
Constraint Simplification for Data Editing of
Numerical Variables

Jacco Daalmans1

Data editing is the process of checking and correcting data. In practise, these processes are
often automated. A large number of constraints needs to be handled in many applications.
This article shows that data editing can benefit from automated constraint simplification
techniques. Performance can be improved, which broadens the scope of applicability of
automatic data editing. Flaws in edit rule formulation may be detected, which improves the
quality of automatic edited data.

Key words: Data editing; constraint simplification; conditional constraints; optimization.

1. Introduction

Collected micro data usually contain errors, for example, pregnant men, average salary of

five million euro and components of a total that do not add up to that total. Correction of

such errors is often necessary to prevent flaws and inconsistencies in statistics to be

published. The process of checking and correcting is called data editing, see, for example,

De Waal et al. (2011) and Pannekoek et al. (2013). A common approach for data editing is

based on the paradigm of Fellegi and Holt (1976), stating that the data in a record should

be adapted to satisfy all edit rules by changing the fewest possible values.

Error localization according to the Fellegi and Holt paradigm can be formulated as a

Mixed Integer Linear Program (MILP) problem, see, for example, De Waal et al. (2011).

Although, in general, a solution to a data editing problem can be found in reasonable time

– typically a few seconds – the worst-case performance of a MILP problem is known to be

exponential in the problem size. Even when using modern computers, it can take hours or

even days to obtain a solution for a single record.

From Operations Research and Artificial Intelligence it is well known that performance

of a mathematical optimization problem can be improved by a constraint simplification step,

see, for example, Paulraj and Sumathi (2010), Telgen (1983), Chmeiss et al. (2008), and

Piette (2008). This means eliminating redundant constraints and simplifying unnecessary

complicated constraints, before optimization. Nevertheless, remarkably few applications of

constraint simplification are known in the context of data editing. Bruni (2005) explains how

redundant edit rules can be detected. Also, Statistics Canada developed a software tool with

q Statistics Sweden

1 Statistics Netherlands, PO Box 24500, 2490 HA Den Haag, The Netherlands. Email: j.daalmans@cbs.nl
Acknowledgments: The authors would like to thank three reviewers and the associate editor for useful comments
that greatly contributed to improving the article. The author is also grateful for useful advice from Edwin de
Jonge, Mark van der Loo, Jeroen Pannekoek, Sander Scholtus, and Ton de Waal.

Journal of Official Statistics, Vol. 34, No. 1, 2018, pp. 27–39, http://dx.doi.org/10.1515/JOS-2018-0002

http://dx.doi.org/10.1515/JOS-2018-0002

simplification features (BANFF support team 2008, Chap. 2). These applications do

however not allow for conditional (“IF-THEN”) rules, where the variables involved in the

IF and THEN statements may contain errors. Such rules frequently occur in official statistics

and are especially problematic for computational performance, due to the integer variables

that arise in the corresponding MILP problem.

This article contributes to fill the gap for constraint simplification techniques for error

localisation of numerical data. Special attention will be given to conditional rules. We

present automated methods that work at the formal level through solving MILP problems.

An advantage of automated procedures is that removal of redundant constraints can be

done out of sight, so that users can still specify all possible rules without ending up with an

inefficient edit set. Working at the formal level means that the methods can be applied to a

generic class of rules, regardless of their semantic meaning.

Since edit rule simplification improves computational performance, it has the potential

of further extending the application possibilities of automated data editing. Besides this,

expert’s feedback on automatically detected redundant edit rules might help to increase the

understanding of the joint effects of a set of rules. Due to the complex interdependence and

misspecification, a set of rules may have different implications than intended. Correction

of erroneous rules improves the quality of automatic edited data and avoids the need for

manual adjustment of results. For example, the following redundant rule was found in an

edit set, actually used by Statistics Netherlands:

IFðQuestionaire_ID – 1 OR Questionaire_ID – 2ÞTHENðVariableX¼VariableYÞ ð1Þ

Manual inspection might reveal that the OR-operator was meant to be an AND-operator.

The structure of this article is as follows. Section 2 describes the MILP formulation for

data editing of numerical variables. Sections 3–5 present formal, mathematical algorithms

for simplifying edit sets: eliminating single variables is described in Section 3, eliminating

redundant parts from conditional rules is discussed in Section 4 and the redundancy of rules

as a whole is considered in Section 5. Section 6 presents real-life applications of constraint

simplification and data editing. Finally, Section 7 finishes this article with a discussion.

2. Outline of Basic Approach

We introduce the basic idea of MILP problems first. Then, it is explained how edit rules

can be translated into MILP constraints.

2.1. Definition of a MILP Problem

A MILP problem consists of a loss function to be minimized and a set of inequality

constraints involving both real and integer variables. A general form is given by

Minimize f ðx; zÞ ¼ cT
x

z

 !
;

s:t:A
x

z

 !
b;

x e Rp and z e Zq

ð2Þ

Journal of Official Statistics28

where x and z are vectors of real and integer decision variables, c is a constant vector

ðc [Rpþq), A is a coefficient matrix and b a vector of upper bounds, see, for example,

Bertsimas and Tsitsiklis (1997).

In the remainder of this article several algorithms are proposed that make use of the

feasibility of a set constraints. This can be checked by a MILP solver by using a trivial loss

function with c ¼ 0. Of course, if a solution exists the optimum value will be zero, but if

the set of constraints is infeasible, most MILP solvers return an error message.

2.2. Edit Rules as MILP Constraints

This subsection introduces the edit rules that are considered in this article and explains

how these rules can be transformed into MILP constraints. The edit rules in this article can

be subdivided into unconditional and conditional rules.

We consider linear unconditional rules, like

Total turnover ¼ Domestic turnoverþ Foreign Turnover;

Total turnover $ 0;

that can be straightforwardly formulated as MILP contraints. One could note that the

constraints in (2) do not allow for “larger than“ and “equality” signs, but it is well-known

that these rules can be reformulated into the required form. For example, an equality can

be written as two inequalities and a constraint x . 0 can be approximated by 2x # 2e,

where e is a sufficiently small value.

We also consider ‘simple’ and ‘ compound’ conditional rules. A ‘simple’ conditional

edit has the following form

IF ,Statement 1. THEN ,Statement 2.;

where each “statement” is a linear equality or inequality. Compound rules may also

contain:

– AND-operators in the IF-clause and/or

– OR-operators in the THEN-clause.

An example is:

IF ðNumber of employees . 0 AND Turnover . 0Þ THEN

ðWages . 0 OR Labour costs . 0Þ:
ð3Þ

Note that above we did not consider rules with:

– OR-operators in the IF-clause and/or

– AND-operators in the THEN-clause,

but these rules can be rewritten as a number of simple conditional rules. For example,

the edit:

IF ðNumber of employees . 0 OR Turnover . 0Þ THEN

ðWages . 0 AND Labour costs . 0Þ

Daalmans: Constraint Simplification for Data Editing 29

is equivalent to the combination of the following four “simple” conditional rules:

IF Number of employees . 0 THEN Wages . 0;

IF Number of employees . 0 THEN Labour costs . 0;

IF Turnover . 0 THEN Wages . 0;

IF Turnover . 0 THEN Labour costs . 0:

As mentioned by Chen et al. (2010), conditional rules need to be expressed in

Disjunctive Normal Form (DNF), before these can be further converted into the required

MILP format. A DNF is a disjunction of assignments (a sequence of OR’s) that makes a

rule True, see, for example, Hooker (2000).

To explain the transformation to DNF, note that a conditional rule is satisfied, if either

the IF-clause is violated, or if the THEN-clause is fulfilled. Thus, a condition rule can be

put in DNF, by joining the negation (i.e., opposite) of the “IF”-clause with the original

“THEN”-clause. For example, the rule: “If Turnover . 0 THEN Wages . 0” can be

stated as “Turnover # 0 OR Wages . 0”.

For compound edits, the IF-clause is assumed to be a conjunction (sequence of AND’s).

According to Morgan’s law, the negation of a conjunction is a disjunction of negations. To

illustrate this, the example in (3) can be written in DNF as

Number of employees # 0 OR Turnover # 0 OR

Wages . 0 OR Labour costs . 0;

where the first two statements are negations of the original IF-clause statements.

An expression for nC edit rules in DNF is given by

<
Di

j¼1
aC

ij

� �T

x # bC
ij

� �
i ¼ 1; : : : ; nC: ð4Þ

where an edit rule i is stated as a disjunction with Di disjunctive terms. The coefficients and

upper bounds for the jth term are denoted by aC
ij and bC

ij respectively. Again, ‘equality’,

‘larger than’ or ‘smaller than’ constraints can be reformulated into the form (4).

To express the constraints in (4) as MILP constraints, the following formulation can be

used, based on the so-called Big M method.

aC
ij

� �T

x # bC
ij þMð1 2 zijÞ; i ¼ 1; : : : ; nC; j ¼ 1; : : : ;Di;

XDi

j¼1

zij ¼ 1 i ¼ 1; : : : ; nC;

2zij # 0 i ¼ 1; : : : ; nC; j ¼ 1; : : : ;Di:

ð5Þ

where zij are integer variables and M is a sufficiently large constant.

The equation
PDi

j¼1 zij ¼ 1 guarantees that only one disjunctive term is selected per

disjunction. For each selected term (i; j with zij ¼ 1), it is enforced that aC
ij

� �T

x # bC
ij : For

each non-selected term (i; j with zij ¼ 0), the first constraint in (5) becomes redundant.

Journal of Official Statistics30

As shown in (5) integer variables are needed for the formulation of conditional rules.

Because integer variables are much less efficiently handled than continuous variables,

conditional rules can be less efficiently processed than unconditional ones. Therefore, it is

very beneficial to replace conditional rules by unconditional ones.

3. Fixed Value Elimination

The aim of this technique is to shorten edit rules by elimination of ‘fixed’ variables, that is,

variables with only one admissible value. As a result, an edit set may become simpler,

possibly giving rise to a better performance of data editing software. Moreover,

misspecification of edit rules might be detected by manual inspection of fixed values.

Consider the following example:

Edit 1: x1 þ x2 þ x3 ¼ 10;

Edit 2: x1 þ x2 $ 10;

Edit 3: x3 $ 0:

ð6Þ

It is immediately clear that x3 necessarily has to be zero. In other words, x3 is a fixed

variable. Fixed values can be identified by solving two MILP programming problems for

each continuous variable. Each variable is minimized and maximized once, subject to the

MILP representation of the edit rules. If the minimum and maximum value turn out to be

the same, the variable at hand is a fixed variable. Its value can be substituted in all edits in

which it appears and a constraint is added stating that the fixed variable can only attain the

fixed value.

Besides fixed values, any finite minimum or maximum is a candidate for content-wise

analysis, because these bounds may be different than intended.

In our example, we can add the rule x3 ¼ 0 to our edit set and substitute x3 in all other

rules. We obtain

Edit 1 0: x1 þ x2 ¼ 10;

Edit 2 0: x1 þ x2 $ 10;

Edit 3 0: 0 $ 0:

Edit 4 0: x3 ¼ 0:

ð7Þ

Of course, these edits can be further simplified, Edits 20 and 30 are obviously redundant.

The further simplification for redundant rules will be explained in Section 5.

4. Simplification of Compound Rules

This section deals with the simplification of compound rules by elimination of

unnecessary statements. Two new MILP algorithms are presented, based on existing

methods from Dillig et al. (2010). The aims are again to improve computational

performance and to detect misspecification of edit rules. A possible outcome, especially

beneficial to computation performance, is that a conditional rule can be replaced with an

unconditional one.

Daalmans: Constraint Simplification for Data Editing 31

4.1. Implicitly Unsatisfiable Statements

In this subsection compound edit statements of the form (A OR B OR : : :) are simplified

by deletion of statements that cannot be satisfied, given the available set of edit rules.

Dillig et al. (2010) call these statements “non-relaxing”, since these do not enhance the

feasible area of a MILP problem. If, after simplification, only one component remains, a

conditional rule has been converted into an unconditional one. An example is

Edit 1: x1 . 0 OR x2 . 0;

Edit 2: x2 , 0:

It is immediately clear that the statement x2 . 0, within Edit 1, cannot possibly be

satisfied, because of Edit 2. This statement can be removed from Edit 1, since it is

redundant. Consequently, Edit 1 can be formulated as an unconditional rule. A more

formal definition is given below:

Definition:

A statement eij of a compound edit ei within a feasible edit set E is implicitly unsatisfiable,

if E < eij is infeasible.

Here, E < eij stands for the edit set that is obtained by extracting a compound edit’s

component eij from ei and adding it to the set E, as if it were a single edit.

An algorithm for removal of implicitly unsatisfiable statements is stated below

In each step one statement of a compound edit is added to a feasible edit set. Subsequently,

the feasibility of the extended edit set is checked by isFeasible(), a function that can be

implemented by a MILP solver, see Section 2. If the extended edit set is infeasible, the

compound edit’s statement is implicitly unsatisfiable and therefore redundant.

When applied to our previous example, the algorithm means that the constraints x1 . 0

and x2 . 0 are added to Edits 1 and 2 one by one and that the feasibility is verified for both

resulting edit sets. Because the addition of x2 . 0 renders Edits 1 and 2 infeasible, x2 . 0

is an implicitly unsatisfiable statement. It can be deleted from Edit 1 accordingly.

4.2. Implicitly Satisfied Statements

This subsection aims at replacing compound edit rules (A or B or: : :) with single,

unconditional rules. The main idea is that if a compound rule contains a statement (say A)

Algorithm 1: Identification and removal of implicitly unsatisfiable statements

Input: Feasible edit set E
Output: Feasible edit set E, without implicitly unsatisfiable components.
1 FOR each compound edit ei [E do
2 FOR each statement eij [ei do
3 E* ˆ E < eij;
4 IF isFeasible(E*) ¼ FALSE THEN ei ˆ ei \ eij

5 NEXT
6 NEXT

Journal of Official Statistics32

that is necessarily True, the compound rule can be replaced with that single statement.

Implicitly satisfied statements are called non-constraining by Dillig et al. (2010), since these

do not reduce the feasible region of a MILP problem. Consider the following example:

Edit 1: x1 , 50 OR x2 . 100;

Edit 2: x1 . 100 OR x2 . 0:

For all possible x1 values, at least one of the statements x1 , 50 and x1 . 100 is not

satisfied. Thus, Edits 1 and 2 imply that either x2 . 0, or the even stronger condition

x2 . 100, needs to be true. As a result, we obtain that x2 . 0 always needs to hold, in other

words x2 . 0 is implicitly satisfied. Consequently, Edit 2 can be replaced with this single

statement. A more formal definition is stated below:

Definition:

A component eij of a compound edit ei within a feasible edit set E is implicitly satisfied if

E< : eij is infeasible (where : stands for negation).

This definition makes use of the equivalence of the statements that a compound edit’s

component is implicitly satisfied and that the opposite of that component cannot occur. An

algorithm for identifying implicitly satisfied statements is as follows

This algorithm has a similar structure as Algorithm 1. Each step of the algorithm checks

the feasibility of an extended edit set that is obtained by adding the negation of a statement

of a compound rule to the given edits in E. If the resulting edit set turns out to be infeasible,

the added statement is “implicitly satisfied”. The statement is added to the edit set as an

unconditional rule and the conditional rule from which the statement is obtained is deleted.

When applied to our previous example, the constraints x1 $ 50, x2 # 100, x1 # 100 and

x2 # 0 are added to Edits 1 and 2 one by one, which are the negations of the original edit

components. Feasibility is checked for all resulting edit sets. Because the addition of

x2 # 0 renders Edits 1 and 2 infeasible, x2 . 0 is implicitly satisfied. Hence, Edit 2 can be

replaced with the unconditional rule x2 . 0.

5. Redundant Edit Removal

This section’s aim is to simplify edit sets by removal of redundant edits, that is, rules that

can be left out of an edit set, without affecting the set of feasible records. The removal of

Algorithm 2: Identification and replacement of implicitly satisfied statements

Input: Feasible edit set E
Output: Feasible edit set E, without implicitly satisfied statements.
1 FOR each compound edit ei [E DO
2 FOR each statement eij [ei DO
3 E* ˆ E< : eij;
4 IF isFeasible(E*) ¼ FALSE THEN E ˆ {E n ei} < e ij

5 NEXT
6 NEXT

Daalmans: Constraint Simplification for Data Editing 33

redundant constraints may speed up the error correction process without losing power of

correction. Because redundant edits may emerge as a result of fixed value substitution and

simplification of conditional edits, it is important that redundant edit removal is conducted

after these other steps. Consider the following example:

Edit 1: x1 þ x2 # T1;

Edit 2: x3 þ x4 # T2;

Edit 3: T1 þ T2 ¼ T3;

Edit 4: x1 þ x2 þ x3 þ x4 # T3:

Edit 4 can be omitted because it is implied by Edits 1, 2, and 3.

An edit is redundant if other edits imply that the edit is ‘always satisfied’. As mentioned

in Subsection 4.2, this is equivalent to the statement that the negation of the edit cannot

occur. This leads to the following definition

Definition:

An Edit ei from an edit set E is redundant, if E n eif g< : ei is infeasible.

The edit set Eneif g< : ei is obtained from E, by replacing Edit ei by its negation.

In literature many methods have been mentioned for detection of redundant constraints.

Paulraj and Sumathi (2010) performed a comparative study. Below we describe a method

mentioned by for example Felfernig et al. (2011), Chmeiss et al. (2008) and Bruni (2005).

The reason for choosing this method is its simplicity and the possibility of implementing it

by a MILP solver.

When applied to previous example, the algorithm means that the negations of Edits 1, 2,

3, and 4 are added to the edit set one by one and that the feasibility is verified for all of the

resulting set of rules. In this way, the redundancy of Edit 4 can be easily demonstrated.

Below a few words on the computation of negations. The negation of an equality

constraints can be expressed as combination of two inequality constraints. For example,

in previous example the negation of Edit 3, can be expressed as T1 þ T2 , T3 OR

T1 þ T2 . T3. These two constraints are added to the three original rules one by one. Only

if both additions lead to infeasible edit sets, one could conclude that Edit 3 is redundant. In

our example, Edit 3 is however clearly not redundant.

Algorithm 3: Identification and removal of redundant edits

Input: Feasible edit set E
Output: Feasible edit set E, without redundant edits
1 FOR each Edit ei [E DO
2 E* ˆ {Enei}< : ei ;
3 IF isFeasible(E*) ¼ FALSE THEN E ˆ Enei

4 NEXT

Journal of Official Statistics34

The negation of a compound edit rule ei, expressed as the disjunction

<Di

j¼1

��
aC

ij

�T
x # bC

ij

�
, is given by,

>
Di

j¼1
aC

ij

� �T

x . bC
ij

� �
j ¼ 1; : : : ;Di;

a combination of Di linear, unconditional constraints that all have to be satisfied.

6. Applications

Aim of this section is to apply constraints simplification methods on ‘real-life’ edit sets.

We would like to show that these edit sets can actually be simplified. Moreover, we

demonstrate that constraint simplification improves data editing’s performance.

All applications were performed on a 32-bit Windows 7 laptop with a 2.80 GHz CPU

and 3 Gigabyte of RAM memory. The methods from Sections 3–5, were implemented by

R. The free LpSolveAPI was used as a MILP solver (Konis 2016) and the Editrules

package (De Jonge and Van der Loo 2015) was implemented for automatic data editing.

The following edit sets were considered:

1. Sales: Real-life edit set used for the 2012 Dutch Structural Business Statistics for sale

of motor vehicles for businesses with fewer than ten employed persons;

2. Maintenance: Real-life edit set used for the 2012 Dutch Structural Business Statistics

for maintenance of motor vehicles for businesses with fewer than ten employed

persons;

3. Health-care: Edit set under development, meant to be used for a Dutch survey among

welfare and childcare institutions;

All methods for constraint simplification in Sections 3–5 were applied to these three

data sets. Automatic data editing was applied to the first two edit sets only, because of the

lack of data for the third application.

Table 1. Results of three real-life applications.

Sales Maintenance Health-care

Original edits
Number of edits 115 119 196

-of which conditional: 26 29 114
Number of variables in edits 74 74 75
Simplification
Fixed values 3 7 2
Conditional edits

-Implicitly unsatisfiable components 1 1 4
-Implicitly satisfied components 1 1 3

Redundant edits 22 29 10
-of which conditional 7 13 3

Cleaned edits
Number of edits 93 90 186

-of which conditional: 19 16 104
Computation Time (in seconds) 5 6 2,465

Daalmans: Constraint Simplification for Data Editing 35

Firstly, Table 1 shows the feasibility of constraint simplification on a regular computer.

One could note that computation time for the third application is relatively large, about

40 minutes, which can be explained from the many conditional rules. Large computation

time is however not a problem, because edit rules simplification only needs to be

conducted once, after designing or revising an edit set.

Secondly, Table 1 demonstrates that all simplification features in Sections 3–5 are

useful, as each feature actually simplifies all three edit sets. The total number of edit rules

is reduced by 5–20%; the number of conditional edits by 10–45%.

Table 2 shows that total computation time for automatic data editing is reduced by 23%

for the Sales application and even by 55% for the Maintenance data set. The latter

reduction can be largely attributed to only one record, whose computation times are 297

and 109 seconds for the original and simplified edit sets. This actually points out that the

worst-case performance is important in data editing, but also shows that worst-case

performance can be noticeably improved by rule simplification.

A practical solution to the possibly long computation time is to limit the available time

for each record. The last row in Table 2 shows that edit rule simplification slightly

increases the amount of records that are processed within ten seconds.

7. Discussion

Many works from the literature present automatic constraint simplification techniques that

are able to greatly improve computational performances of large optimization problems.

But, to the best knowledge of the author, these techniques are not often applied in the field

of data editing.

This article shows that automated data editing can benefit from constraint

simplification. A number of methods was presented for numerical data, based on MILP

programming. Much attention was given to conditional IF-THEN rules that often occur in

official statistics and that are particularly important for computational performance.

The feasibility of constraint simplification was demonstrated on a regular computer

using freely available MILP solvers. It was shown that real-life edit sets can actually be

simplified. As a result, the total computation time for localising erroneous values was

reduced up to 55%; a reduction that can be mainly attributed to a few records with the

Table 2. Automatic data editing, original and simplified edit sets.

Sales
(N ¼ 614 records)

Maintenance
(N ¼ 197 records)

Original
edits

Simplified
edits

Original
edits

Simplified
edits

Processed records* 613 613 197 197
Total time (in seconds) 2,639 2,039 479 217
Number records , 10 sec 592 598 191 194

* ¼ given a maximum computation time of ten seconds per record.

Journal of Official Statistics36

largest computation time. Hence, constraint simplification is an important step in further

enhancing the practicality of automatic data editing.

Another benefit is that constraint simplification provides insight in the joint

consequences of a set of rules. Manual inspection of automatically determined redundant

rules and variables with a fixed value or finite bounds might reveal errors in rule

formulation. Correction of these errors increases the quality of automated data editing and

reduces the need for manual correction of automatically edited data.

A practical merit of the proposed methods is that simplification can be automated, out of

sight of users, so that practitioners in the field do not have to bother about specifying

constraints in a compact way.

This article implicitly assumed that edits are interconnected. However, if this is not the

case, it is advisable to split an edit set E into disjunct sets, %iEi, such that ei [Ei and

ej [Ej (i – jÞ do not have any variable in common. Disjunct edit sets can be treated

independently, which may improve performance of both data editing and edit rule

simplification.

The simplification methods in this article have been designed for feasible edit sets.

Despite that infeasible edit rules are useless for practical application, infeasible rules may

occur in practise, for instance due to misspecification. In general, it can be hard to find the

cause of a contradiction, especially if the number of edit rules is large. Therefore, most

methods for dealing with inconsistency concentrate on isolating a smallest possible subset

of inconsistent edit rules: a so-called irreducible inconsistent subset (IIS). Several

algorithms for detecting IIS’s are available from literature. The so-called “Deletion Filter”

by Chinneck (1997) can be advised for many applications as it is easily understood,

suitable for conditional “IF-THEN” edits and applicable for MILP programming. In a

recent publication, Bruni and Bianchi (2012) proposed another, innovative approach,

based on Farka’s lemma. Their method however relies on an assumption, the so-called

Integral Point property, that is unknown to be true for general applications.

A direction for further research is to introduce more constraint simplification techniques

for data editing. In this article we considered numerical data. Methods for categorical data

could be developed in the future.

8. References

Banff Support Team. 2008. Functional Description of the BANFF System for Edit and

Imputation. Ottawa: Statistics Canada (Technical report).

Bertsimas, D. and J.N. Tsitsiklis. 1997. Introduction to Linear Optimization. Nashua:

Athena Scientific.

Bruni, R. 2005. “Error Correction for Massive Data Sets.” Optimization Methods and

Software 20: 291–310. Doi: http://dx.doi.org/10.1080/10556780512331318281.

Bruni, R. and G. Bianchi. 2012. “A Formal Procedure for Finding Contradictions into a Set

of Rules.” Applied Mathematical Sciences 6: 6253–6271.

Chen, D., R.G. Batson, and Y. Dang. 2010. Applied Integer Programming; Modelling

and Solution. Hoboken: John Wiley & Sons. Doi: http://dx.doi.org/10.1002/

9781118166000.

Daalmans: Constraint Simplification for Data Editing 37

http://dx.doi.org/10.1080/10556780512331318281
http://dx.doi.org/10.1002/9781118166000
http://dx.doi.org/10.1002/9781118166000

Chinneck, J.W. 1997. “Finding a Useful Subset of Constraints for Analysis in an Infeasible

Linear Program.” INFORMS Journal on Computing 9: 164–174. Doi: http://dx.doi.org/

10.1287/ijoc.9.2.164. Available at: http://www.sce.carleton.ca/faculty/chinneck/docs/

UsefulSubset.pdf (accessed January 2017).

Chmeiss, A., V. Krawczyk, and L. Sais. 2008. “Redundancy in CSPs.” In Proceedings of

the 18th European Conference on Artificial Intelligence (ECAI 2008), August 21–25,

2008. Patras, Greece. Amsterdam: IOS Press. Doi: http://dx.doi.org/10.3233/

978-1-58603-891-5-907.

De Jonge, E. and M. van der Loo. 2015. Editrules: R Package for Parsing and

Manipulating of Edit Rules and Error Localization. R Package Version 2.9-0. Available

at: http://cran.r-project.org/package=editrules (accessed May 2017).

De Waal, T., J. Pannekoek, and S. Scholtus. 2011. Handbook of Statistical Data Editing

and Imputation. New York: John Wiley & Sons. Doi: http://dx.doi.org/10.1002/

9780470904848.

Dillig, I., T. Dillig, and A. Aiken. 2010. “Small Formulas for Large Programs: On-Line

Constraint Simplification in Scalable Static Analysis.” In Proceedings of the 17th

international conference on Static analysis (SAS’10), September 14–16, 2010

Perpignan, France. Berlin Heidelberg: Springer-Verlag. Available at: http://theory.

stanford.edu/~aiken/publications/papers/sas10.pdf (accessed January 2017).

Felfernig, A., C. Zehentner, and P. Blazek. 2011. “CoreDiag: Eliminating Redundancy in

Constraint Sets.” Proceedings of 22nd International Workshop on Principles of

Diagnosis, October 4–7, 2011, Murnau, Germany. Available at: http://www.ist.tugraz.

at/felfernig/images/stories/home/dx_corediag.pdf (accessed March 2017).

Fellegi, I.P. and D. Holt. 1976. “A Systematic Approach to Automatic Edit and

Imputation.” Journal of the American Statistical Association 71: 17–35. Doi: http://dx.

doi.org/10.1080/01621459.1976.10481472.

Hooker, J. 2000. Logic-Based Methods for Optimization: Combining Optimization and

Constraint Satisfaction. New York: John Wiley & Sons. Doi: http://dx.doi.org/10.1002/

9781118033036.

Konis, K. 2016. lpSolveAPI: R Interface for lpsolve. Version 5.5.2.0-17 R package version

5.5.2.0. Available at: https://cran.r-project.org/web/packages/lpSolveAPI/index.html

(accessed January 2017).

Pannekoek, J., S. Scholtus, and M. van der Loo. 2013. “Automated and Manual Data

Editing: a View on Process Design and Methodology.” Journal of Official Statistics 29:

511–537. Doi: http://dx.doi.org/10.2478/jos-2013-0038.

Paulraj, S. and P. Sumathi. 2010. “A Comparative Study of Redundant Constraints

Identification Methods in Linear Programming Problems.” Mathematical Problems in

Engineering. Article ID 723402. Doi: http://dx.doi.org/10.1155/2010/723402.

Piette, C. 2008. “Let the Solver Deal with Redundancy.” In Proceedings of the 20th IEEE

International Conference on Tools with Artificial Intelligence (ICTAI’08), November

3–5, 2008, Dayton, Ohio. Washington DC: IEEE Computer Society. Doi: http://dx.doi.

org/10.1109/ICTAI.2008.38. Available at: https://hal.archives-ouvertes.fr/hal-

00865304/document (accessed March 2017).

Journal of Official Statistics38

http://dx.doi.org/10.1287/ijoc.9.2.164
http://dx.doi.org/10.1287/ijoc.9.2.164
http://www.sce.carleton.ca/faculty/chinneck/docs/UsefulSubset.pdf
http://www.sce.carleton.ca/faculty/chinneck/docs/UsefulSubset.pdf
http://dx.doi.org/10.3233/978-1-58603-891-5-907
http://dx.doi.org/10.3233/978-1-58603-891-5-907
http://cran.r-project.org/package=editrules
http://dx.doi.org/10.1002/9780470904848
http://dx.doi.org/10.1002/9780470904848
http://theory.stanford.edu/~aiken/publications/papers/sas10.pdf
http://theory.stanford.edu/~aiken/publications/papers/sas10.pdf
http://www.ist.tugraz.at/felfernig/images/stories/home/dx_corediag.pdf
http://www.ist.tugraz.at/felfernig/images/stories/home/dx_corediag.pdf
http://dx.doi.org/10.1080/01621459.1976.10481472
http://dx.doi.org/10.1080/01621459.1976.10481472
http://dx.doi.org/10.1002/9781118033036
http://dx.doi.org/10.1002/9781118033036
https://cran.r-project.org/web/packages/lpSolveAPI/index.html
http://dx.doi.org/10.2478/jos-2013-0038
http://dx.doi.org/10.1155/2010/723402
http://dx.doi.org/10.1109/ICTAI.2008.38
http://dx.doi.org/10.1109/ICTAI.2008.38
https://hal.archives-ouvertes.fr/hal-00865304/document
https://hal.archives-ouvertes.fr/hal-00865304/document

Telgen, J. 1983. “Identifying Redundant Constraints and Implicit Equalities in Systems of

Linear Constraints.” Management Science 29: 1209–1222. Doi: http://dx.doi.org/10.

1287/mnsc.29.10.1209.

Received March 2016

Revised August 2017

Accepted September 2017

Daalmans: Constraint Simplification for Data Editing 39

http://dx.doi.org/10.1287/mnsc.29.10.1209
http://dx.doi.org/10.1287/mnsc.29.10.1209

