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Recent research on the use of M-estimation methodology for detecting and treating verified
influential values in economic surveys found that initial parameter settings affect
effectiveness. In this article, we explore the basic question of how to develop initial settings
for the M-estimation parameters. The economic populations that we studied are highly
skewed and are consequently highly stratified. While we investigated settings for several
parameters, the most challenging problem was to develop an “automatic” data-driven method
for setting the initial value of the tuning constant w, the parameter with the greatest influence
on performance of the algorithm. Of all the methods that we considered, we found that
methods defined in terms of the accuracy of published estimates can be implemented on a
large scale and yielded the best performance. We illustrate the methodology with an empirical
analysis of 36 consecutive months of data from 19 industries in the Monthly Wholesale Trade
Survey.
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1. Introduction

The outlier detection and treatment in sample surveys is a recurrent challenge. Of course,

the values provided by the sample units are intended to “represent” other – similar – units.

However, in a business survey setting, the size of a business can change along with the

economy. Along the same lines, it is not unprecedented for a business to experience an

exceptionally good or poor month. The skewed nature of business populations requires

stratification and differential sampling rates, with the largest units often selected with

certainty to avoid bias and reduce the variance of the survey estimates. Occasionally, a

sample unit in a stratum with a large weight has unexpectedly high or low value for the

item collected, such as revenue. Business survey data undergo editing and review

routinely prior to use in the formation of estimates such as totals or period-to-period

change, and such values are frequently validated and left unadjusted until the final

tabulations are reviewed. We define such an observation as influential if its value is

correct, but its weighted contribution has an excessive effect on the estimated total or
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period-to-period change. Failure to “treat” such verified influential values may lead to

substantial over- or under-estimation of survey totals, and the resultant change estimates.

“Treatment” reduces the variance in a classic bias versus variance trade-off, motivated by

the desirability of low variance for economic indicators.

To illustrate the problem faced by survey staff when an influential value appears, we

recount a story told to us as true although it may be better described as folklore. A T-shirt

shop on an East Coast beach in the U.S. was in sample. The beach community advertised

special events to attract college students on spring break, and they came en masse.

Evidently, the T-shirt shop had the most popular T-shirt, and almost all the beach visitors

bought one for themselves and some for their friends back home. The T-shirt shop had

outsized revenue for the month that included spring break, and being a small business, its

stratum had the largest weight in the sample. Imagine the survey staff’s surprise when they

realized the T-shirt shop’s weighted value moved Gross Domestic Product. The shop’s good

fortune appeared to be an isolated event and did not reflect economic conditions among

T-shirt shops or other businesses. Even if the shop’s revenue was true, a T-shirt shop alone

should not move Gross Domestic Product. The weight or the value needed an adjustment.

Currently in the Economic Directorate at the U.S. Census Bureau, when an influential

value is detected, the mitigation strategy depends on whether the subject matter experts

believe the observation is a one-time phenomenon or a permanent shift. If the influential

value appears to be an atypical occurrence for the business, then the influential observation

may be replaced with an imputed value or simply excluded from the group of observations

eligible to be used as imputations. If the influential value persists, indicating a permanent

change, then methodologists adjust its sampling weight. Ideally, the replacement

(imputed) value or the adjusted weight should be set using a statistically rigorous,

automated, data-driven method.

For several years, our goal has been to find such a method, under the strong constraint of

minimizing additional trimming of previously validated values. The U.S. Census Bureau

publishes imputation rates along with the estimates. Adjustments as part of influential

value mitigation do fall under the umbrella of imputations; a high imputation rate is often

considered indicative of poor data quality and is discouraging to potential respondents. We

attempt to reduce the Mean Square Error (MSE) as much as possible, while changing only

the influential value or values, thus preserving as much of the reported and validated data

as possible. This is not equivalent to finding the optimal estimator in terms of achieving the

minimum MSE over all possible estimates. In the latter case, one would attempt to

guarantee a global solution for the problem at hand in the current data set, as recently

studied by Martinoz et al. (2015) and Clark et al. (2017). These papers offer methodology

for treating influential values in business surveys, but produce global solutions that adjust

both influential and non-influential observations. In a similar vein, if preserving reported

values is not an overarching concern, then one should consider robust estimation methods

for sample surveys, like those described by Duchesne (1999), Gwet and Rivest (1992),

Hulliger (1995, 1999), Beaumont et al. (2013), and Mulry et al. (2016).

Building on previous studies, we present research on the implementation of

M-estimation (Beaumont and Alavi 2004; Beaumont 2004) in an automated data-driven

manner that can be implemented in an environment that processes a large number of

surveys simultaneously. M-estimation is designed to produce an adjusted value that
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minimizes the design-based estimator of the MSE. The procedure itself is extremely

flexible, allowing for detection of high, low, or both high and low influential values,

accommodating variations in the prediction models, and providing control over the

outlier-detection region via numerous parameters (each with a specific function).

However, this same flexibility complements implementation, especially when processing

must be completed on a tight time schedule.

Previous studies compared M-estimation to Clark Winsorization (Clark 1995) on both

empirical (historic) and simulated data. Mulry and Feldpausch (2007) applied these two

methods – along with others – to empirical data in volatile industry from the Monthly

Retail Trade Survey and found that only Clark Winsorization and M-estimation met the

above-stated criteria of reducing bias and MSE in a high influential value situation. Mulry

et al. (2012, 2014; Mulry et al. 2013) further studied the performance of these two methods

using twelve months of data from two simulated populations constructed in a manner that

realistically reflected two retail trade industries, one more volatile and one more stable.

They examined the performance of both methods over repeated samples in terms of the

bias, variance and MSE, conducting both conditional (only replicates with the influential

value selected) and unconditional (all replicates) analyses. M-estimation performed better

according to the evaluation criteria under selected parameter settings; Clark Winsorization

performed comparably when an influential value was present, but when there was no

influential value in the sample, the Winsorization changed the values of non-influential

observations by small amounts to achieve a minimum MSE by reducing variance.

Our previous studies highlighted the importance of setting the appropriate parameters

for the one-sided M-estimation algorithm. We decided not to pursue the two-sided

M-estimation algorithm, because in our simulations, it had convergence problems when the

one-sided version did not. Furthermore, low influential values occur rarely in the studied

surveys because the industry totals are very large (USD billions). This is further discussed

in Subsection 3.2. This article proposes methods for setting parameters for the one-sided

M-estimation algorithm, using a variety of common statistical data analysis tools, thus

synthesizing our experiences with one-sided M-estimation gained from previous

simulation studies and empirical analyses. As mentioned above, we are applying these

methods to estimates from a monthly survey, which has limited processing and production

review time from data collection to estimate release. The proposed methods complement

the existing subject matter review procedures. However, to be useful, parameter

development should not be a part of the monthly review process, although the subject

matter experts and methodologists need to be advised on viable troubleshooting approaches

in the case of failure (e.g., over half of observations identified as influential). The methods

have the advantage that they can be implemented on programs that publish statistics

for many varied domains (such as industry) on a limited time schedule. We explore the

effectiveness of the resultant parameters on empirical data from the Monthly Wholesale

Trade Survey (MWTS) and identify the method that yields the best performance.

2. M-Estimation Method

The description of the M-estimation method (Beaumont and Alavi 2004) in our

application follows Mulry et al. (2012, 2014). First, we introduce the notation. For the
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ith business in a survey sample of size n for the month of observation t, Yti is the collected

characteristic (e.g., revenue), wti is its survey weight (which may or may not be equivalent

to the inverse probability of selection), and Xti is a variable highly correlated with Yti, such

as the previous month’s revenue. The monthly total Yt is estimated by Ŷt defined by

Ŷt ¼
Pn

i¼1 wtiYti. For ease of notation, we suppress the index for the month of observation

t in the remainder of this section. In our empirical applications, the survey weight wti is the

design weight, since the missing data treatment is imputation and no other weight

adjustments are made; see Mulry et al. (2012, 2014).

The M-estimation regression technique proposed by Beaumont and Alavi (2004) uses the

Schweppe version of the weighted generalized technique (Hampel et al. 1986, 15–316).

This approach results in a consistent estimator of the total for a finite population because it

equals the finite population total when a census is conducted (Särndal et al. 1992, 68).

A key assumption of the M-estimation approach is that yi given xi is distributed under

the prediction model m with Em½yijxi� ¼ x 0ib and Vm½yijxi� ¼ vis
2: In our application, yi is

the current month’s value; xi is the previous month’s value, and the regression model does

not include an intercept. In retail trade, the regression of the current month’s sales on the

previous month’s sales tends to go through the origin (Huang 1984, 1986).

Briefly, the method estimates B̂M using

i[S

X
w*

i ðB̂
MÞð yi 2 xiB̂

MÞ
xi

vi

¼ 0

where vi ¼ lxi, w*
i ðB̂

MÞ ¼ wic{riðB̂
MÞ}=riðB̂

MÞ, and riðB̂
MÞ ¼ hieiðB̂

MÞ=Q
ffiffiffiffi
vi
p

with

eiðB̂
MÞ ¼ yi 2 xiB̂

M .

The variable xi may be a vector and the regression estimation model eiðB̂
MÞ ¼

yi 2 xiB̂
M may or may not include an intercept. Our applications use a no-intercept linear

regression model, where the independent variable is the previous month’s tabulated value

for the same item. This ratio model is commonly used for item imputation in business

surveys, as previous period values are often very good predictors of the current period

value when data collection is fairly frequent (e.g., weekly, monthly, or quarterly) and the

intercept term is usually not significant.

The role of the Huber function c (Huber 1964) is to reduce the influence of units with a

large weighted residual riðB̂
MÞ. We focus on two choices for the function c, Huber I

function cI and Huber II function cII, and describe their one- and two-sided-forms. The

one-sided form of each Huber function is:

cI{riðB̂
MÞ} ¼

riðB̂
MÞ; riðB̂

MÞ # w

w; otherwise

8
<

:

9
=

;

cII{riðB̂
MÞ} ¼

riðB̂
MÞ; riðB̂

MÞ # w

1

wi

riðB̂
MÞ þ

ðwi 2 1Þ

wi

w; otherwise

8
>><

>>:

9
>>=

>>;

where w is a positive tuning constant. This form is equivalent to a Winsorization of riðB̂
MÞ.

Detection of observation i as an influential value by M-estimation with both Huber
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functions occurs when riðB̂
MÞ . w. In the two-sided Huber I and Huber II functions,

riðB̂
MÞ is replaced by its absolute value riðB̂

MÞ
�
�

�
�.

With M-estimation, the user has a choice of adjusting the weight of the influential value

or adjusting its value, according to Beaumont and Alavi (2004). The weight adjustments

corresponding to the Type I Huber function cI and Type II Huber function cII above are

w*
IiðB̂

MÞ ¼

wi; riðB̂
MÞ # w

w

riðB̂MÞ
; otherwise

8
><

>:

9
>=

>;
w*

IIiðB̂
MÞ ¼

wi; riðB̂
MÞ # w

1þ ðwi 2 1Þ
w

riðB̂MÞ
; otherwise

8
><

>:

9
>=

>;
:

An undesirable feature of using the Type I Huber function is that the unit’s adjusted

weight may be less than one if the influential value is very extreme, thereby not allowing

the influential value to represent itself in the estimation. The Type II Huber function

ensures that all adjusted units are at least fully represented in the estimate.

To solve for B̂M , Beaumont and Alavi (2004) present an Iteratively Reweighted Least-

Squares algorithm, which we use in our application of M-estimation. For certain choices of

the weights and variables, the solution is the standard least-squares regression estimator.

The M-estimation algorithm takes into account both the size of an observation’s weight

and its weighted value when designating influential values. Typically, the sampling rate

for small businesses is lower than for larger businesses because there are more small

businesses. Therefore, the smaller businesses typically have higher weights. If two sample

units have an equal unusually high amount of weighted difference between their current

and previous months’ values, the M-estimation method is less likely to designate the one

with the lower weight as an influential value.

For an adjustment to the influential value using either Huber function, Beaumont and

Alavi (2004) use a weighted average of the robust prediction xiB̂
M and the observed value

yi of the form

y*
i ¼ aiyi þ ð1 2 aiÞxiB̂

M where ai ¼
w*

i ðB̂
MÞ

wi

Using the Newton-Raphson algorithm from numerical analysis, Beaumont (2004) finds

an optimal value of the tuning constant w by deriving, and then minimizing, a design-based

estimator of the MSE. At each iteration, the algorithm estimates the bias by comparing the

predicted total to the original total and estimates the variance using the residuals from the

robust regression.

3. Setting Algorithm Parameters

The M-estimation algorithm discussed in Section 2 requires settings for Q, hi, vi, the

function c, and an initial value of the tuning constant w. In this section, we propose

methods for setting the parameters for the M-estimation algorithm discussed in Section 2,

providing illustrative examples for each proposal. Table 1 summarizes the parameters for

the M-estimation algorithm.

We suggest using the default settings for the parameters Q ¼ 1 and hi ¼ ðwi 2 1Þ
ffiffiffiffi
xi
p

in the SAS software for implementing the method that we received from the developer
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Jean-Francois Beaumont through personal communication. The following sections

explore the potential impact of different settings for the other vi, c, and w. To illustrate the

importance of the selections of vi, and w on the effectiveness of the algorithm, we use data

from two simulated MRTS industries, which are discussed in detail in Mulry et al. (2014).

For our investigation of a data-driven method for setting the initial w, we use 36

consecutive months of empirical (edited/imputed) values of sales and inventory from 19

industries in the MWTS for the presented analyses. The MWTS is a monthly survey that

collects sales and inventories data and uses a stratified SRS-WOR design, with industry as

the primary strata and unit size group strata defined within the industry strata. Updating the

sample to include new businesses and remove failed businesses reduces coverage bias and

keeps the sample from attrition. A new sample for each industry is selected approximately

every five years. There is very little overlap in small businesses in samples selected for

adjacent periods, but the overlap can be quite high for large businesses with substantive

inventories. The MWTS publishes industry level tabulations. Influential values are

considered at the industry level rather than at the industry-size-stratum level. Treatment of

influential values is the final step of the estimate review process. Hence, the methods

described here are developed for implementation subsequent to editing of the data. For

more details on the MWTS estimation and review procedures, see http://www.census.gov/

wholesale/www/how_surveys_are_collected/monthly_methodology.html.

3.1. Parameter vi

Ideally, the choice of the setting for vi should be a data-driven decision, because vi

essentially specifies the variance of the model errors underlying the regression estimator

for M-estimation, denoted by eiðB̂
MÞ ¼ yi 2 xiB̂

M in Section 2. To determine the value of

vi, we suggest fitting the following weighted linear regression models at the adjustment

cell level:

Table 1. M-estimation algorithm parameters.

Parameter Parameter function Values Discussed

Q Constant ¼1 (default) Section 3
hi Unit weight ¼ ðwi 2 1Þ

ffiffiffiffi
xi
p

(default) Section 3
vi Model error underlying

regression estimator
¼1 or xi Subsection 3.1

c Huber function Huber I or Huber II Subsection 3.2
w Tuning constant

(determines starting
point for detection region)

User provides initial
value and program
calculates optimal
value

Subsection 3.3

Regression model M-estimation parameter setting

(1) yi ¼ bixi þ 1i, 1i , ð0; s2Þ vi ¼ 1
(2) yi ¼ bixi þ 1i, 1i , ð0; xis

2Þ vi ¼
ffiffiffiffi
xi
p

(3) yi ¼ bixi þ 1i, 1i , 0; x2
i s

2
� �

vi ¼ xi
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The first model is a typical ordinary least-squares regression, appropriate if all units in

the adjustment have the same expected value and variance, and equal sampling weights

(e.g., the adjustment cells are sampling strata in a stratified simple random sample). The

other two weighted regression models have proved useful in numerous business survey

settings (Thompson and Sigman 1996; Huang 1984, 1986; Binder et al. 2000). After fitting

each model separately within the adjustment cell, find the model that best corrects

heteroscedasticity (unequal error variances) in the majority of adjustment cells. We

suggest using White’s Test for heteroscedasticity (White 1980) and an examination of the

regression residuals when determining which model is best. In general, economic surveys

have stratified sample designs. Although the selection within strata is often equal

probability, the probabilities of selection usually vary across the strata. If no such model

can be found, then the experience of other researchers has shown that the ratio model

vi ¼ xi (Model 3) appears to be fairly robust to model misspecification with economic data

(Huang 1986, Beaumont 2004). For further discussion on the choice of vi in the application

of M-estimation in this article, see Mulry et al. (2014).

In our MWTS applications, we use the previous month’s (edited/imputed) value of y as

the independent variable and fit a no-intercept regression model (the ratio estimation

model). We found that Model (3) was the best fit for the MWTS data.

The selection of vi can be the factor determining the effectiveness of the algorithm, as

demonstrated in Figure 1, where the only difference in the two applications is the setting of

vi. In Figure 1, when vi ¼ xi, the MSE was a concave function of w. A minimum MSE was

achieved and an adjustment produced for the influential value. However, when vi ¼ 1 was

applied to the same sample data, the MSE was a strictly decreasing function of w. The

minimum MSE occurred at the influential value, and no adjustment was made because the
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M
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×
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Fig. 1. M-estimation MSE vs. w for a sample for one month with an influential value selected from a simulated

MRTS industry using the one-sided Huber II function c.
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algorithm failed to detect the influential value. We have encountered other analogous

situations with in retail trade industries in the MRTS, so the configuration is not unique.

For some insight on the difference in outcome when vi ¼ xi and vi ¼ 1, note that with

the defaults Q ¼ 1 and h ¼ ðwi 2 1Þ
ffiffiffiffi
xi
p

, setting vi ¼ 1 tended to give the residuals for

large weighted values of xi more influence in fitting the M-estimation regression line than

when vi ¼ xi. The variable Q may be used as a scaling factor to dampen the effect of

unequal variances and is set to equal 1 for equal or approximately equal variances. The

variable h is a weighting factor, where using the default setting excludes certainty units

from the regression.

3.2. Function c

The first decision regarding the function c is whether to use the Huber I or Huber II

function, as described in Section 2. In Mulry et al. (2014), results were comparable for

both one-sided and two-sided Huber I and Huber II functions when vi ¼ xi and vi ¼ 1. To

avoid the risk of obtaining adjusted weights with values less than one, we hereafter

consider only the Huber II function.

After the choice of the function c is made, the second decision is whether to use the

one-sided version or the two-sided version. The one-sided version, by design, detects only

unusually high influential values, whereas the two-sided version is able to detect both

unusually high and unusually low influential values. On the surface, the two-sided function

is very appealing, as the potential for high or low outliers can exist. However, one issue to

consider in choosing the one-sided or two-sided function c is that the M-estimation

algorithm using a two-sided function c may experience some problems with convergence

for some scenarios where the second value is too low. The combination of a high

influential value and a low influential value causes the algorithm to be less likely to

converge. Beaumont (2004) also noted some problems with convergence in his

simulations in this situation.

To study how such convergence issues might affect our business survey data, we

investigated the detection region for the scenarios with two influential values with

simulated sample data. The sample initially contained one high fixed influential value. We

systematically added a second value as a candidate for detection and thereby determined

an influential value detection region, given the first fixed value. Interestingly, we found

that the detection regions for a high and low second value are not symmetric around the

robust regression line. When the second value was high, it had a positive residual and

moved from not influential to influential as the value of its residual increased. When the

second value was low, its residual was negative. As its value declines and is larger in

absolute value, the second value moves from not being identified as influential into a range

where the algorithm does not converge, and then to values identified as influential.

To summarize, when a sample contains both unusually high and unusually low

influential values and the M-estimation algorithm does not converge, the researcher may

want to consider the option of no adjustment, particularly in situations where bias in more

important than variance. The rationale for choosing no adjustment is that the unusual

values counterbalance each other in a manner that introduces minimal bias. With this

perspective, the failure of the algorithm to identify the influential values is not necessarily
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a handicap. That said, as one referee pointed out, this is a form of masking and can lead to

intolerable levels of variance inflation, even if the bias level is tolerable. However, this

situation is an excellent topic for further research with different weighting schemes.

With the monthly surveys that we are studying, a low influential value can be indicative

of a failing business. Often, the subject matter experts are monitoring the largest cases in

an industry (which all have sampling weights near 1) and have an effective down-

weighting treatment strategy in place. A similar post-processing adjustment is applied to

small businesses retrospectively. However, even with large sampling weights, failing

small businesses rarely have an influential effect on the overall totals, as the lowest

possible value is zero and the industry totals are very large. Inducing low influential values

in the studied populations was often impossible; we would have needed to induce a large

number of low influential values to affect the industry totals or a few large (unrealistic)

negative values. The more pressing situation occurs with unusually high values that are not

typical of the survey unit or its stratum. A large increase in the estimated total of an

economic indicator (beyond sampling error) can have policy implications in both the

public and private sectors, which in turn can have ramifications for the survey agency and

policymakers if the total returns to its original level in the subsequent collection.

Consequently, our applications are confined to the one-sided Huber II function.

3.3. Tuning Constant w

3.3.1. Effect of the Initial Value of the Tuning Constant on Detection Regions

Recall that the M-estimation algorithm finds an optimal value of w by minimizing the

design-based estimator of the MSE. An observation’s weighted residual has to exceed the

initial w for the algorithm to consider it as a possible influential value. Viewing the MSE as

a function of w implies that a value of w corresponds to a “treated” value for each

observation with a weighted residual greater than w. When a minimum exists, the initial

value of w has to be “close enough” to the minimum for the algorithm to find it. If the

initial w value is too low and the sample does not contain any influential values, the

algorithm can fail to converge or can converge to zero (or a very small number). If the

initial w is larger than all the weighted residuals, the algorithm does not find the minimum

MSE because the MSE is a constant function in the neighborhood of w. In practice, we

have found that the effectiveness of the Newton Raphson algorithm is highly sensitive to

the choice of the initial tuning constant w when there are zero or one influential values in

the adjustment cell, since the initial w determines the lower boundary of the detection

region (Mulry et al. 2012).

Figure 2 uses sample data for one month selected from a simulated MRTS industry to

illustrate the MSE as a function of w in a sample without an induced influential value.

Figure 2 also shows the effect of an influential value that is induced in the same sample by

adding four different amounts to a unit selected at random from those with a sampling

weight of 60 (i.e., a “small” business). When there is no influential value, the MSE

function has a slope of zero since it is a constant function of w equal to 5.97 £ 1013

(although the MSE may appear equal to zero on the scale used in Figure 2). As the amount

added to the unweighted observation to induce an influential value increases from two
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million to eight million, the curve shifts, as does the value of w, where the minimum MSE

occurs. Notice that with an initial w set at about 470 million, the algorithm would not find

the minimum MSE when any one of the four induced influential values were present. Also,

notice that for the algorithm to find the minimum MSE for all four induced influential

values, the initial w must be approximately 100 million or less.

Figure 3 uses unweighted data from a sample for one month selected from a simulated

MRTS industry to illustrate the detection regions for the application of the algorithm in the

case where there is no predetermined (identified) influential value in the sample. In these

figures, we selected a low value and a high value of the initial w via graphical analysis. The

chosen low value was expected to force the algorithm to run on the studied data, whereas

the high value was selected to be a value in the area where the MSE levels were a constant

function of w.

The size of an observation’s weight, as well as its weighted value, both affect whether it

will be designated as influential by M-estimation. The unweighted values of sales from

smaller businesses tend to be lower than from larger businesses due to stratum weighting

differences, even for those cases identified as influential via M-estimation. However, this

is not universally true in an ongoing sample. For example, when the new sample is

introduced, at the time of frame determination the smaller businesses will likely have large

3
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Fig. 2. MSE as a function of the tuning constant w when no influential value is present (MSE has a constant

value of 5.97 £ 1013) and when an influential value is induced by adding four different amounts to an unweighted

observed value with weight 60. Data is from a sample selected for one month from a simulated MRTS industry.
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weights and low probability of selection, whereas the large businesses will be included

with certainty or with high probability (small weights). However, as the sample matures,

some sampled businesses may “outgrow” their original size strata - in some cases

reporting the values of total receipts that would categorized them as large (certainty)

businesses at the time of sample design. These “stratum jumpers” therefore influence

estimated totals and their weights may be adjusted (reduced) accordingly, thus causing

more variability in the weights for the smaller businesses.

Figure 3 overlays the boundaries of the detection regions obtained with M-estimation

with a low initial w and M-estimation with a high initial w. The unweighted sample

observations used to form the detection regions are shown as gray dots with the x-axis

representing the previous month’s value and the y-axis representing the current month’s

value. The least-squares regression line for the model used in the M-estimation application

has been added. For the given sample, the addition of a single observation above the black

line, which may be dashed or solid, will cause it to be flagged as influential and adjusted.

The dotted vertical bar marks the largest observation with a weight greater than one in the

sample and population; that is, all observations to the right are guaranteed to have a weight

of one.

Figure 3 shows that the detection region obtained using the M-estimation-high w is

much more restrictive and does reduce bias. The close proximity to the regression line

M-estimation-low w reflects the trimming that both methods do to minimize the MSE by

lowering the variance at the cost of introducing a small bias. Notice that the algorithm
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rarely identifies large unweighted observations (those with wi approaching 1) as

influential. None of these large observations has a weighted residual that exceeds the

initial high w.

For small sampled businesses, large changes between the current and previous values

for the same unit are not atypical. For this reason, it is crucial to set the initial w to be the

weighted distance between an observed and a predicted value in the current month

expected to lead to a statistically significant change in the estimated total. The comparison

to the prediction is especially important, as this reduces effects of industry-wide trends and

seasonal effects. Therefore, the algorithm requires that the initial w not be too high or too

low, but, as Goldilocks says, just right.

The goal when setting the initial tuning constant w is to be high enough to avoid

detecting natural variation as influential, but low enough to detect truly influential values.

Setting the initial w too high may result in the algorithm failing to detect influential values

lower than the initial w. When none of the values in the sample is larger than the initial w,

the algorithm runs for one iteration and then stops. In this circumstance, the MSE is a

constant function in a neighborhood of the initial w, and the algorithm continues to run

only when it detects a change in the MSE in the proximity of the initial w.

On the other hand, setting the initial w too low causes the algorithm to give the

influential designation to observations not considered influential. This occurs because the

algorithm achieves a minimum MSE when there is no influential value by trimming about

0.05 percent of the observations for a very small reduction in the MSE. In an ongoing

survey, an initial w that is too low may also cause convergence problems in a month

following an adjustment if the unit returns to its more stable level from two months earlier.

In this case, the adjusted value will appear to be unusually low. In some cases, both one-

sided and two-sided functions c have convergence problems (Mulry et al. 2014).

Our objective is to minimize the design-based MSE, while limiting adjustments to

previously validated items; therefore the initial w is important for the success of the M-

estimation implementation. This is largely achieved by selecting an initial w that

essentially defines the detection region – quickly – under an assumption of a rare

prevalence of influential values. However, if M-estimation is the only (or primary) form of

data review and trimming is not constrained, then the dependence on the initial w should be

minimal, as the adjustment cell would be expected to contain several outlying or

inconsistent values with respect to the M-estimation regression model, and the algorithm

should converge. That said, the M-estimation application could be enhanced to switch to a

global search for an initial w when there is no gradient in the estimated MSE to guard

against the incidence of a single outlier/inconsistent value, as suggested by two referees.

Continuing with our approach, the following section describes how we incorporate survey

design requirements into the parameter settings.

3.3.2. Automated Data-Driven Methods of Obtaining Initial w

The first attempts of our quest to find a general method for setting the initial w relied on the

M-estimation weighted residual distributions. Exploratory data analyses provided solid

evidence against normality, so we attempted to find alternative distributions that provided

a better fit for the residuals. As mentioned in Subsection 3.1, all the weighted regression

models of current month’s value on the previous month’s value did not have an intercept
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and used the regression weight equal to the sample design weight divided by the previous

month’s observation. The data for each model included the certainty units.

Unfortunately, no single distribution worked well for all studied populations and, in

many cases, the best fit appeared to be a complex blending distribution with no finite

moments. We also explored fitting regression models within industry/strata. For this, the

residuals from all the industry/strata level models were combined to form an industry level

set that was comparable to the residuals from the industry level model. The industry level

and industry/strata level weighted robust regression models were fit for all 19 MWTS

industries over 36 months. The Kruskal Wallis test (non-parametric version of ANOVA)

was used to compare the differences between the two groups. While differences did exist,

no clear pattern of differences between the two groups appeared. Therefore, we decided to

use the residuals from the weighted robust regression models fit at the industry level.

In the end, we settled on approaches that incorporate the survey design requirements

into the parameter settings. The MWTS design has a national level coefficient of variation

(cv) requirement of 0.01; selected industries have less restrictive cv requirements, ranging

from 0.04 to 0.055. Assuming a constant variance (a usual assumption in ongoing

surveys), an increase in the cv above the expected national level would likely be an

attribute of a change in the total estimate (from the previous) period. An economic change

could also contribute, as well as the effect of an influential value (or values), which should

be investigated and possibly adjusted.

We use the half-width of the 90 percent confidence interval on the previous month’s

total. Values outside of the half-width should lead to a statistically significant change in

the current month total. We considered two high-level methods of obtaining the

confidence interval half-width: (1) use the cv publication requirement for national level

totals to derive an estimated standard error; and (2) estimate the standard error directly

from the predicted current month values. Thus, the standard errors obtained from (2) will

be larger than the (1) counterparts.

This led to the following options considered for calculating the initial w:

1) (CV_EST) Set the initial w as the product of the coefficient of variation of the

estimated total (cv), the width of the 90 percent confidence interval using the

t-distribution, and the previous month’s estimated total T̂t21, serving as an estimate

of the current month’s total:

Initial w ¼ cv*1.7*T̂t21.

2) (CV_PRED) Use the same formula as in 1), but replace T̂t21 with an estimate of the

current month’s total that uses the estimated coefficient b̂t from the weighted

robust regression of the current month yti on the previous month xti:

Initial w ¼ cv*1.7*
P

b̂txti

3) (ST_EST) Set the initial w as the width of the 90 percent confidence interval of the

previous month’s estimated total T̂t21 using the normal distribution and assuming

T̂t21 is serving as an estimate of T̂t:

Initial w ¼ 1.65*StdErr(T̂
^

t21)
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where StdErr(T̂t21) is computed with the Taylor linearization estimator

implemented in PROC SURVEYMEANS on the previous period sample-weighted

MWTS microdata, with the MWTS design strata and incorporating the finite-

population factor correction (SAS/STAT(R) 9.22 User’s Guide 2016).

4) (ST_PRED) Use the same formula as in 3), but replace T̂t21 by an estimate of the

current month’s total that uses the coefficient b̂t of the weighted robust regression

estimate of the current month yti on the previous month xti:

Initial w ¼ 1.65*StdErr(
P

b̂txti)

where standard errors are computed analogously to ST_EST, but sample-weighted

predicted current period values from the M-estimation regression replace the

previous-period MWTS values in the computations.

The next step was to apply the M-estimation algorithm using the four options for the

initial w to real historical data from the MWTS and compare the results for the options.

The simulation studies described in Mulry et al. (2014) showed that the M-estimation

algorithm met the criteria of detecting and treating only influential values that remained in

the data after editing and verification in a manner that reduced bias and MSE for estimates

of total and month-to-month change. Therefore, we proceeded with the knowledge that if

the algorithm detected and treated influential values in historical MWTS data, the

adjustment would improve the estimates of total and month-to-month change.

Our first concern was algorithm convergence issues with the four considered

applications, specifically converging to zero (and flagging half of all observations) or

failing to converge. Such problems appear in three of the 2,736 applications (four options

for setting the initial w to 36 consecutive months of data for 19 MWTS industries):

. For one application of the CV_PRED option in Industry 11, the algorithm converged

to zero.

. The algorithm failed to converge twice, in one application of the CV_EST option in

Industry 13 and in one application of the CV_PRED option in Industry 2.

We do not see a pattern, so we conclude that these three occasions do not indicate a

problem with the settings we have selected for the algorithm.

Table 2 shows the maximum number of influential values flagged in one month and the

total number of values flagged in all 36 consecutive months when the algorithm converged

by option for setting the initial w for 19 MWTS industries. The results of Table 2 are

summarized as follows:

. In nine MWTS industries, the results using the four options for settings of the initial w

agree by not flagging any influential values in any of the 36 consecutive months.

. SE_PRED detects influential values on two occasions: once in Industry 2 when four

influential values are flagged and once in Industry 15 when six influential values are

flagged.

. SE_EST does not detect any influential values in any month for the 19 industries.

. The options CV_EST and CV_PRED find more influential values than their

respective SE counterparts do.
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+ In six industries, these two options share the same maximum detected in a month

and had the same total number of detections.

+ CV_PRED finds influential values in two months in Industry 2 and one month in

Industry 16 when CV_EST does not.

Table 3 presents the mean and standard deviation of the settings of the initial w from the

four options when applied to the 36 consecutive months of data from 19 MWTS industries.

Note that CV_EST and the CV_PRED have lower means and lower standard deviations

than SE_EST and SE_PRED across the 36 months for the 19 MWTS industries, which is

one reason that the CV_EST and CV_PRED flag influential values more often. By design,

the SE methods yield higher estimated standard errors, since this approach computes

industry-specific standard errors, more closely approximating the 0.04–0.05 industry

reliability restrictions for MWTS alluded to at the beginning of this section. Another factor

could be the standard error estimation procedure. With the monthly surveys, the standard

errors can be quite variable due to the small sample size and the changing sample

composition. Consequently, most of the indicators produced by the U.S. Census Bureau

publish some form of average variance (or cv) to smooth away some of the noise.

For further insight, Figure 4 shows the maximum weighted observed residual from the

robust regression of the current month’s weighted observations on the previous month’s

weighted observations and the settings of the initial w from the four options by month for

Industry 2. We see that the settings of the initial w from the CV_EST and SE_EST are

lower than the settings from CV_PRED and CV_PRED, but are still low enough that they

are smaller than the maximum weighted observed residual, triggering the M-estimation

Table 2. Maximum number of influential values flagged in one month and total number of values flagged in all

36 consecutive months when the algorithm converged by option for setting the initial w for 19 MWTS industries.

CV_EST CV_PRED SE_EST SE_PRED

Industry Maximum Sum Maximum Sum Maximum Sum Maximum Sum

1 0 0 0 0 0 0 0 0
2 0 0 4 5 0 0 4 4
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 1 4 1 4 0 0 0 0
7 0 0 0 0 0 0 0 0
8 7 7 7 7 0 0 0 0
9 0 0 6 6 0 0 0 0
10 1 1 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0
12 1 2 1 2 0 0 0 0
13 1 2 1 3 0 0 0 0
14 0 0 0 0 0 0 0 0
15 2 3 2 3 0 0 6 6
16 0 0 4 4 0 0 0 0
17 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0
19 1 2 1 2 0 0 0 0
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algorithm. However, the values of the initial w are much lower in these months when the

algorithm runs than in other months. We concluded that the options using the PRED values

have high variability, which is an undesirable characteristic.

In these applications, both CV methods work approximately the same and appear to be

better for MWTS than the SE methods. However, the CV_EST option is more stable than

the CV_PRED option. Moreover, the CV_EST is easy to implement and avoids a more

complicated implementation of using the results of a robust regression of the current month

on the previous month. Finally, the CV_EST option is the easiest of the four approaches to

explain and to modify. Thus, we recommend using the CV_EST option for the MWTS.

Table 3. Mean and standard deviation of the settings of the initial w from the four options when applied to the

36 consecutive months of data from 19 MWTS industries (100 millions).

CV_EST CV_PRED SE_EST SE_PRED

Industry Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

1 4.45 0.70 4.37 0.68 12.85 3.15 12.07 3.06
2 1.20 0.10 1.09 0.18 3.37 0.23 2.79 0.90
3 1.52 0.28 1.50 0.27 8.09 1.51 7.93 1.55
4 5.62 0.52 5.42 0.65 15.50 1.57 14.41 2.04
5 3.09 0.35 3.03 0.37 12.40 1.51 11.99 1.23
6 1.98 0.27 1.95 0.26 7.11 1.27 6.94 1.37
7 4.77 0.47 4.56 0.68 12.96 2.17 11.92 2.75
8 1.41 0.16 1.35 0.18 5.70 0.70 5.29 0.82
9 5.82 0.83 5.23 0.86 25.17 3.66 21.95 3.44
10 3.50 0.39 3.37 0.52 21.49 3.15 20.48 3.83
11 1.29 0.07 1.25 0.14 8.51 0.55 8.02 1.48
12 5.89 0.37 5.82 0.43 20.24 3.70 19.10 4.86
13 2.16 0.23 2.02 0.40 10.17 1.46 9.17 2.32
14 8.69 0.81 8.53 0.98 40.43 3.32 39.47 4.96
15 3.13 0.56 2.88 0.61 13.69 3.46 11.20 4.17
16 1.47 0.14 1.42 0.18 5.74 0.71 5.42 0.97
17 8.42 1.39 8.27 1.37 26.25 4.09 25.17 4.44
18 1.77 0.23 1.75 0.23 7.66 1.10 7.57 1.12
19 3.36 0.45 3.25 0.52 13.83 2.15 13.11 2.24
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Fig. 4. Plot of maximum residual (solid black line), and values of initial w from four methods for 36 consecutive

months of MWTS Industry 2.
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4. Conclusion

Using M-estimation to identify and treat influential values in a survey setting is appealing

from both methodological and statistical perspectives. The flexibility of weighted

M-estimation makes it useful for a wide variety of data models, and our empirical results

appear to support the algorithm’s robustness to model misspecification. On the other hand,

this same flexibility has the disadvantage of introducing some complexity in implementation.

First, there are situations when the algorithm has convergence issues, but careful setting

of the parameters for the algorithm appears to reduce this problem and sometimes avoids

it all together. These convergence issues tend to be more difficult to avoid when

the algorithm uses a two-sided function c implementation than with a one-sided function.

If the occurrence of both an unusually high and an unusually low influential value in the

same month causes lack of convergence, then an estimate with no adjustments is justified

because the two influential values offset to result in the bias being approximately zero.

In this article, we explore the basic question of how to develop initial settings for the

M-estimation parameters, focusing primarily on economic data applications. The populations

that we studied are highly skewed and are consequently highly stratified. Because of this, the

assumed data model that we use in our M-estimation application – a weighted robust

regression model that uses survey weights and the predictor variable as regression weights –

is misspecified when applied to population data. Even so, we found several advantages of

using this data model over the simpler ordinary least-squares (equal variances) model.

Developing an “automatic” data-driven method for setting the initial value of the tuning

constant w posed a more challenging problem. The residuals of the weighted robust

regression model exhibited only minimal seasonality when applied monthly. Since this

parameter has the most impact on the performance of the detection of influential values, it

is important to provide simple-to-use and data-based methods that are robust. Of all the

methods that we considered, we found that methods defined in terms of the accuracy of

published estimates yielded the best performance.

While we had success defining the initial w in terms of estimated standard errors and

coefficients of variation, another option to consider is whether the observation will, by itself,

change the published estimate beyond what would be attributed to sampling error. Other

researchers may want to examine the method for determining a data-dependent tuning constant

developed by Wang et al. (2007). Alternatively, other prediction models could be considered,

especially if correlated register data from the same statistical period were available.

The next step in our research is to apply the method in a side-by-side test. We will

provide guidelines to the subject matter experts who have the responsibility of reviewing

an adjustment proposed by the M-estimation algorithm and deciding on whether to

incorporate it in the estimation each month. The dialog with subject matter experts during

the test and the application of the algorithm in more industries may lead to refinements, but

the basic approach appears very effective.
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