distant from the target

values. The models with the lowest AIC and BIC are M3 and M2 respectively. These two

models yield the estimates of N1 closest to the official values. However, each model yields

very different estimates of the under- and overcoverage. In particular, Model M2 entirely

misses the undercount, but the errors in the under- and overcounts offset each other,

resulting in a good estimate of N1. In a real situation, we would discard Model M2 as

implausible and choose Model M3. These results illustrate the sensitivity of the proposed

models to differences in the parameterization. The results indicate that the main challenge

in successfully applying the proposed strategy is finding a model that adequately estimates

both under- and overcoverage in the studied data. In general, model selection is a critical

Table 7. Application result.

IULGI LCM M1 M2 M3

Loglik 2453,024 2447,958 2447,923 2447,920
AIC 906,074 895,956 895,887 895,883
BIC 906,212 896,168 896,099 896,106
Under 28,519 6,701 20,996 0 20,139
Over 130,185 81,305 116,458 104,905 117,790
N1 196,587 223,648 202,791 193,348 200,602
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point to capture-recapture modeling as population size estimate can be sensitive to

changes in the parameterization.

5. Conclusions

The article focuses on the estimation of a population size by using multisource data. The

availability and usage of more information is certainly important, providing new

opportunities for more timely or more detailed estimates. However, it also presents new

methodological challenges. In this study, we estimate the population size by using

multiple-record system methodologies, considering each source as a capturing list of the

units of interest and capture-recapture techniques. The usual assumptions, such as

independence of the captures of a unit in different lists (“Causal Independence”) and

absence of overcoverage, are not valid. Moreover, many administrative lists are

“incomplete”, that is, target a subset of the population of interest. We propose an

estimation procedure that accounts for overcoverage, dependence of the captures in

different lists, and the presence of incomplete lists. In particular, loglinear models are

employed to model the dependence of the captures of a unit in different lists, overcoverage

is modeled by a latent dichotomous variable that represents whether an observation

belongs to the target population, and incomplete lists are addressed by means of an

inferential approach developed in the context of inference with missing data.

We evaluate the proposed estimation on simulated data and on Istat business survey data.

The simulation results are encouraging in that whenever the fitted model is the same as the

one used for generating data, good estimates of the population size in terms of MSE are

obtained. However, when the estimating model differs from the generating one, the

resultant estimates may be biased. Hence, a sensible point when applying the proposed

strategy is to focus on validating the selected estimating model. In our empirical evaluation,

the AIC and BIC proved useful, but before implementing these models in a production

setting, more research is needed in determining useful model selection procedures.

The empirical application highlighted other features of the proposed method. The

algorithm provides estimates of over- and undercoverage in addition to the population

estimates. The variation in levels obtained from the different models indicates that the

coverage estimates may be less precise than the total population size estimates, but they

are nonetheless useful. For example, they can be provided to subject matter experts to help

assess the plausibility of the estimating model, given their practical knowledge or

experience with the input lists. Of course, the choice of the estimating model should not

only take advantage of such specialized knowledge, but should be plausible without it. For

example, a model that produces viable population but, but unrealistic estimates of over- or

undercoverage – such as the M2 model – is not acceptable.

Further studies will examine whether adding covariates might improve the estimating

models and mitigate the impact of a wrong estimating model on the fitted estimates. In

addition, we will consider a Bayesian approach that is, in general, more apt to smooth the

results and to introduce prior information to help the model selection. For example, we

will attempt to explicitly model the uncertainty about the model selection by utilizing

model averaging techniques, placing a prior distribution over a set of possible models; see

Madigan and York (1997) for an application in capture-recapture.
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