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This article looks at the estimation of an association parameter between two variables in a
finite population, when the variables are separately recorded in two population registers that
are also imperfectly linked. The main problem is the occurrence of linkage errors that include
bad links and missing links. A methodology is proposed when clerical-reviews may reliably
determine the match status of a record-pair, for example using names, demographic and
address information. It features clerical-reviews on a probability sample of pairs and
regression estimators that are assisted by a statistical model of comparison outcomes in a pair.
Like other regression estimators, this estimator is design-consistent regardless of the model
validity. It is also more efficient when the model holds.
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1. Introduction

Computerized record-linkage aims at linking records that relate to the same individual

or entity, with minimal human intervention. Such records are called matched records. In

many cases, this is a challenging task because it must be based on pseudo-identifiers such

as names and demographic characteristics, which are non-unique and possibly recorded

with spelling variations or typographical errors. These limitations lead to errors that

include bad links and missing links.

In general the computerized linkage of two large files comprise of five major steps.

First, the linkage variables are parsed and standardized. Second, records in the two files

are compared using blocking keys. Only the pairs that agree on some blocking key are

subsequently compared more extensively. Third, the linkage variables are extensively

compared to produce comparison outcomes. Fourth, a decision is made for each pair.

Finally, conflicting linkage decisions are dealt with, such as when linking the same census

record to two death records. Linkage methodologies differ according to how linkage

decisions are made in the fourth step. In a deterministic linkage, the decision may be based

on arbitrary criteria, according to subject matter knowledge. In probabilistic linkage, the

decision is based on a linkage weight which is a measure of the similarity between two

records. This weight is typically the sum of outcome weights that correspond to the

similarity of the different linkage variables. For the final decision, a pair linkage weight is
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compared to one or two thresholds to determine whether it should be linked, reviewed

clerically or rejected (Fellegi and Sunter 1969). The overall linkage performance is

characterized by the rates of linkage errors, which are determined by the linkage weights

and thresholds.

Two files may be linked to study the association between variables that have been

recorded separately in each file. For example, consecutive censuses may be linked to

create a longitudinal dataset. In this case, the variables of interest measure the same

characteristic at different time points. Estimation with an imperfectly linked dataset is

challenging because linkage errors must be accurately measured and accounted for (Lahiri

and Larsen 2005; Chipperfield et al. 2011; Chambers 2009). The measurement may be

based on a statistical model, clerical-reviews or both.

In theory, linkage errors may be estimated from a model, without any human

intervention. On one hand, Fellegi and Sunter (1969) have suggested models based on the

assumption that the linkage variables are conditionally independent given the match

status. However, these models have been quite inaccurate (Belin and Rubin 1995). On the

other hand, models that incorporate interactions may lack the identification property, see

Kim (1984) and more recently Fienberg et al. (2009). The above difficulties justify the

continued use of clerical-reviews or training samples (Belin and Rubin 1995; Howe 1981;

Heasman 2014; Gill 2001; Guiver 2011), possibly in conjunction with a statistical model

(Larsen and Rubin 2001).

In this work, the problem that consists in estimating an association parameter from an

imperfectly linked dataset is framed as a survey sampling problem. In general, survey

sampling aims at estimating a finite population parameter without bias, by taking a

probability sample, where each population unit has a known and positive inclusion

probability. Using such a sample, a population total is estimated without bias with an

Horwitz-Thompson (HT) estimator; the sum of sample values weighted by the

corresponding reciprocal selection probability. However, the HT estimator may have a

large variance, especially when the inclusion probability is not correlated with the variable

of interest. A popular alternative is a regression estimator when some auxiliary variables

are observed for all population units. The regression estimator is not unbiased but design-

consistent, that is, with a bias that is negligibly small in large samples. This estimator also

has a smaller variance than the HT estimator, when the variable of interest is a nearly

linear function of the auxiliary variables. Regression estimators offer examples of

generalized regression estimators (GREG) and calibration estimators that have been

thoroughly studied by Särndal et al. (1992) and by Deville and Särndal (1992). These

estimators are also referred to as model-assisted estimators because they are inspired by

some implicit statistical model; typically a linear model relating the auxiliary variables to

the variables of interest. They are efficient when the model holds and less so otherwise.

However they remain design-consistent regardless of the model validity (see Särndal et al.

1992, section 6.7, pp. 239).

The proposed problem formulation brings questions that have been already addressed

by Särndal et al. (1992) and others, about optimal sampling designs, design-consistent

estimators and the efficient use of auxiliary information through statistical models. This

body of work is applied to our problem with some adaptation. The resulting estimators are

regression estimators, that are built in two steps. First, all record-pairs that satisfy blocking
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criteria are used to fit a model for predicting the match status of pairs within the blocks,

irrespective of whether they are part of the clerical sample. Second, a regression estimator

is fitted based on the clerical data. The described framework also applies when the match

status is determined by other means than clerical reviews, for example through limited

access to unique identifiers or additional information from a third party.

The following sections are organized as follows. Section 2 presents the notation and

background. Section 3 describes model-based estimators in the record-linkage context.

Section 4 discusses sampling designs. Section 5 presents simulation results. Section 6

presents the conclusions and future work.

2. Notation and Background

Consider two duplicate-free registers A and B, which contain records about N individuals.

Register A contains K linkage variables and the variable of interest xi for the ith record in

A. Register B contains the same linkage variables as A and the variable of interest yj for

the jth record in B. Let U denote the finite population of all N 2 record-pairs in the cartesian

product of the two files, that is, of all pairs i; j
� �

where 1 # i; j # N.

For the record-pair i; j
� �

in the Cartesian product of the two registers, the linkage

variables may be compared to produce a K-tuple gij ¼ g
1ð Þ

ij ; : : : ; g
Kð Þ

ij

� �
of comparison

outcomes, also called vector of comparison outcomes. In large files, some linkage

variables are also coarsely compared to define blocks that altogether represent a small

subset U* of U and yet contain most matched pairs. The subset U* of blocked pairs is the

union of B disjoint subsets, U*
1 : : :U*

B, where each subset represents a distinct block. For

each pair, this blocking information is also included in the comparison vector gij. The

comparison vector gij provides the basis for linking the records, for example using Fellegi

and Sunter (1969) optimal linkage rule. However such a linkage is not required in the

proposed estimation methodology.

Let Mij denote the indicator variable that is set to 1 if the pair i; j
� �

is matched, that is,

associated with the same individual. The variable Mij is also called the match status of the

pair i; j
� �

. The comparison vector gij is crucial for making an inference bMMij about the

unknown match status Mij. The inferred match status bMMij can take many forms. For

example, it can be set to the conditional or posterior match probability P Mij ¼ 1
��gij

� �

given the comparison vector. It can also be interpreted as the “weight-share” of the pair

i; j
� �

, with the meaning of the Generalized Weight Share Method. See Lavallée (2002,

chap. 9) for applications of this method to record-linkage.

For finite population inference, the goal is estimating a total of the following form:

Z ¼
i;jð Þ[U

X
Mijzij

ð1Þ

In the above expression, zij ¼ f xi; yj

� �
and f is some known function.

For model-based inference, assume that the record-generating individuals represent an

Independent Identically Distributed (IID) sample according to some distribution or

superpopulation depending on a parameter u. Inference about this parameter may be based

on an equation of the form E S u; x; y
� �� �

¼ 0, where S is a score function (e.g., a log-

likelihood), while x; y
� �

is the observation associated with an individual from the
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superpopulation. The parameter u may be estimated through the following unbiased

estimating equation where zij uð Þ ¼ S u; xi; yj

� �
.

i;jð Þ[U

X
Mijzij û

� �
¼ 0

ð2Þ

In both cases, the inferences use the recorded values of the variables in matched pairs,

regardless of whether these values are free of nonsampling errors such as typographical

errors, measurement errors, etc.

Resources for error-free clerical reviews are available to measure the match status.

However they are costly and must be minimized. The clerical sample s has a fixed size. It

is split into a blocking stratum U* and a nonblocking stratum U \ U*. Let s* denote the

sample of blocked pairs in the clerical sample. The samples in the different strata are

selected independently and their sampling designs are arbitrary. Let pij denote the first-

order sample inclusion probability for the record-pair i; j
� �

.

3. Model-Assisted Estimators

The proposed estimators are regression estimators (Särndal et al. 1992, chap. 6) that have

the following general difference form:

Ẑ ¼
ði;jÞ[U*

X
bMMijzij þ

ði;jÞ[s*

X
p21

ij zij Mij 2 bMMij

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð1Þ

þ
ði;jÞ[s\s*

X
p21

ij Mijzij

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ð2Þ

ð3Þ

This estimator is the sum of contributions from the two strata. The first contribution

exploits the inferred match status to estimate the total over the blocking stratum with a

greater precision. The second contribution is simply a Horwitz-Thompson estimator for

the total over the nonblocking stratum. The above estimator may be viewed as a

calibration estimator (Deville and Särndal 1992), where the estimated total is calibrated to

the corresponding total based on inferred match status. It estimates the total with no

sampling error and no bias when the following two conditions are met:

i. Perfect blocking criteria selecting all matched pairs.

ii. Perfect inference of the match status, that is, Mij ¼ bMMij.

The estimator is also unbiased if the inferred status ignores the information of the clerical

sample:

E Ẑ Uj
� �

¼
i;jð Þ[U

X
Mijzij ¼ Z

ð4Þ

This is the case if bMMij is only a function of zij and gij. The inferred status may be set to the

conditional match probability given the vector of comparison outcomes and the variables

xi; yj, that is,

bMMij ¼ P Mij ¼ 1 xi; yj;gij

��� �
ð5Þ
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This particular inference strategy would minimize the mean squared error (over the

super population) between the predicted total
P
ði;jÞ[U*

bMMijzij and the actual totalP
ði;jÞ[U* Mijzij over the blocking stratum, among all inference strategies where bMMij is only

a function of xi; yj and gij, if the record-pairs were IID. Under a Simple Random Sampling

(SRS) design in the blocking stratum, the resulting estimator would also be more efficient

than the Horwitz-Thompson estimator, if the pairs were IID.

The conditional match probability may be estimated under the assumption of IID pairs

according to a two-component mixture distribution, where the different comparison

outcomes and the variables xi; yj are assumed conditionally independent given the match

status, where t ¼ 0; 1:

P xi; yj; gij Mij ¼ t
��� �

¼ P xi; yj Mij ¼ t
��� �YK

k¼1

P g
kð Þ

ij Mij ¼ t
��

� �
ð6Þ

The parameters c of this mixture include the mixing proportion l¼ P Mij ¼ 1
� �

, the

marginal m-probabilities P xi; yj Mij ¼ 1
��� �

and PðgðkÞij Mij ¼ 1Þ
�� , and the marginal

u-probabilities P xi; yj Mij ¼ 0
��� �

and Pðg kð Þ
ij Mij ¼ 0Þ
�� , under the assumption of IID pairs.

They may be estimated with an Expectation-Maximization (E-M) algorithm. See Jaro

(1989) or Winkler (1988) for applications of E-M to record-linkage, and Dempster et al.

(1977) for a general reference on E-M. An important feature of this mixture model is the

use of xi and yj as additional linkage variables. The mixture model becomes simpler when

the variables xi and yj are highly correlated with the linkage variables. In this case xi and yj

bring no new information about the match status, given gij. Mathematically, this is

expressed by the conditional independence of xi; yj

� �
and the match status given the

comparison outcomes:

P Mij ¼ 1 xi; yj;gij

��� �
¼ P Mij ¼ 1 gij

��� �
ð7Þ

The inference strategy may be inefficient if the assumed mixture model does not hold. For

example, this problem may occur if the couple xi; yj

� �
contains additional information

about the match status, but the inference bMMij ¼ P Mij ¼ 1 gij

��� �
is used instead. The

estimator is also less efficient if the linkage variables are correlated but their conditional

independence is assumed.

Let P Mij ¼ 1 xi; yj;gij

�� ; ĉ
� �

denote a preliminary estimate of the conditional match

probability according to the mixture model. This estimate is computed in the E-Step of the

E-M algorithm and it does not use the clerical results. In most cases, this mixture model

will estimate the conditional match probability with some bias even if it accounts for some

of the interactions among the different variables. To adjust for this bias, the match status

may be inferred using a linear function b0 þ b1P Mij ¼ 1 xi; yj;gij

�� ; ĉ
� �

of the estimated

conditional probability, where the regression coefficients b0 and b1 are estimated from the

clerical sample. In this case, the inferred match status is computed as follows:

bMMij ¼ b̂0 þ b̂1P Mij ¼ 1 xi; yj;gij

�� ; ĉ
� �

ð8Þ
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A special case is when a ratio estimator estimates the total over the blocking stratum.

That is,

Ẑ ¼

X
i;jð Þ[U* zijP Mij ¼ 1 xi; yj;gij

�� ; ĉ
� �

X
i;jð Þ[s* p

21
ij zijP Mij ¼ 1 xi; yj;gij

�� ; ĉ
� �

i;jð Þ[s*

X
p21

ij zijMij

i;jð Þ[s \ s*

þ
X

p21
ij Mijzij

ð9Þ

In this case b̂0 ¼ 0 and b̂1 is computed as follows:

b̂1 ¼

X
i;jð Þ[U* zijP Mij ¼ 1 xi; yj;gij

�� ; ĉ
� �

X
i;jð Þ[s* p

21
ij zijP Mij ¼ 1 xi; yj;gij

�� ; ĉ
� � ð10Þ

The estimator can also be written in terms of uniform g-weights gij

� �
ij
, where gij ¼ b̂1:

Ẑ ¼
i;jð Þ[s*

X
gijp

21
ij zijMij þ

i;jð Þ[s\s*

X
p21

ij Mijzij
ð11Þ

The following model provides the basis for better weighted least squares estimators:

E Mij xi; yj; gij

��� �
¼ b0 þ b1P Mij ¼ 1 xi; yj; gij

�� ; ĉ
� �

ð12Þ

var Mij xi; yj; gij

��� �
/ P Mij ¼ 1 zij;gij

�� ; ĉ
� �

1 2 P Mij ¼ 1 xi; yj; gij

�� ; ĉ
� �� �

ð13Þ

In this case, the estimated regression coefficients minimize the following quadratic

function:

Q b0;b1; ĉ
� �

¼
i;jð Þ[s*

X p21
ij Mij 2 b0 þ b1P Mij ¼ 1 xi; yj; gij

�� ; ĉ
� �� �2

P Mij ¼ 1 xi; yj; gij

�� ; ĉ
� �

1 2 P Mij ¼ 1 xi; yj;gij

�� ; ĉ
� �� � ð14Þ

The resulting estimator may be written in terms of nonuniform g-weights incorporating

the inferred match status. This estimator is improved by fine tuning the variance structure

with Generalized Estimating Equations (Jiang 2007).

The proposed estimators are no longer unbiased because the clerical review results are

used to make inferences about the pairs match status. However, like other regression

estimators (Särndal et al. 1992, Result 6.6.1, pp. 235, section, 6.7, pp. 238), they are

design-consistent regardless of the assumed models.

4. Sampling Design

Model-based stratified sampling has been used to approximately minimize the variance of

regression estimators (Särndal et al. 1992). In this design, the strata are defined by the

variance of the error in the assumed linear model. This strategy also applies to the current
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context where a single total is estimated. To be specific, the design-based variance

var Ẑ Uj
� �

of the model-assisted estimator is the sum of two terms:

var Ẑ Uj
� �

¼ var
i;jð Þ[s*

X
p21

ij zij Mij 2 bMMij

� �
������
U

0

@

1

A

þ var
i;jð Þ[s\s*

X
p21

ij Mijzij

������
U

0

@

1

A

ð15Þ

The first term is approximately minimized by a Neyman allocation where the pairs are

stratified according to the model-based conditional variance of the error

eij ¼ zij Mij 2 bMMij

� �
, that is var eij

��xi; yj;gij

� �
. This conditional variance is given by the

following expression.

var eij

��xi; yj;gij

� �
¼ var zij Mij 2 bMMij

� ����xi; yj;gij

� �

¼ z2
ijvar Mij 2 bMMij

���xi; yj;gij

� �

¼ z2
ij



var Mij

��xi; yj;gij

� �

þ bMMij 2 P Mij ¼ 1 xi; yj;gij

��� �h i2
�

¼ z2
ij P Mij ¼ 1 xi; yj;gij

��� �
1 2 P Mij ¼ 1 xi; yj;gij

��� �� ��

þ bMMij 2 P Mij ¼ 1 xi; yj;gij

��� �h i2
�

ð16Þ

With known conditional match probabilities P Mij ¼ 1 xi; yj;gij

��� �
and the best possible

inference bMMij ¼ P Mij ¼ 1 xi; yj;gij

��� �
we have

var eij

��xi; yj;gij

� �
¼ z2

ij
bMMij 1 2 bMMij

� �
ð17Þ

Suppose that the pairs are stratified based on gij and xi; yj

� �
or some fine discrete

approximation if these variables are continuous. Note that by design, in such as stratum,

the pairs have the same zij ¼ z value and an identical conditional match probability

P Mij ¼ 1 xi; yj;gij

��� �
¼ p. Thus they are identically distributed according to

zBernoulli p
� �

. If these pairs were independent, the variance of the errors eij would be

well approximated by the common variance var eij

��xi; yj;gij

� �
¼ z2p 1 2 p

� �
, based on the

Law of Large Numbers (LLN). In the corresponding Neyman allocation, the sample size

is proportional to the stratum variance. An estimator with the same minimum variance is

obtained via a Neyman allocation, where the strata are based on z2
ij
bMMij 1 2 bMMij

� �
the

estimated conditional error variance. The resulting allocation is no longer optimal when

the conditional match probability P Mij ¼ 1 xi; yj;gij

��� �
is estimated with some bias. Let

p̂ denote the corresponding stratum estimate. In this case the stratum variance is increased

to z2p 1 2 p
� �

þ p̂ 2 p
� �2

.
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5. Simulations

The proposed estimators are evaluated in six scenarios that consider different factors,

including the discriminating power of the linkage variables, the sample size, the model for

the distribution of linkage errors, clerical errors, and the correlation among the pairs. All

the scenarios consider a one-to-one linkage between two registers. In each register the

records are partitioned into perfect blocks of equal sizes. Consequently two matched

records always fall within the same block.

The different scenarios account for different features of practical linkages.

Scenario 1 emulates the process by which administrative records may be generated from

a finite population of individuals, with correlations among pairs that are within the same

block. It considers seven binary linkage variables that have conditionally independent

typographical errors with a common distribution. This distribution is given by the

following transition probabilities:

P c kð Þ
i ; c

kð Þ
j z

kð Þ
i ;Mij ¼ 1
��

� �
¼ P c kð Þ

i z
kð Þ

i

��� �
P c kð Þ

j z
kð Þ

i

��
� �

ð18Þ

P c kð Þ
i z

kð Þ
i

��� �
¼ 1 2 að ÞI c kð Þ

i ¼ z
kð Þ

i

� �
þ aI c kð Þ

i – z
kð Þ

i

� �
ð19Þ

where a is the probability of a recording error.

In the above expressions, c kð Þ
i is the k-th linkage variable for record i in register A, z kð Þ

i is

the latent true (i.e., free of recording errors) value of the variable for the associated

individual, with c kð Þ
j and z

kð Þ
j denoting the corresponding variables in register B. Note that,

by definition z
kð Þ

i ¼ z
kð Þ

j in a matched pair i; j
� �

. For each record i, the latent variables

z
kð Þ

i are IID. The comparison outcomes are based on exact comparisons with

g
kð Þ

ij ¼ I
�
c kð Þ

i ¼ c kð Þ
j

�
.

The variables of interest xi and yj are also binary and mutually independent of the

linkage variables in each register, and each matched pair. The files are linked to study the

joint distribution of these two variables, that is, to estimate the frequencies of the different

cells in a two-way contingency table. In this case zij ¼ I xi; yj

� �
¼ x; y
� �� �

where

x; y ¼ 0; 1. This setup is similar to that described by Chipperfield et al. (2011). However,

the goal here is finite population inference on a single finite population.

From the finite population, different IID samples are drawn using one of two designs.

For each resulting sample, three estimators are computed for the number of matched pairs

in each cell of the two-way contingency table. They include the H-T estimator, a second

model-assisted estimator (hereafter simply referred to as 2nd estimator) using the

inference bMMij ¼ P Mij ¼ 1 xi; yj;gij

�� ; ĉ
� �

and a third estimator (hereafter simply referred

to as 3rd estimator) using the inference bMMij ¼ b̂0 þ b̂1P Mij ¼ 1 xi; yj;gij

�� ; ĉ
� �

.

The first sample design is stratified according to the x-y value pairs. In each stratum,

a fixed size SRS sample is drawn. The second sample design is also stratified based on the

x-y value pairs, but it uses substrata, which are based on the conditional variance of

the prediction error. Each x-y stratum has the same number of substrata but the boundaries

are selected to obtain nearly equal substrata sizes, after the pairs are sorted according to

their conditional variance in each stratum. Consequently, substrata boundaries may differ
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from an x-y stratum to the next. The same x-y stratum sample size is used as in the first

design. However in the second sample design, this sample size is allocated optimally

among the substrata using a Neyman allocation, where the estimated variance of a

substratum is estimated as the mean conditional error variance over all the corresponding

pairs. A substratum sample allocation is further constrained to have at least two units and

not to exceed the substratum size.

Scenario 1 is the baseline scenario. It evaluates the two model-assisted estimators

in the best case, with the correct model for the comparison outcomes. This situation

maximizes their relative advantage over the naı̈ve H-T estimator. Scenarios 2 through 5

are built after Scenario 1, that is, with correlated pairs. However they each incorporate a

slight modification. Scenario 2 considers linkage variables with more typographical

errors and hence less discriminating power than in Scenario 1. Scenario 3 considers a

smaller (1,000 pairs instead of 4,000 pairs) clerical-review sample. Scenario 4 considers

linkage variables that are not conditionally independent by correlating the latent

variables z kð Þ
i . This correlation is produced by generating the z

kð Þ
i ’s according to a mixture

model with conditional independence based on a binary latent class ji. However the

estimated conditional match probability P Mij ¼ 1 xi; yj;gij

�� ; ĉ
� �

is estimated under the

assumption of conditional independence among all linkage variables. Scenario 5

considers clerical errors.

Scenario 6 considers agreement frequencies for variables such as names and birthdate

that have been used for linking high quality person files. The specific frequencies are based

on an example provided by Newcombe (1988, Table 5.1). Unlike the other scenarios,

Scenario 6 considers pairs with IID and conditionally independent comparison vectors.

The simulation parameters are as follows. All scenarios are based on N ¼ 10; 000

individuals, 1,000 blocks, a block size of 10, K ¼ 7 linkage variables, P x ¼ 1ð Þ ¼ 0:5,

P y ¼ 1 x ¼ 0j
� �

¼ 0:4, P y ¼ 1 x ¼ 1j
� �

¼ 0:7, 10 substrata per x-y stratum, 100 E-M

iteration and 100 repetitions.

The x-y stratum sample size is set to 1,000 for all scenarios except for Scenario 3

(smaller clerical sample), where it is set to 100. The conditional agreement probabilities

are uniform across the linkage variables in Scenarios 1 through 5. However, they vary

across these scenarios. For Scenarios 1 and 3 through 5, the conditional probability of

agreement is 0.98 for a matched pair and 0.5 for an unmatched pair. For Scenario 2, these

conditional probabilities are respectively 0.82 and 0.5. For Scenario 6, the conditional

agreement probabilities are given in Table 1. The remaining parameters only apply to

Scenarios 1 through 5 and are set as follows. The parameter a is set to 0.1 for Scenarios 1

through 5. For the intrinsic variables, the probability P z
kð Þ

i ¼ 1
� �

is uniformly set to 0.5.

For the recording errors, the probability P c kð Þ
i ¼ 1 z

kð Þ
i ¼ 0
��� �

is set to 0.01 except for

Scenario 2 (weaker linkage variables), where it is set to 0.1. As for the probability

P c kð Þ
i ¼ 1 z

kð Þ
i ¼ 1
��� �

is set to 0.99 except for Scenario 2, where it is set to 0.9. Scenario 4

(misspecified case) involves the additional parameters that are set as follows. The

probability P ji ¼ 1ð Þ is set to 0.5, while the conditional probabilities P z
kð Þ

i ¼ 1 ji ¼ 0j
� �

and P z
kð Þ

i ¼ 1 ji ¼ 1j
� �

are respectively set to 0.3 and 0.7.

For cell (0,0), the results for the H-T estimator and the second estimator are shown in the

box plots of Figures 1 and 2, and in Tables 2 and 3. The box plots show the five-number

summary of the relative bias for the estimated cell count. In these figures, the horizontal axis
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indicates the estimator (1 for the H-T estimator, or 2 for the second estimator), the sampling

design (1 or 2) and the scenario (1 through 3 in Figure 1, and 4 through 6 in Figure 2). For

example, in Figure 1, 2.1.1 corresponds to the box plot for the second estimator under the

first scenario and the first design. As for Tables 2 and 3 they show the average bias and CV of

the estimated count for cell (0,0). The results for the other cells are not shown because they

are similar to those of cell (0,0). As for the third estimator, the corresponding results are not

shown because they are similar to those of the second estimator.

For Scenario 1 (our baseline), all three estimators have a very small relative bias, with

no clear advantage for the H-T estimator under either sampling design. However the

model-assisted estimator halves the CV of the H-T estimator, under the first sampling

design. The gain in precision becomes negligible under the second sampling design. This

is expected because the model information is already exploited through the stratification,

which also benefits the H-T estimator.

The results for Scenario 2 show a worse performance for the model-assisted estimator,

when the linkage variables are less discriminating. Indeed, the corresponding absolute

relative bias is larger than that of the H-T estimator, under either sampling design. As for
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Fig. 1. Box plots of the relative bias for cell (0,0) in Scenarios 1 through 3. Estimator 1 is the HT estimator.

Estimator 2 is the 2nd estimator.

Table 1. Agreement frequencies for Scenario 6 based on

Newcombe (1988, Table 5.1).

Agreement probability

Linkage variable Matched Unmatched

Surname 0.965 0.001
First name 0.79 0.009
Middle initial 0.888 0.075
Year of birth 0.773 0.011
Month of birth 0.933 0.083
Day of birth 0.851 0.033
Province/country of birth 0.981 0.117
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the expected gain in precision under the first sampling design, it is dramatically smaller

than in Scenario 1. Under the second design, the gain is negligible.

The results for Scenario 3 show the same trends as in Scenario 1, with similar gains in

precision for the model-assisted estimator. Intuitively the use of a model partially makes

up for the reduced sample size.

For Scenario 4, where the model is misspecified, both the H-T estimator and the model-

assisted estimator have a small relative bias, under either design. For the model-assisted

estimator, the gain in precision is slightly reduced compared to Scenario 1.

In Scenario 5, with clerical errors, Table 2 shows that the relative bias of all the

estimators is significantly increased compared to Scenario 1. However, under the first

sampling design, the model-assisted estimators offer a significant advantage over the HT

estimator, even if this advantage is smaller than in Scenario 1. Under the second design,

this gain in precision vanishes and all the estimators have much less precision than in the

first sampling design.
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Fig. 2. Box plots of the relative bias for cell (0,0) in Scenarios 4 through 6. Estimator 1 is the HT estimator.

Estimator 2 is the 2nd estimator.

Table 2. Relative bias and CV for cell (0,0) for Scenarios 1 through 3.

Scenario Design Estimator Relative bias (%) CV (%)

1 1 1 20.12 7.52
2 0.45 3.33

2 1 0.34 1.52
2 0.48 1.36

2 1 1 0.77 7.62
2 0.94 6.43

2 1 20.17 5.67
2 20.29 5.44

3 1 1 0.18 25.18
2 0.11 12.57

2 1 0.32 6.79
2 20.04 6.37
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In Scenario 6, the model-assisted estimator greatly outperforms the H-T estimator both

regarding the bias and the precision, under either sampling design. The gain in precision

is also dramatically larger than in the other scenarios. This is because in Scenario 6, the

linkage variables collectively provide much more discrimination than in the previous

scenarios. The combination of this discrimination with a correct statistical model produces

the observed gains.

Overall, the model-assisted estimators offer the best performance when the following

three conditions are met:

i. The linkage variables provide a high discrimination.

ii. The clerical-reviews are very reliable.

iii. The assumed statistical model is correct.

Of the above three conditions, the reliability of the clerical-review is the most critical one

as it may be expected.

The simulation results also shed some light on the choice of the sampling design. In all

scenarios without clerical errors, the precision is much greater under the second sampling

design, where the pairs are stratified according to the estimated conditional match

probability. This result further underscores the importance of using auxiliary variables that

leverage the comparison outcomes.

Although this work considers a one-to-one linkage, this assumption does not play a

major role in the estimation procedure. Hence the proposed methodology also applies to an

incomplete linkage so long as the clerical reviews remain error-free. However the resulting

model-assisted estimators may be less efficient if the unmatchable records greatly differ in

distribution from the other records. Then the pairs outcomes are better modeled by a three

component mixture including two classes of unmatched pairs. In this case, specifying a

good model may be more challenging.

6. Conclusions and Future Work

This study casts the problem of design-based estimation with linked administrative files

in the classical survey methodology framework. It also proposes a new estimation

Table 3. Relative bias and CV for cell (0,0) for Scenarios 4 through 6.

Scenario Design Estimator Relative bias (%) CV (%)

4 1 1 1.21 7.71
2 0.62 4.22

2 1 0.25 2.40
2 0.21 2.29

5 1 1 24.94 8.25
2 25.25 3.66

2 1 26.31 14.84
2 26.23 14.79

6 1 1 20.79 7.40
2 20.10 0.48

2 1 20.01 0.82
2 0.01 0.12
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methodology based on model-assisted estimators and sampling-designs that are evaluated

through simulations. The simulations clearly demonstrate the equal importance of

auxiliary variables based on the linking variables and high quality clerical reviews.

Specifying good models is also important for the efficiency of the resulting estimators.

However using the correct model is not required, because, like previous model-assisted

estimators (Särndal et al. 1992), the proposed estimators remain design consistent even

when the model is misspecified.

There are two potential issues with clerical reviews including the quality of the

supporting information and the quality of the review process. Meaningful clerical reviews

are obviously impossible unless the supporting information is sufficient and reliable. Even

when it is the case, many questions remain about the quality of the review process and

ways to objectively measure it. Indeed there are few studies on this subject, beyond that

by Newcombe et al. (1983). Furthermore, such studies may be hard to replicate, either

because they have not disclosed important methodological details, or because their results

are heavily dependent on the used datasets that are unavailable. A second challenge is the

development of anonymization techniques. They prevent clerical reviews and adversely

impact the linking efficacy. Solutions based on privacy-preserving record linkage are

being actively researched to address these problems (Schnell et al. 2009). However, in

situations where clerical reviews have been effective (e.g., with available names,

birthdates and addresses in the original files), it is still unclear whether these solutions

offer competitive privacy-preserving alternatives to clerical reviews. A third challenge

concerns missing values in the linked files. The problem arises because clerical reviews

are expensive, such that it is desirable to avoid sampling pairs where some variables of

interest are missing. Such missing variables represent an unusual form of item

nonresponse, because it is known prior to sample selection. Devising solutions for an

optimal sample selection represents a new and promising avenue of research.
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Éditions de l’Université de Bruxelles.
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