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The demand for reliable business statistics at disaggregated levels, such as industry classes,
increased considerably in recent years. Owing to small sample sizes for some of the domains,
design-based methods may not provide estimates with adequate precision. Hence, model-
based small area estimation techniques that increase the effective sample size by borrowing
strength are needed. Business data are frequently characterised by skewed distributions, with a
few large enterprises that account for the majority of the total for the variable of interest,
for example turnover. Moreover, the relationship between the variable of interest and the
auxiliary variables is often non-linear on the original scale. In many cases, a lognormal mixed
model provides a reasonable approximation of this relationship. In this article, we extend
the empirical best prediction (EBP) approach to compensate for informative sampling, by
incorporating design information among the covariates via an augmented modelling
approach. This gives rise to the EBP under the augmented model. We propose to select the
augmenting variable based on a joint assessment of a measure of predictive accuracy and a
check of the normality assumptions. Finally, we compare our approach with alternatives in
a model-based simulation study under different informative sampling mechanisms.
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1. Motivation

Political and economic decision processes require increasingly reliable information on

sub-populations and smaller regions. However, classical sample surveys, in general, can

hardly consider all the different subgroups of interest during the design stage of a survey,

which may lead to direct estimates of insufficient accuracy due to very small sample sizes

in some areas. Under these circumstances, model-based small area estimation methods

have become an effective tool to provide accurate estimates for the subpopulations.

Detailed overviews are given in Rao and Molina (2015) and Pfeffermann (2013).

In recent years, a few papers on applying small area estimation methods in business

statistics have been published (e.g. Hidiroglou and Smith 2005; Krieg et al. 2012; or

Ferrante et al. 2016). Furthermore, within the research project BLUE––enterprise and

trade statistics (BLUE-ETS), funded under the seventh framework programme of the

European Commission, the development of design- and model-based methods for business
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surveys (Bernardini Papalia et al. 2013) was promoted. The successful implementation of

small area estimation techniques in business statistics has to account for high

concentrations of turnover or sizes of industries in many branches, which may vary

considerably among regions. This leads to two problems.

On the one hand, since variables such as turnover or earnings are skewed, classical

model assumptions are often violated and model-based estimates are likely to be biased.

Transformations of these non-linearities to achieve linear relationships may help to

remove, or at least reduce, possible biases of these estimates (Chandra and Chambers

2011). On the other hand, sampling designs are, in general, stratified with respect to

industry (NACE classes – Nomenclature statistique des activités économiques dans la

Communauté européenne) and likely to business size class. These scattered strata may

give rise to highly unequal selection probabilities that are automatically compensated by

design-based methods, but which have to be taken into account if model-based methods

are to be applied. Moreover, attempts at design-optimization, such as the use of probability

proportional to size methods (e.g. Tillé 2006) may have a negative impact on model-based

small area estimation methods, as biases can occur if the size variable is not properly

accounted for in the modelling process. This issue was illustrated by Burgard et al. 2014 in

the context of business surveys. Nonetheless, even if model-based small area estimation

techniques typically require ignorable sampling designs, this assumption is rarely valid in

the practice of business statistics.

An intuitive explanation of a non-ignorable or informative sampling mechanism is that

the model which holds for the sample data, differs from the one which holds in the

population (Pfeffermann and Sverchkov 2009, 455). This informativeness arises because

the conditional independence assumption between the sample membership and the

response variable given the covariates is not satisfied. It should be noted that the

informativeness of a sample can also be a result of the response process, which is an issue

that we do not cover here, as the focus of our article is informativeness due to the sampling

mechanism (see the discussion in Valliant et al. 2000, Sec. 2.6.2).

The consequences of an informative sampling mechanism on model-based small area

methods are severe, as biased estimates of a single model parameter such as the intercept

may cause biased small area estimates. Therefore, different methods were developed to

obtain model-unbiased estimates in the presence of an informative sampling mechanism.

Prasad and Rao (1999) as well as You and Rao (2002) considered a design-consistent

pseudo-empirical best linear unbiased prediction (EBLUP) estimator that uses survey

weights to compensate for the informativeness of the sampling mechanisms within areas.

Moreover, Pfeffermann and Sverchkov (2007) proposed modelling the sample weights to

correct for its informativeness. Finally, Verret et al. (2015) suggest augmenting the sample

model with a variable that is a function of the selection probability.

In this article, we consider two different approaches to extend the empirical best

predictor (EBP) under a lognormal model due to Berg and Chandra (2014) in the case of

informative sampling. Our first proposal is to consider the EBP under an augmented

model. We show how to choose the augmenting variable by a measure of the predictive

accuracy, and demonstrate the importance of assessing the normality assumptions of the

augmented model. Further, we propose an additional extension of the EBP estimator using

survey weighted estimating equations.
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The article is structured as follows. In the next section, we present the small area

estimation methods of interest. The third section covers the simulation study. After

introducing the simulation set-up, the relevant model selection tools and diagnostics

needed for finding the augmentation variable are presented. Next, the simulation results

using the modelling proposed by Verret et al. 2015 are presented to show the performance

of the proposed methods in contrast to the other before-mentioned approaches. The article

concludes with a summary and an outlook.

2. Estimation Methods

Our aim is to predict the unknown small area means

md ¼
1

Nd

XNd

j¼1

ydj; d ¼ 1; : : : ;D; ð1Þ

where Nd indicates the population size in area d and ydj denotes the value of the variable

of interest of unit j within area d. We assume that the following lognormal mixed model

holds for the units in the population:

logðydjÞ ¼ xT
djbþ vd þ 1dj; d ¼ 1; : : : ;D; j ¼ 1; : : : ;Nd: ð2Þ

Model (2) is the well-known nested error regression model (Battese et al. 1988) with

logðydjÞ as the dependent variable. In (2), xdj denotes the vector of covariates for unit j in

area d and b refers to the vector of regression parameters. Furthermore, vd denotes the

area-specific random effect and 1dj the idiosyncratic error term. We assume a joint normal

distribution on the random components, which are assumed to be independent from each

other, that is, ðvd; 1djÞ , N 0; diag s 2
v ;s

2
1

� �� �
. To estimate the area means (1), the sample

information on ydj is assumed to be available for nd units in area d ¼ 1; : : : ;D, as well as

the values of xdj for all units in the population.

The best predictor (BP), minimizing the mean squared error (MSE), can be derived

under the implicit assumption that the sampling mechanism is non-informative, that is, the

model for the sampled units is identical to the model which holds for the units in the

population. Berg and Chandra (2014) derive a closed-form expression for the BP under

Model (2) as

~m
BPLog
d ¼

1

Nd j[Sd

X
ydj þ

j�Sd

X
~y

BPLog
dj

2

4

3

5; d ¼ 1; : : : ;D where ð3Þ

~y
BPLog
dj ¼ exp xT

djbþ ~vd þ 0:5s 2
1 ðgd=nd þ 1Þ

� �
; ð4Þ

where gd ¼ s 2
v = s 2

v þ s 2
1 =nd

� �
, ~vd ¼ gd

�ld 2 �xT
db

� �
with �ld ¼ n21

d

Pnd

j¼1 log ðydjÞ and

�xd ¼ n21
d

Pnd

j¼1 xdj.

The BP comprises two parts: Inside the brackets is the sum of the sampled units within

an area plus the sum of the best predictions, given the model and the available data for the

non-sampled units. However, the BP defined by (3) cannot be computed in practice, as the

model parameters j ¼ bT ;s 2
v ;s

2
1

� �T
are generally not known and have to be replaced by
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estimates ĵT . These estimates are obtained from fitting Model (2) to the sample data using

a suitable estimation method, for example, (restricted) maximum likelihood ((RE)ML) or

the method of moments. Berg and Chandra (2014) suggest using REML to fit Model (2)

and obtain the empirical best predictor (EBP) as:

m̂
EBPLog
d ¼

1

Nd j[Sd

X
ydj þ

j�Sd

X
ŷ

EBPLog
dj

2
4

3
5; d ¼ 1; : : : ;D where ð5Þ

ŷ
EBPLog
dj ¼ exp xT

djb̂þ v̂d þ 0:5ŝ 2
1 ðĝd=nd þ 1Þ

� �
: ð6Þ

The MSE of the EBP can be given as an orthogonal decomposition into two parts

according to (Berg and Chandra 2014):

MSE m̂
EBPLog
d

� �
¼ E ~m

BPLog
d 2 md

� �2
þE m̂

EBPLog
d 2 ~m

BPLog
d

� �2
¼ M1d þM2d: ð7Þ

Berg and Chandra (2014) derived a closed-form expression for the leading term M1d, as

well as a linear approximation to M2d. It should be noted that the expressions for both

terms depend on the unknown parameter vector j. Replacing the unknown j by estimates ĵ

leads to a naive estimator of the MSE, owing to a bias of the leading term. Thus, a bias-

correction for M1d, based on the estimated ĵ, is needed. One option in this regard is due to

Berg and Chandra (2014), who proposed to evaluate the leading term at a modified value

of the regression intercept. Alternatively, the jackknife approach from Jiang et al. (2002)

can be employed. Besides correcting the bias of the leading term, this method also

provides an estimate of the M2d-term. This is convenient since the linear approximation

to M2d is cumbersome, owing to the presence of double sums. Moreover, a parametric

bootstrap approach could be used to estimate the MSE of the EBP as well.

When the assumption of a non-informative sampling mechanism does not hold, the EBP

(5) may suffer from severe biases, as the model validated for the sample no longer applies

to the population. To overcome this problem, we consider two approaches based on

extending the lognormal mixed model and a design-consistent estimation of some of the

model parameters. Our first proposal is to apply the approach from Verret et al. (2015) to

the context of lognormal mixed models. The basic idea of this approach is to include the

selection probabilities pdj, or a suitably defined function of them, g( pdj), among the

covariates in the Model (2). This gives rise to the augmented model for the sample data

defined as:

logðydjÞ ¼ xT
djb0 þ gðpdjÞk0 þ v0d þ 10dj; d ¼ 1; : : : ;D; j ¼ 1; : : : ; nd; ð8Þ

where b0 denotes the vector of regression parameters associated with xdj, k0 is the

regression parameter associated with g( pdj) and ðv0d; 10djÞ , N 0; diag s 2
0v;s

2
01

� �� �
. If the

Model (8) can be validated for the sample data, it also holds for the units in the population,

as the response and the sample membership are independent, conditional on the selection

probabilities (Verret et al. 2015; Skinner 1994). Thus, expressions for the BP and EBP

under the augmented model are obtained by replacing xdj with x*
dj ¼

�
xT

dj; gðpdjÞ
�T

, b by

b* ¼ bT
0 ; k0

� �T
and b̂ by b̂* ¼ b̂

T

0 ; k̂0

� �T

in Expressions (3) and (5). In a similar vein, the
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methods to estimate the MSE of the EBP are applicable to estimate the MSE of the EBP

under the augmented model as well.

It should be noted that using the EBP under the augmented model requires knowledge of

the selection probabilities for all units in the population. In some situations, the model

analyst might only have access to the selection or inclusion probabilities for the sampled

units. A simple alternative for such cases is to consider survey-weighted estimates of the

model parameters using the design weights equal to the inverse inclusion probabilities,

wdj ¼ p21
dj . Our proposal follows You and Rao (2002), as we first obtain unweighted

estimates of s 2
v and s 2

1 and then in a second step produce an estimate of b as the solution

from survey weighted estimating Equations (SWEE). Our estimate of b is then given by:

b̂SWEE ¼
XD

d¼1

Xnd

j¼1

ðwdjxdjðxdj 2 ĝdw �xdwÞ
T Þ21

XD

d¼1

Xnd

j¼1

wdjðxdj 2 ĝdw �xdwÞ�ldw

 !
; ð9Þ

where �ldw and �xdw are Hájek-type estimators of the domain means of the logarithm of the

variable of interest and the vector of covariates, respectively. A survey-weighted

prediction of the random effect is then obtained via:

v̂dw ¼ ĝdw
�ldw 2 �xT

dwb̂
SWEE

� �
; ð10Þ

where ĝdw ¼ ŝ 2
v = ŝ 2

v þ ŝ 2
1

Pnd

j¼1 ~w
2
dj

� �
and ~wdj ¼ wdj=

Pnd

j¼1wdj. The predictions for the

non-sampled units are then obtained via

ŷSWEE
dj ¼ exp xT

djb̂
SWEE þ v̂dw þ 0:5ŝ 2

1 ĝdw

Xnd

j¼1

~w2
dj þ 1

 ! !
; ð11Þ

and used in a predictor of the small area means as follows:

m̂SWEE
d ¼

1

Nd j[Sd

X
ydj þ

j�Sd

X
ŷSWEE

dj

2
4

3
5; d ¼ 1; : : : ;D: ð12Þ

3. Simulation Study

3.1. Simulation Set-up

We consider a model-based simulation study to evaluate the different approaches to

estimate the small area means in the presence of an informative sampling mechanism. The

populations are drawn according to Model (2) with one covariate, that is, xdj ¼ ð1; xdjÞ
T

and b ¼ ðb0;b1Þ
T . In order to study the robustness of our findings, we consider three

parameter settings in accordance with Berg and Chandra, which are summarized in

Table 1. The parameters were chosen by Berg and Chandra (2014), such that the first two

moments of the ydj resemble the number of chickens per segment in a survey of the United

States Department of Agriculture in the 1960s. For each setting we generate R ¼ 10,000

finite populations and from each population one sample is drawn. In this article, we do not

consider setting 1 of Berg and Chandra (2014), since this setting did not provide further

information, in contrast to settings 2 to 4 (Zimmermann 2018). Our auxiliary variable was
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drawn as xdj , N mx;s
2
x

� �
, where the values of mx and s 2

x for a given setting can be

obtained from Table 1. Moreover, the last column of Table 1 shows the ratio of the

variance components. Altering this ratio, as well as the variance of the auxiliary variable,

enables us to study the impact of relative magnitudes of the variance parameters on the

predictors. A difference in our simulation set-up from the one by Berg and Chandra (2014)

is that we draw xdj once per setting and then consider it fixed for all populations in this

setting. Fixing the values of the auxiliary variable in the population seems reasonable, as

they are most often obtained from registers and thus can be considered fixed. We follow

Verret et al. (2015) in terms of the population structure and sampling designs. Thus, we

consider D ¼ 99 areas, where each area comprises Nd ¼ 100 elements and allow for

different sample sizes within areas in the following way: five elements are sampled in

areas 1 to 33, seven elements are drawn from areas 34 to 66 and nine elements are sampled

from areas 67 to 99. This allows us to study the impact of varying area-specific sample

sizes on the choice of the augmenting variable. Note that this sampling mechanism avoids

non-sampled areas, but the area-specific sample sizes are sufficiently small.

Our sampling design is based on selection probabilities proportional to an invariant

Asparouhov-type size variable (Asparouhov 2006). This sampling mechanism allows us

to fine-tune the informativeness of the sampling design easily by specifying a parameter.

Hence, one can compare different degrees of informativeness in a straightforward manner,

which would be difficult otherwise. The size variable is given by:

bdj ¼ 1þ exp 20:5
1

a
1dj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2

1

a2

r
1*

dj

( ) !" #21

; ð13Þ

where 1*
dj , N 0;s 2

1

� �
, Cov 1dj; 1

*
dj

� �
¼ 0 ; d; j and a [ {1; 1:25; 2; 1; 000}. It should

be noted that a controls the degree of informativeness associated with the size variable

defined by (13). For a ¼ 1 the bdj is solely depend on the individual error term 1dj, which

gives rise to highly informative samples. On the other extreme, for a ¼ 1,000, the size

measure hardly depends on 1dj, such that the sampling mechanism is virtually ignorable.

In comparison to previous studies using the size measure (13), we decided to include a value

of a ¼ 1.25 instead of a ¼ 3. The reason for doing so is that Zimmermann (2018) found

highly different results when a took a value of 2 instead of 1, whereas the differences for

values of 2 and 3 were much less pronounced. In addition to the invariant size variable

(13), a non-invariant Asparouhov-type size variable and a Pfeffermann-Sverchkov-type

size variable have also been considered in the literature (Verret et al. 2015; Pfeffermann

and Sverchkov 2007). Under both approaches, the size variable, and thus the selection

probabilities, depend not only on the idiosyncratic error term 1dj, but also on the random

Table 1. Parameter specifications for our simulation study.

Setting b0 b1 mx sx sv s 2
v s

22
1

2 21.62 0.9 3.253 1.58 0.35 0.16
3 21.62 0.9 3.253 1.24 0.71 0.45
4 21.62 0.9 3.253 1.24 0.46 0.15
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effect vd. Since earlier simulations showed only small differences between using a non-

invariant and an invariant size variable, we decided to focus on the invariant case.

The selection probabilities and the inclusion probabilities are given by pdj ¼

bdj=
PNd

j¼1bdj and pdj ¼ ndpdj, respectively. Note that this results in design weights given

by wdj ¼ p21
dj ¼ ðndpdjÞ

21. The samples were then obtained by applying Midzuno’s

method, which is described in detail in Tillé (2006, Sec. 6.3.5). An advantage of this

particular method for our purposes is that a fast Cþþ implementation is available in the

R package simFrame (Alfons et al. 2010).

3.2. Model Selection and Diagnostics

The simulation results in the study of Verret et al. (2015) highlight the importance of

finding a suitable variable for augmentation. This can be achieved by applying a

combination of model selection techniques and model diagnostics. It should be noted that

a number of tests in informativity of samples have been proposed in the literature, for both

single-level and two-level models, such as (2) (e.g., Skinner 1994; Pfeffermann and

Sverchkov 2007). However, in our simulation setting, we control the degree of

informativeness and, therefore, our focus is to find the best choice of g( pdj). A similar

approach can be found in Verret et al. (2015), who plot the residuals from an ordinary least

squares (OLS) regression of the variable of interest on the covariates xdj against the

potential choices of g( pdj). If the scatter plot reveals a functional relationship between the

OLS residuals and a choice of g( pdj), this is taken as evidence for informative sampling.

Moreover, the authors discuss that a particular choice of the augmenting variable would

work well, provided that the relationship is linear and the scatter is not too wide. This is

based on the argument that if a perfectly linear relationship could be found for a particular

g( pdj), then including it among the covariates would eliminate any residual variation. We

show the residual plot for one sample under setting 2 with a ¼ 1 in Figure 1 and note a

systematic relationship between any choice of the augmenting variable and the residuals.

Hence, the analysis of the residuals clearly indicates informative sampling. Furthermore,

non-linearities are evident for wdj and p21
dj , while it is difficult to establish a clear ordering

between log(pdj) and pdj. Thus, we additionally compare the values of the conditional

Akaike information criterion (cAIC) for the different specifications of gðpdjÞ as discussed

by Zimmermann (2018). The cAIC was proposed by Vaida and Blanchard (2005) for

model selection among linear mixed models and is a measure of the predictive accuracy

conditional on the random effects, which is of utmost importance in small area estimation.

It is defined as

cAIC ¼ 22 log gðyjĵðyÞ; v̂ðyÞÞ þ 2K; ð14Þ

with log gðyjĵðyÞ; v̂ðyÞÞ as the log-likelihood conditional on the model parameters ĵ and

the predictions of the random effects v̂, which are both functions of the response vector y

(Vaida and Blanchard 2005, 355). Moreover, K denotes a penalty term regarding the

model complexity, where the precise expression of K depends on the method used to fit the

model. The cAIC allows comparison of different non-nested models, where a smaller

value indicates a higher predictive accuracy. In Section 1 of this article, we stated that a

sampling mechanism is informative if the response vector and the sample membership are
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correlated after conditioning on the covariates. Hence, a model which includes a function

of the selection probabilities should not yield a higher predictive accuracy compared to a

similar model without an additional covariate under a non-informative design. Moreover,

we can compare various specifications of g( pdj) in terms of their predictive accuracy as

measured by the cAIC to find the most suitable variable to augment the model.

We illustrate this procedure for one particular population generated from setting 2,

where one sample is drawn using each of the values of a. Note that in the case of a ¼ 2, it

is the same sample that has been used to generate Figure 1. The results of this comparison

are displayed in Table 2. It is easily seen that the EBP under the non-augmented model,

shown in the column with “-” on top, is dominated by all other specifications of gðpdjÞ

for all values of a except a ¼ 1,000. Thus, under informative sampling, applying an

augmented model yields a higher predictive accuracy. Regarding the choice of gðpdjÞ, the

specification gðpdjÞ ¼ pdj clearly dominates the other alternatives for a [ {1;1.25}. Note

that the distinct advantage in predictive accuracy of g( pdj) ¼ pdj is in line with the residual

plot in Figure 1.

In addition to the predictive accuracy of an augmented model, the validity of the model

assumptions are also critical. This issue is especially important under a lognormal mixed

model, where the normality assumptions are exploited in the derivation of the BP. For

this purpose, the transformed residuals may be studied to jointly assess the normality

Table 2. The conditional AIC for different choices of gðpdjÞ for setting 2.

a - wdj pdj p21
dj logð pdjÞ

1 1839.20 621.32 22629.31 193.68 2752.99
1.25 1859.77 1402.98 1213.87 1295.93 1232.22
2 1870.34 1777.23 1730.07 1742.21 1732.88
1000 1880.36 1881.91 1882.25 1882.33 1882.27
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Fig. 1. Residual plots for setting 2 when a ¼ 1.

Journal of Official Statistics530



assumption on both random components of the mixed model (Battese et al. 1988). The

transformed residuals are defined as

ûdj ¼ ðlog ðydjÞ2 t̂d
�ldÞ2 ðxdj 2 t̂d �xdÞ

T b̂; ð15Þ

where t̂d ¼ 1 2 ð1 2 ĝdÞ
1=2. Under the nested-error regression model (2), the transformed

residuals are approximately distributed as ûdj , N 0; ŝ 2
1

� �
. Following Battese et al. (1988),

the normality assumption can be inspected graphically via quantile-quantile (QQ) plots, or

statistically by applying the Shapiro-Wilk test for normality (Shapiro and Wilk 1965).

In this article, we decided to use the Shapiro-Wilk test for the transformed residuals,

whose results for the same samples that were used to compare the cAIC are presented in

Table 3. Here, the test-statistic W, as well as the associated p-value for each value of a and

for each choice of g( pdj), are shown. A striking aspect is that the null hypothesis of

normality is rejected for all candidates to augment the model in the case of a ¼ 1.

Interestingly, the null hypothesis is not rejected for the non-augmented model with a ¼ 1,

which highlights that augmentation, while increasing the predictive accuracy of the model

and accounting for informative sampling can, in fact, violate the normality assumptions.

Moreover, for any other choice of a, none of the test results lead to a rejection of the null

hypothesis.

The comparison of the cAIC showed that specifying gðpdjÞ ¼ pdj yields the highest

predictive accuracy among the choices considered. Furthermore, the Shapiro-Wilk tests

did not indicate particular advantages of one of the choices of gðpdjÞ. Hence, we decided to

focus on pdj to augment the model in the simulation study.

3.3. Simulation Results

An overview of the different estimators analyzed in this study is given in Table 4.

We performed the MSE estimation by means of the jackknife approach presented in Jiang

et al. (2002).

Table 3. Shapiro-Wilk test of normality of the transformed residuals for setting 2.

a - wdj pdj p21
dj logðpdjÞ

1
W 0.9985 0.8794 0.8942 0.8671 0.8829
p-value 0.8401 0.0000 0.0000 0.0000 0.0000

1.25
W 0.9980 0.9971 0.9977 0.9983 0.9978
p-value 0.5761 0.2634 0.4710 0.7503 0.4905

2
W 0.9983 0.9986 0.9969 0.9967 0.9965
p-value 0.7227 0.8698 0.2035 0.1681 0.1394

1,000
W 0.9984 0.9984 0.9984 0.9983 0.9983
p-value 0.7829 0.7867 0.7702 0.7610 0.7611

Table 4. Estimators in our study.

Abbreviation Description

EBP EBP under the non-augmented model
Augmented EBP under the augmented model
SWEE Predictor based on survey-weighted parameter estimates
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To report the results of our simulation study, we consider several different quality

measures related to the accuracy of point estimates and the reliability of confidence

intervals for each area. A common measure to estimate the bias of a point estimator is the

relative bias. It is given by

RBðm̂dÞ ¼

1

R

XR

r¼1
ðm̂r;d 2 mr;dÞ

1

R

XR

r¼1
mr;d

; d ¼ 1; : : : ;D; ð16Þ

where m̂r;d and mr;d denote the estimated and the true mean for area d in replication r,

respectively. The relative bias takes values from 21 to 1, while a relative bias close to

zero is desirable, indicating that the point estimates are on average identical to the true

values. Another quality measure is the relative root mean squared error (RRMSE), which

measures the variability of the point estimates and is computed as

RRMSEðm̂dÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R

XR

r¼1
ðm̂r;d 2 mr;dÞ

2

r

1

R

XR

r¼1
mr;d

; d ¼ 1; : : : ;D: ð17Þ
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Confidence intervals with a nominal coverage rate of 95% were constructed via

CIðm̂r;dÞ0:95 ¼ m̂r;d 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dMSEMSEðm̂r;d

q
Þ�t0:975;D; m̂r;d þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dMSEMSEðm̂r;d

q
Þ�t0:975;D

� �
;

d ¼ 1; : : : ;D;

ð18Þ

with t0.975,D as the 97.5%-quantile of the t-distribution with D degrees of freedom.

A useful summary to evaluate the quality of the confidence intervals is the fraction of

intervals that cover the true area mean. This quantity is called the average coverage rate,

evaluated at the confidence level of 95% and given by

ACRðm̂dÞ0:95 ¼
1

R

XR

r¼1

I mr;d [ CIðm̂r;dÞ0:95

� �
; d ¼ 1; : : : ;D; ð19Þ

where I(A) denotes the indicator function, that is, I(A) ¼ 1 if condition A is met and

I(A) ¼ 0 otherwise.

As we obtained similar results under the different settings, we focus on setting 2 in the

following and report the results under settings 3 and 4 in the appendix.

The relative biases of the different domain estimates for the selected values of a are

shown in Figure 2. Here, the numbers on top of each panel correspond to the values of a

such that the degree of informativeness decreases from the uppermost to the lowermost

panel. We note that the EBP without augmentation is severely and systematically

upwardly biased for a ¼ 1. As a increases and thus, the level of informativeness
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Fig. 3. RRMSE under setting 2.
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decreases, the biases of this non-augmented EBP are less severe. With regard to the SWEE

predictor, a tendency to overestimate the area means can be seen for highly informative

sampling mechanisms. Furthermore, the relative biases of the SWEE predictor are much

smaller as compared to the EBP without augmentation. The best results in terms of the

relative biases are achieved for the EBP under the augmented model for informative

sampling mechanisms. Nonetheless, small but systematic negative biases can be seen for

this method with a ¼ 1. For higher values of a no systematic biases are visible for the EBP

under the augmented model. Finally, for a ¼ 1,000 very similar results are obtained using

all estimation methods. In this case, all approaches yield unbiased estimates on average.

The results in terms of the RRMSE of the area estimates are presented in Figure 3. It is

immediately obvious that for values a [ {1;1.25,2}, the EBP without augmentation is

dominated by both other estimation methods. Moreover, the EBP under the augmented

model outperforms the SWEE predictor for these values of a. The differences between

these two estimation methods is most pronounced for a ¼ 1, where the EBP under the

augmented model yields very precise estimates. For a value of a ¼ 1,000, no visible

differences can be seen between any of the methods. Altogether, applying the EBP under

an augmented model in combination with an informative sampling mechanism leads to an

improvement compared to the EBP without augmentation under a non-informative

sampling mechanism.

To assess the quality of the precision estimates as well, we show the quality of 95%

confidence interval coverage rates in Figure 4. In this graph, each panel depicts one

combination of a and the estimation method, where the average coverage rates are shown

Alpha: 1 Alpha: 1.25 Alpha: 2 Alpha: 1000
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Fig. 4. Quality of confidence intervals under setting 2.
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on the y-axis and the average length of the intervals on the x-axis using a logarithmic scale.

The horizontal line refers to the nominal coverage rate of 95%. Hence, the points should

ideally be on the horizontal line and in the left part of the panel, as this would indicate short

confidence intervals that meet the nominal rate.

It can be seen from Figure 4 that for a given value of a , 1,000, the shortest confidence

intervals are obtained from the EBP under the augmented model. In the case of a ¼ 1, this

method yields very short intervals, but they do not meet the desired nominal rate. This

undercoverage can, in principle, arise due the biased point estimates or the fact that the

normality assumptions cannot be maintained, which may further affect the quality of the

MSE estimates. As pointed out by a referee, the low values for the RRMSEs are an

indication that the MSE estimates are too low. Indeed, the median relative biases of the

MSE estimates shown in Table 5 reveal that for a ¼ 1 the MSE estimates of the EBPunder

the augmented model are clearly too small. For all other choices of a, however, the

nominal rate of 95% coverage is achieved by the EBP under the augmented model.

Moreover, the EBP without augmentation yields overcoverage for values of a , 1,000.

Hence, the MSE estimates are not efficient. With respect to the SWEE predictor, we note

that the confidence intervals meet the nominal rate for all values of a and their length is in

between the one of the EBP with and without augmentation. For a value of a ¼ 1,000, the

confidence intervals produced by all methods are very similar and meet the nominal rate.

4. Conclusion and Outlook

In business statistics, skewed variables of interest and informative sampling designs play a

considerable role, especially when applying small area methods. To better cope with the

skewness of the variable of interest, the EBP under the lognormal mixed due to Berg and

Chandra (2014) can be used. However, this method is based on the implicit assumption of

a non-informative sampling design.

We proposed two extensions of the EBP to alleviate biases owing to an informative

sampling mechanism. Our first proposal was based on the EBP under an augmented

model, whereas our second strategy used design weights to derive the model parameters.

Furthermore, we have demonstrated how the selection of the augmented variable can be

guided by a measure of predictive accuracy and a check of the normality assumptions.

The results from the simulation study have shown that the EBP under the augmented

model leads to significant improvements in the estimation process once the sampling

design is informative. The improvements can be seen in all three simulation settings by a

lower RRMSE and shorter confidence intervals. Only in the case of very high

informativeness, does the EBP under the augmented model suffer from small biases and

undercoverage of the confidence intervals. It should be noted that the case of a ¼ 1

Table 5. Median of the relative biases of MSE estimates for setting 2.

EST a ¼ 1 a ¼ 1.25 a ¼ 2 a ¼ 1,000

EBP 0.05 0.10 0.12 0.02
Augmented 20.80 20.02 0.01 0.01
SWEE 20.05 20.02 20.00 0.01
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implies that the selection probabilities are determined solely from the unexplained error

term 1dj. In applications, the relationship between the error term of a regression model and

the selection probabilities will hardly be very close. Hence, the case a ¼ 1 reflects an

extreme scenario. Nevertheless, it is interesting to note that the Shapiro-Wilk test indicated

a departure from normality in this case. Hence, our diagnostic tool provides important

information for properly applying the EBP derived from the augmented model in this case.

Moreover, our second alternative, the SWEE predictor, also achieved an improvement

upon the EBP without augmentation in the presence of informative sampling mechanisms.

This finding is particularly convenient, as the SWEE predictor does not require access to

the selection probabilities for the non-sampled units. Therefore, this method is also

applicable in situations where the model analyst only has access to the survey weights for

the sampled units.

Furthermore, it should be noted that in our simulation study the informativeness of the

sampling mechanisms was induced by sampling with selection probabilities proportional

to an Asparouhov-type size measure, which enabled us to settle the degree of

informativeness precisely. In many business surveys, stratified random sampling with

sample sizes allocated to strata using the Neyman allocation, a take-all stratum for highly

influential businesses, or similar approaches are used (cf. Hidiroglou and Lavallee 2009).

The issue of informative sampling may still arise and a function of the selection

probabilities can be used to augment the model. An alternative option to account for

informative sampling in the case of stratified random sampling is to include stratum

membership indicators among the covariates. However, this approach may be impractical

if the number of strata is very large and the sample sizes within strata very small, which is

frequently the case in business surveys with fine stratifications.

Although this article focuses on lognormal models, the approach of augmenting could

be easily applied to other model transformations. A condition for the augmenting

modelling approach to work is that the augmented model can be validated for the sample

data. Once the validity is established, we know that the model holds for the non-sampled

part as well.

Future research may focus in two areas. On the one hand, it would be interesting to see

how the augmentation and testing methods presented in this article can be considered in

the design stage. This may become especially relevant in the future, where more and more

design-based and model-based methods are applied simultaneously in business surveys,

knowing that design optimization may lead to informativeness. On the other hand, though

many national statistical offices are still too conservative to apply Bayesian methods, the

popularity of hierarchical Bayes methods may prompt research on adopting the above

methods to Bayesian small area methods.
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Fig. 7. Quality of confidence intervals under setting 3.

Table 6. Median of the relative biases of MSE estimates for setting 3

EST a ¼ 1 a ¼ 1.25 a ¼ 2 a ¼ 1000

EBP 0.22 0.22 0.25 0.02
Augmented 20.84 20.03 0.05 0.01
SWEE 20.03 20.03 0.05 0.01

Table 7. Median of the relative biases of MSE estimates for setting 4

EST a ¼ 1 a ¼ 1.25 a ¼ 2 a ¼ 1000

EBP 0.09 0.16 0.18 0.04
Augmented 20.89 20.09 0.00 0.05
SWEE 20.13 20.06 20.01 0.04
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Fig. 10. Quality of confidence intervals under setting 4.
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