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We introduce a high-dimensional structural time series model, where co-movement between
the components is due to common factors. A two-step estimation strategy is presented, which
is based on principal components in differences in a first step and state space methods in
a second step. The methods add to the toolbox of official statisticians, constructing timely
regular statistics from different data sources. In this context, we discuss typical measurement
features such as survey errors, statistical breaks, different sampling frequencies and irregular
observation patterns, and describe their statistical treatment. The methods are applied to the
estimation of paid and unpaid overtime work as well as flows on working-time accounts in
Germany, which enter the statistics on hours worked in the national accounts.
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1. Introduction

In a very important and publicly visible field of official statistics, early releases of

economic production or labor market indicators are constructed on a regular monthly or

quarterly basis. Several surveys and other data sources are typically used to update these

time series based on the information available so far. The importance of timely and precise

measures of the economy is emphasized in a large literature on real-time data analysis,

which shows that data revisions pose a severe challenge to forecasters and policymakers;

see, for example, Croushore (2011). Hence, on the side of statistical agencies, most

prominently for quarterly national accounts, efforts are made to produce accurate statistics

by bringing together a large amount of primary data sources, typically surveys; see Bureau

of Economic Analysis (2017), Wood and Elliott (2007), and Federal Statistical Office

(2008) for GDP calculation in the US, in the UK, and in Germany.

The current article is a methodological contribution to this field of activity. For the

estimation of a target series ut such as real GDP or hours worked in the past quarter,

we make use not only of currently available surveys zt that aim to measure ut, but

notably also of the history of such surveys, zt21; zt22; : : : , and of a possibly very large

set of additional indicators, xt; xt21; : : : , which are in some way related to ut. Hence, in

the terminology of survey or small area statistics, we discuss a new model and an
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estimator that borrows strength both over time and from related variables in a data-rich

environment.

Our proposed approach is based on factor models for high-dimensional time series

which have become an indispensable tool for macroeconomic fore- and nowcasting as

well as structural modeling; see Bai and Ng (2008) as well as Stock and Watson (2011) for

recent surveys. In this field, seasonally adjusted variables typically enter the model in first

or second differences, while the factors are modeled as a stationary VAR process. Methods

for handling nonstationary variables are also available (Bai and Ng 2004), and unit-root

versions of the factor-augmented VAR as well as error correction models are an area of

active research; see, among others, Banerjee et al. (2014).

We propose a concurrent parametrization for large factor models of nonstationary

variables which we formulate in the structural time series framework of Harvey (1991).

Factor structures on the trend, seasonal, cyclical and irregular components allow to model

the co-movements of a large number of time series in a parsimonious, componentwise

manner. The popular common trends or common cycle models emerge as special cases,

but a common features assumption, restricting the idiosyncratic part to be stationary or

even serially uncorrelated, is not necessarily imposed in our framework. Rather, the

idiosyncratic part may be characterized by trend, cycle and seasonal components as well.

For a straightforward and computationally feasible implementation of the approach,

a principal component analysis is combined with state space methods in the spirit of

Bräuning and Koopman (2014). We extract the principal components of suitably

differenced data to account for nonstationarity of the idiosyncratic part. Re-cumulated

factors are modeled jointly with the series of primary interest using likelihood-based

techniques within a state space framework. In Monte Carlo simulations, we find that this

method performs well, irrespectively of whether a common features assumption holds.

From the perspective of data construction, we discuss several advantages and possible

modifications of our model in state space form. Primary sources in official statistics are

typically subject to survey errors and statistical breaks. They may be collected at different

sampling frequencies, while changing survey designs lead to irregular measurement

patterns. Since the key part of our model is formulated in state space form, it is well-suited

to handle these patterns. It produces efficient estimates of the target series when different

surveys measure the same underlying series. Information from the past of the series is

processed, and additional strength is borrowed from a large number of related series with

correlated components. Seasonally adjusted time series, using all available data for the

adjustment, are obtained as a by-product of the procedure.

The potential of the state space approach for official statistics has already been pointed

out by other researchers. Uses in several areas of official statistics have been highlighted

by Durbin (2000). There are examples where state space methods are applied for seasonal

adjustment, while Pfeffermann (1991) and Tiller (1992) discuss signal extraction from

repeated survey data. In small area statistics, state space models help obtain disaggregate

figures from surveys by borrowing strength both over time and space, see Pfeffermann and

Tiller (2006) and Krieg and van den Brakel (2012). In that context, Bollineni-Balabay et al.

(2015) pursue the estimation of aggregates along with the small-area domains in the

presence of survey redesigns and variance breaks. Durbin and Quenneville (1997) and

Quenneville and Gagné (2013) introduce benchmark constraints drawn from precise but

Journal of Official Statistics266



low-frequency census data to correct the preliminary survey estimates, while Harvey and

Chung (2000) discuss modeling data from different sources, and Moauro and Savio (2005)

is concerned with temporal disaggregation as required by national statistical agencies.

We apply our methodology to the statistics of hours worked in Germany. High-quality

data on hours worked are a key for understanding aggregate labor market dynamics, for

example, to track business cycles, to assess reactions to shocks such as the 2008/09

financial and economic crisis (Burda and Hunt 2011), and to confront macroeconomic

theory with time series evidence (Ohanian and Raffo 2012). Timely figures on hourly

labour productivity are considered as being important, for example, for well-guided wage

negotiations and monetary policy.

In Germany, working time statistics are constructed within the working time

measurement concept of the Institute for Employment Research (IAB). The

componentwise accounts provide a comprehensive figure of hours worked and contributes

results to the German national accounts; see Wanger et al. (2016). In the measurement

of overtime hours and flows on working-time accounts (WTA), we use household and

business surveys, while additionally drawing on several labor market and business cycle

indicators. Lacking continuously available survey data on working-time account net flows,

the latter is based on the unobserved trend and cycle components for transitory overtime

hours as well as regular and actual hours worked.

The article is structured as follows: Section 2 describes the model and its statistical

treatment, Section 3 illustrates alternative measurement schemes faced in official statistics

and Section 4 presents finite sample properties of the procedure. Section 5 applies the

methods to the German statistics of hours worked, while the last section concludes.

2. A High-Dimensional Structural Time Series Model

2.1. The Factor Model

This article presents a new model and its implementation for official statistics. It extends

the scope of multivariate structural time series models (STSM) discussed by Harvey

and Koopman (1997) to high-dimensional applications. As the point of departure, an

N-dimensional vector time series yt is decomposed into trend mt, seasonal gt, cycle ct, and

irregular components ut, according to

yt ¼ mt þ gt þ ct þ ut; ð1Þ

where the terms on the right are unobserved stochastic processes. Additional components

such as calendar effects or outliers can be straightforwardly incorporated through the use

of dummy regressors given this additive formulation but are not considered in this article.

After describing the dynamic specification of the components we introduce a factor

structure that handles cross-series linkages within the groups of components, and the

statistical treatment of the model.

We use a standard specification for the dynamics of each component and characterize

the slow movements by local linear trends

mtþ1 ¼ mt þ nt þ jt; ntþ1 ¼ nt þ zt;
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where jt , iid Nð0;SjÞ and zt , iid Nð0;SzÞ are independent Gaussian white noise

sequences. For a model frequency of s observations per year, the seasonal components are

gtþ1 ¼ 2
Xs22

j¼0

gt2j þ vt; vt , iid Nð0;SvÞ:

Alternatively, a trigonometric specification for the seasonal components can be used

(Durbin and Koopman 2012, Sec. 3.2.1). An individual cycle component ~cit, i ¼ 1; : : : ;N

evolves jointly with the auxiliary process ~c*
it as

~ci;tþ1

~c
*

i;tþ1

0

@

1

A ¼ ri

cosli sinli

2sinli cosli

 !
~cit

~c*
it

 !
þ

kit

k*
it

 !
;

kit

k*
it

 !
, iid Nð0;Sk;iiIÞ;

where li is the dominant frequency and 0 , ri , 1 denotes the dampening factor. As for

the trends and seasonal components, linkages between the individual cycles are introduced

through covariances between the disturbances, collected in Sk. To gain flexibility on the

temporal timing of the co-movement, we introduce phase shifts d2, : : : , dN between the

cycles by setting cit ¼ ~citcoslidi þ ~c*
itsinlidi, i ¼ 1; : : : ;N, where d1 ¼ 0 as a normal-

ization and di measures the lead time of cycle j against the cycle of the first variable; see

Rünstler (2004) and Valle e Azevedo et al. (2006). Finally, the irregular noise term is given

by ut , iid Nð0;SuÞ. For simplicity we assume that all groups of shocks jt, zt, vt kt and ut

are mutually independent. Correlated components in the spirit of Morley et al. (2003) could

be straightforwardly adapted as long as suitable identification conditions are met.

Our focus is on cases where N, the number of series in yt is large, and hence a curse of

dimensionality occurs in the unrestricted model (1). For full covariance matrices Sj, Sz,

Sv, Sk and Su, there are O(N(N þ 1)) variance parameters to be estimated, which makes

the application practically infeasible even for moderate values of N. In such situations,

factor models have been found useful for different purposes in economics and finance.

They allow a parsimonious representation of the cross-section dependencies between

panel units or time series variables. Within our STSM setup, we consider common factors

for each group of components. Denoting the common components by a C superscript and

the idiosyncratic terms by I, our model is given by

yt ¼ Lmm
C
t þ Lgg

C
t þ LccC

t þ LuuC
t þ mI

t þ g I
t þ cI

t þ uI
t : ð2Þ

The common components are of dimensions rm, rg, rc and ru, respectively, which are

typically substantially smaller than N, while Lk, k [ {m; g; c; u} are N £ rk loading

matrices of full column rank. All components follow the same dynamics as those

described below (1), and are driven by shocks with covariance matrices S
C
l and S

I
l for

l [ {j; z;v; k; u}. The idiosyncratic components are assumed mutually uncorrelated and

hence S
I
l are diagonal, so that the number of parameters is reduced to an order O(N) for

fixed factor dimensions.

Our decision of using a factor model to circumvent the curse of dimensionality is popular

in the econometrics field, since this “reduced rank sparsity” can easily handle high

correlations between the series due to business cycle linkages. Especially cyclical
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movements are candidates for such a rank reduction, but also long-term trends may be linked

by identical underlying driving forces. The alternative way to avoid the dimensionality

problem, the so-called “zero sparsity” where correlations are set to zero, is often less

plausible in such setups. In the empirical application, we practice a mix of reduced rank

and zero sparsity: Component variances and correlations are set to zero when this is

statistically appropriate after the model dimension has been drastically reduced by the factor

approach.

Identification of the latent components in (2) is achieved if two conditions hold: (a) The

processes mt, gt, ct and ut from (1) are separately identified through their difference in

dynamics, and (b) for each of these dynamic components, for example for Lmm
C
t þ mI

t , the

common Lmm
C
t and idiosyncratic mI

t are distinguished as in classical factor models by the

assumption that the idiosyncratic series are mutually uncorrelated in the cross-section

dimension. Condition (a) is standard both in univariate and multivariate structural time

series models and unproblematic in the uncorrelated components case considered here.

It is discussed among others by Harvey (1991, sc. 4.4). Condition (b) is not related to the

dynamic properties of the series, but only draws on the correlations between the series

which are due to a low-dimensional factor process. The autocorrelation and even

nonstationarity, for example of Lmm
C
t þ mI

t , does not interfere with the identification

problem since the setup can be easily transformed to the classical “white noise” factor

model of Anderson (1984) by a univariate time series filter; the reversed filter applied to

the identified components would in principle recover the original autocorrelation structure.

Clearly, as in classical factor models, the loadings and factors are identified only up to

rotation, so that the additional normalizations that the upper rk £ rk block of suitable

loading matrices are identity will be used in Subsection 2.2. The chosen identification,

however, does not matter for the purpose of this article which is estimation of a target

series rather than structural inference on the factors.

The factor STSM can be represented in the notation of a standard multivariate STSM (1)

if a similar cycle assumption holds, that is, if all ri and li are identical for both the

common and idiosyncratic components. However, the factor structure imposes restrictions

on the disturbance covariance matrices, which are given by

Sj ¼ LmS
C
j L

0
m þ S

I
j ; Sz ¼ LmS

C
z L

0
m þ S

I
z ; Sv ¼ LgS

C
vL

0
g þ S

I
v;

Sk ¼ LcS
C
k L

0
c þ S

I
k; Su ¼ LuS

C
u L

0
u þ S

I
u:

If one or more of the columns of Li are linearly dependent with those of Lj, i – j,

the stacked loadings (Lm, Lg, Lc, Lu) have a reduced column rank denoted by

r , rm þ rg þ rc þ ru. Then, the cross-section correlations between variables in yt can be

traced back to a smaller number of common sources than there are common structural time

series components. This possibly smaller dimensional latent process is given by the

r-dimensional compound factors denoted by ft with a corresponding full-rank N £ r

loading matrix L, such that yt ¼ Lf t þ mI
t þ g I

t þ cI
t þ uI

t . The compound factors are

related to the common components by

f t ¼ Gmm
C
t þ Ggg

C
t þ GccC

t þ GuuC
t ;
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where Gk ¼ ðL
0LÞ21L 0Lk are r £ rk matrices of full column rank. Again, factors ft,

loadings L and Gk are only identified up to linear combinations, but for a chosen rotation

the common components mC
t , gC

t , cC
t and uC

t are identified (up to rotation) through their

different dynamics, and hence can be estimated from ft by the state space approach

described by Harvey (1991). As an example with the richest dynamic structure possible for

a given r, consider the case with r ¼ rm ¼ rg ¼ rc ¼ ru and L ¼ Lm ¼ Lg ¼ Lc ¼ Lu.

The factors f t ¼ mC
t þ gC

t þ cC
t þ uC

t then follow a structural time series process and

consist of trend, irregular, seasonal and cyclical components themselves.

Factor structures in the multivariate STSM framework have been studied before in the

econometrics literature, albeit with a different scope. Models for a moderate number of

series have been used to investigate common trends (and thus cointegration) or common

cycles in their dynamics; see, for example, Harvey (1991, Sec. 8.5), Valle e Azevedo et al.

(2006) or the software implementation of Koopman et al. (2009). In the standard setup,

the idiosyncratic part is a white noise process, or at least has different dynamic properties

from the factors’. Identification of the factor (e.g., mC
t in the common level model

yt ¼ Lmm
C
t þ 1I

t ) is therefore achieved in both of the ways (a) and (b) discussed above at

the same time: In the common levels model mC
t is the only source of autocorrelation and

also the only source of correlation between the series. This restricts the model in a very

relevant way and makes it less applicable for high-dimensional settings, since especially in

high dimensionsid iosyncratic errors with restricted dynamic properties (or even white

noise) are unrealistic and a high factor dimension would be needed to provide a reasonable

approximation to the data. Eickmeier (2009), among others, finds unit roots in the

idiosyncratic part of many macroeconomic time series, so that a common trends

assumption fails for a reasonable factor dimension.

Our Model (2), in contrast, allows factors and idiosyncratic part to have the same types

of components as the common part, and hence to consist of trend, seasonal, cycle and

noise. In this way, we may obtain a more parsimonious structure with less factors when

a larger panel of data is considered. Our model is rather general in that it allows for

co-movements in each of the components, while a common features restriction is possible

by setting the respective idiosyncratic components, say trends or cycles, to zero. As we

describe in the next section, our model allows a computationally feasible treatment even in

the high-dimensional case, since it naturally allows a combination of PCA and state space

methods. In contrast, in common cycles or common trends models the components are

typically filtered out from a full state space approach which becomes cumbersome for a

larger number of series and factors.

In the high-dimensional factor framework, by far the most popular approach for

dynamic modeling is by estimating factors by principal components, and using VAR

models for observed series and estimated factors, resulting in VAR-based dynamic factor

or so-called factor-augmented VAR (FAVAR) models; see, for example Stock and

Watson (2005) or Bernanke et al. (2005). Model (2) has several benefits also relative to

such VAR-based approaches. Firstly, the structural approach offers insights into the nature

of co-movements between the series, which can be assigned to specific components: Is it

because of business cycles or rather correlated trends that macroeconomic time series

co-move? Are there joint sources of changing seasonal patterns in several branches of the

economy? Can common irregular components like weather effects be identified that
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transitorily hit several output measures? Secondly, in the context of filtering a signal

from sparsely available data, the structural time series setup imposes a parsimonious

parametrization which stabilizes the estimates. In the application to official statistics, all

components help estimate the different features of the target series while taking into

account all relevant information from related series. Thirdly, using information from many

series may also lead to important improvements of seasonal adjustment procedures over

univariate approaches.

2.2. Estimation by Collapsing the Factor Space

We suggest an estimation procedure of the model given by a combination of principal

component and state space techniques along the lines of Bräuning and Koopman (2014).

Assume that we are primarily interested in a low-dimensional subprocess zt holding Nz

series of the available data, while the complete set of time series is separated according to

yt ¼ ðx
0
t; z
0
tÞ
0. In forecasting applications, zt will hold at least the series to be predicted,

while the estimation of official statistical figures typically requires the series zt to consist of

the major surveys measuring the target series. Unlike Bräuning and Koopman (2014), we

assume that all variables in yt are generated by the same model, (2) in our case, and hence

variables in xt and zt are treated symmetrically in terms of the model but not in terms of the

estimation procedure.

To estimate the space of compound factors ft in a first step, we apply a suitable principal

components analysis to xt. By using the data xt in differences, we avoid possible

inconsistencies due to nonstationary idiosyncratic components, and thus adapt ideas of

Bai and Ng (2004) to our setting. More concretely, denoting by L the lag operator, by

D :¼ ð1 2 LÞ the standard difference and by Ds :¼ ð1 2 LsÞ the seasonal difference

operator, we obtain factor loadings �L as
ffiffiffiffiffiffi
Nx

p
times the orthonormal eigenvectors

corresponding to the r largest eigenvalues of
PT

t¼1 ðDDsxtÞðDDsxtÞ
0. Estimated factors are

obtained by re-cumulating the principal components in differences, or from the level data

as �ft ¼ �L 0xt, which differs from the re-cumulation approach through the effects of initial

values. Under an additional assumption on the factor loadings, the results of Bai and Ng

(2002) are applicable to the variables in differences; see Appendix A. Among other things,

this assures consistency (up to rotation and net of the effects of starting values) of �ft for ft at

a fixed t as N and T tend to infinity. In the setup (2), the differenced series are usually

autocorrelated as are the residuals from the principal components approach. However, as

long as differences of sufficient orders are taken, the autocorrelation is weak in the sense of

Bai and Ng (2002, Assumption C) and consistency of the factors in this approximate factor

framework is ensured.

The principal components approach is typically not optimal and comes with an

efficiency loss, for example, in the situation of outliers due to nongaussianity, of

heteroskedasticity of the idiosyncratic components, or of autocorrelation. We propagate its

use as asimple, well-understood and popular first-step estimator, but of course improved

versions are available and can also be applied in our setup (see, e.g., Breitung and

Tenhofen 2011).

To gain information on the common components and their relation to the variables in zt,

we consider the joint model of ft and zt within the state space setup. Replacing the
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compound factors ft by their estimates, the model is given by

�ft

zt

 !
¼

Gm

Lm

 !
mC

t þ
Gg

Lg

 !
gC

t þ
Gc

Lc

 !
cC

t þ
Gu

Lu

 !
uC

t þ
et

mI
t þg I

t þ cI
t þuI

t

 !
; ð3Þ

where et is the error of �ft estimating ft. As a slight abuse of notation, the idiosyncratic

components and loadings are those corresponding to the elements in zt only. While the

compound factor estimates �ft are identified by the standard normalization of principal

components, the common structural time series components are made unique by setting

Gm¼

Irm

G ð2Þm

0
@

1
A; Gg¼

Irg

G ð2Þg

0
@

1
A; Gc¼

Irc

G ð2Þc

 !
; Gu¼

Iru

G ð2Þu

 !
;

and the common components may have unrestricted disturbance covariance matrices.

Setting the upper block of the loading matrices to identity is only one of many ways

to prohibit observationally equivalent rotations of factors and loadings (see e.g., Bai

and Ng 2013), but especially fore- and nowcasts of the series do not depend on such

normalizations.

Under the given restrictions, the model can be operationalized by ignoring the error

from principal components estimation, and hence setting et ¼ 0, which is justified as an

approximation especially for large N. The unknown hyperparameters of (3) are estimated

by maximum likelihood using the state space approach.

Alternatively, a multivariate STSM without the restrictions of (3) can be fitted to the

joint process of principal components and variables of interest. This second strategy

allows for correlation between the idiosyncratic terms of zt, while the model nests the

factor STSM specification (3). Given typical factor dimensions of less than five and a

univariate or low-dimensional zt, especially the latter estimation approach can easily be

conducted in one of several available software packages such as STAMP (Koopman et al.

2009) or those described by Commandeur et al. (2011) and articles in the same special

issue. For the computations in this article, the KFAS package for R is used (Helske 2016).

Empirically, the compound factor dimension can be inferred from the data yt in suitable

differences, for example by the methods proposed by Bai and Ng (2002). Alternatively,

different (small) values of r can be considered and robustness with respect to this choice

can be assessed in practice. Subsequently, for a given r, beginning from rm ¼ rg ¼ rc ¼

ru ¼ r, the dimension of each common component may be determined in a general-to-

specific sequential testing procedure based on (3).

3. Observation Schemes

The factor STSM introduced in this article has advantages in filtering latent series from

incomplete measures which is a key issue in official statistics. For this purpose, we assume

that a latent Nu dimensional process ut of target series instead of observed zt is modeled to

follow the factor STSM (2), and that the observations collected in zt are related to ut

through a dynamic measurement relationship

zt ¼ dt þMtðLÞut þ 1t; 1t , Nð0;HtÞ; ð4Þ
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where dt holds possible survey bias terms and statistical breaks, MtðLÞ ¼ Mt0 þMt1L

þ : : :þMtlL
l are Nz £ Nu matrix lag polynomials holding the dynamic measurement

coefficients, while 1t is a vector of survey errors with possibly time-varying covariance

matrices Ht. The latter need not necessarily follow a white noise process, but can, for

example, contain autocorrelation due to survey overlap, which may be treated by the

methods of Pfeffermann and Tiller (2006). We review some of the cases that the general

mechanism (4) captures, and propose its implementation in the state space form which is

given in Appendix B.

The measurement scheme (4) is sufficiently flexible to allow for several surveys

estimating the same underlying concept, for missing data and for time-varying observation

patterns. Consider an example where u1t, for example, paid overtime hours per week and

employee, is measured by two surveys z1t and z2t, for example, the German Socio-

Economic Panel (GSOEP), and the German Microcensus, as it is the case in the

application to German hours worked data below. The measurement mechanism is then

given by

z1t ¼ u1t þ 11t; z2t ¼ d2 þ u1t þ 12t: ð5Þ

In this simple example, with MtðLÞ ¼ ð1; 1Þ
0, the scheme brings together contradicting

surveys, where differences are explained by the survey errors 11t and 12t. The variances of

these errors depend on the design and size of the survey and are likely to change over time.

By including an unknown constant d2 in the second measurement equations, it is possible

to correct for a bias in one of the sources. Similarly, if statistical breaks, like changes in the

survey questionnaire, occur in one or more of the data sources, these may be explicitly

accounted for by level shifts in dt, and hence leave the measured ut unaffected. In case of

changing seasonal patterns or covariance structures of the components, however, a time-

varying transition rather than measurement equation has to take this into account, a topic

that we do not consider in this article.

Different sampling frequencies of regular surveys, or data missing for other reasons, are

also covered by the measurement scheme (4), which is an important topic in the existing

nowcasting literature (Giannone et al. 2008). Considering a quarterly stock variable which

is measured only at the end of the quarter, we observe the monthly value z1t ¼ u1t only

when t is the last month of a quarter, while values of zt are missing two thirds of the time.

Returning to the bivariate example, if in period t no survey z1t is conducted, we obtain a

trivial equation

0 ¼ 0�u1t þ 0; z2t ¼ d2 þ u1t þ 12t ð6Þ

by specifying MtðLÞ ¼ ð0; 1Þ
0 and H11;t :¼ Varð11tÞ ¼ 0. Hence, no information is gained

by the first survey in that period. Therefore, information about u1t stem firstly from other

surveys z2t, secondly from past and future values of z1t through the dynamics of the system,

or thirdly from additional indicators correlated with u1t through the common components.

If one survey z1t is used as a benchmark and hence the resulting estimate of u1t should

exactly match that survey, this is reached by setting 11t ¼ 0. Further relevant methods for

benchmarking are discussed in Durbin and Quenneville (1997) and Quenneville and

Gagné (2013).
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In contrast to the previous example of a stock variable where survey interviews reflect

observations on one period t, in reality reference intervals may span more than one period in

terms of the model frequency. This is typically the case for flow variables like GDP where

we observe the sum of the monthly flows z1t ¼ ut þ ut21 þ ut22 at the end of the quarter.

With a lag polynomial MðLÞ ¼ 1þ Lþ L2, we can also write z1t ¼ MðLÞut. As another

example, since 2005 the German Microcensus has a continuous interview policy and allows

an evaluation of quarterly averages of quantities such as overtime hours worked per week.

If the model is formulated at monthly frequency, an observation z1t of a flow variable,

corresponding to the second quarter 2006, refers to the mean of the underlying u1t, u1;t21 and

u1;t22 of April, May and June. The measurement equation reflects this by assigning the

quarterly value z1t to the last month of the quarter and selecting

z1t ¼
1

3
u1t þ

1

3
u1;t21 þ

1

3
u1;t22 ¼ MtðLÞu1t ð7Þ

where z1t contains values only at the end of the quarter of each year, and where MtðLÞ ¼
1
3
þ 1

3
Lþ 1

3
L2 is the lag polynomial that reflects that measurement scheme. The change

from a fixed reference week to continuous interviews is reflected by a change in the time-

varying observation polynomial Mt(L), so that Mt(L) ¼ 1 for periods t before 2005.

For other surveys, the observation scheme is still more general. For example, for

household panel studies such as the GSOEP or the U.S. panel study of income dynamics

(PSID), the field period spans several months and changes from year to year. Assigning the

resulting yearly figure to the December of each survey year, an observation equation

z1t ¼ Mt;decu1t þ : : :þMt;janu1;t211 ð8Þ

reflects the time-varying shares Mtj of observations in each month j, relative to all

observations in that year. Figure 1 shows the distribution of the GSOEP interviews for
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Fig. 1. Distribution of GSOEP interviews over certain years. The fraction of interviews for each month is shown

for 1991, 2000, 2004, and 2012.
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selected years, namely for 1991 (solid line), for 2000 (dashed), for 2004 (dotted), and for

2012 (dash-dotted).

Note that the measurement scheme might interfere with the identification of a given

model. If an underlying series u1t is measured by a low-frequency, say quarterly, series

alone, then seasonal components of some frequency may be unobservable; see Harvey

(1991, Sec. 6.3). One obvious way to circumvent this is to use quarterly time-varying

dummy variables that do not aim to estimate intra-quarter seasonality, while one could

alternatively use a trigonometric seasonal specification (Durbin and Koopman 2012, Sec.

3.2.2) and skip frequencies higher than the observation frequency.

The Model (3) with the measurement scheme (4) can be stated in state space form

(Appendix B). After estimating the model hyperparameters by the methods described in

Subsection 2.2, estimated ut, t ¼ 1; : : : ; T using all available data are obtained by a state

smoothing algorithm (Durbin and Koopman 2012, Sec. 4.3). The application of a smoother

rather than a Kalman filter means that also past data are revised as soon as new information

comes in. The smoother is constructed in a way that the revision optimally reflects the new

information, given the model structure and its parameters. Since it is current practice

in national accounts to revise also recent quarters, the use of a smoother automatically

implements this revision together with the computation of a new quarter. Hence, no

additional updating mechanism or model using more data is needed.

4. A Monte Carlo Study

A Monte Carlo study is conducted to shed light on the practical performance of the

proposed methods in finite samples. Different aspects of the procedure are analysed.

Firstly, the difference-based principal components approach is studied in the case of factor

STSM processes for different data generating mechanisms and sample sizes, and

compared to principal components in levels. Secondly, the estimation of the latent target

process is evaluated and compared to standard benchmarks such as univariate models or

standard principal-components based factor models.

4.1. Data Generating Processes

Four data generating processes are chosen to mimic different situations of practical

relevance. We consider (1) cases with linearly independent loadings for the distinct

common components and (2) cases with identical loadings, where principal components

estimate a compound factor process. Furthermore, while typically (A) the idiosyncratic

components have a structural time series structure with trend, seasonal and possibly cycle

components, we additionally consider a common features assumption with (B) serially

uncorrelated idiosyncratic components. We introduce the data generating processes as

combinations of these characteristics in turn.

(1A) To define the first data generation mechanism as the case with linearly independent

loadings and without common features, we consider the process (2) with s ¼ 4 and where

the cyclical components have frequency l ¼ 0.2 and dampening factor r ¼ 0.97. The

parameters in the loading matrices are randomly chosen for each draw. Denoting the

uniform distribution between a and b by U(a, b), they are given for i ¼ 1; : : : ;N and
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j ¼ 1; : : : ; r by

Lm;ij , Uð0; xÞ; Lg;ij , Uð0; xÞ; Lc;ij , Uð0; x6Þ; Lu;ij , Uð0; x6Þ;

where the parameter X captures the overall importance of the common components

relative to the idiosyncratic ones, while 6 determines the relative size of stationary versus

nonstationary components. The components are generated using innovation covariance

matrices with

S
I
j;ii , Uð0; 1Þ2; S

I
z;ii , Uð0; 1=10Þ2; S

I
v;ii , Uð0; 1Þ2;

S
I
k;ii , Uð0; 6Þ2; S

I
u;ii , Uð0; 6Þ2

for idiosyncratic components and S
C
j ¼ 10S

C
z ¼ S

C
v ¼ S

C
k ¼ S

C
u ¼ I for common

components, respectively.

(1B) The second data generating process is characterized by the same parameters for the

common components as in (1A), but a common features assumption is imposed and hence

the idiosyncratic components are subject to

S
I
j ¼ S

I
z ¼ S

I
v ¼ S

I
k ¼ 0; S

I
u;ii , Uð0; 5Þ2:

(2A) To introduce cases with linearly dependent common components loadings, the third

data generating process sets the compound loading matrix L according to

Lm;ij ¼ Lg;ij ¼
1

6
Lu;ij , Uð0; xÞ;

and drops the cyclical components from the processes. The remaining variances S
I
j, S

I
z,

S
I
v, S

I
u, S

C
j , S

C
z , S

C
v, and S

C
u correspond to those in (1A).

(2B) The last data generating process drops the trend and seasonal from the idiosyncratic

components of the previous one, so that the only difference to (2A) is in the covariance

matrices

S
I
j ¼ S

I
z ¼ S

I
v ¼ 0; S

I
u;ii , Uð0; 5Þ2:

4.2. Estimation of the Compound Factor Space

We first assess the performance of the principal components procedure based on

differenced data DD4yt which we have proposed as a first step in estimating the factor

STSM. For all data generating processes and different values for the time and cross-section

dimensions T and N, we simulate 1,000 trajectories and repeatedly estimate the compound

factor process ft by �ft as explained in Subsection 2.2. We compare the results to the

principal component method using the data in levels. At this step, no maximum likelihood

estimation of the structural model is performed and hence the dynamic properties are not

taken into account. Therefore, only the space of compound factors can be estimated, which

is identified only up to rotation. The measure of estimation error has to take this lack of

identification into account, and hence we rotate each factor estimate to achieve the best

predictive power for the true factors by least squares. Since the overall level of mean
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squared error is very different across estimated components and has no natural

interpretation, we standardize the mean squared error by reporting the adjusted R 2 from

regressing each of the true compound factors on the estimated factors �ft. This measure is

strictly decreasing in the (root) mean squared error and emphasizes the size of the error

relative to the overall factor variation. To enforce stationarity for these evaluation

equations, we apply the regressions in differences (D4D) of the true factors and their

estimates. These R 2 are averaged over the iterations.

Table 1 gives results for the data generating process (1A) with linearly independent

component loadings and without a common components structure. There, the true factor

process consists of the r ¼ 4 common structural times series components,

f t ¼ ðm
C
t ; g

C
t ; c

C
t ; u

C
t Þ
0, which allows for an evaluation of each component separately.

Overall, the principal components in differences outperform the estimates based on levels

data. The difference between the methods is most pronounced for larger N and T. The

estimates in differences clearly improve with N, but also slightly with T, with R 2 becoming

close to one for each component in large samples. The level estimate, however, especially

the stationary components in the baseline case with x ¼ 1 and 6 ¼ 1, does not show a clear

improvement with larger N. The precision typically even worsens with larger T, which is the

result of inconsistency when the idiosyncratic components are nonstationary; see Bai and

Ng (2004) for the I(1) framework. The results are robust to changing the scale of the

stationary components to 6 ¼ 2 and of the common factors to x ¼ 2. These changes lead to

the expected results that the stationary common components are estimated more precisely in

the former case, while the overall precision increases in the latter case.

In Table 2, we show results for the process (1B) which entails the common features

assumption that the idiosyncratic components are white noise. Compared to (1A), the

overall picture changes. Now, the estimates in levels are better than their difference-based

counterparts, most strikingly for larger N. The difference-based estimates still improve

both with N and with T. The precisions of the two estimators for the stationary components

are closer to each other for 6 ¼ 2 and for x ¼ 2, but still the level-based estimates

dominate the difference-based ones almost uniformly.

Results for the data generating processes with identical loadings for all common

components are depicted in Table 3. We evaluate the precision of r principal components

estimating the r compound factors f t ¼ mC
t þ gC

t þ uC
t for r [ {1; 2} by means of the

adjusted R 2 as before. The mean of the adjusted R 2 over both evaluation regressions is

computed in the case r ¼ 2.

For r ¼ 1, the adjusted R 2 are very close to one for all chosen specifications. Thus,

when compared to Tables 1 and 2, the performance is seemingly enhanced if the

components can be estimated in aggregated form, which reduces the compound factor

dimension relative to the first two data generating processes. However, the higher

uncertainty of the first two cases likely recurs in the second step when distinct structural

time series components are estimated from the compound factors in a state space

framework. The outcomes for r ¼ 2 reveal a loss of precision and visible differences

between the specifications and estimators. The patterns described for the first two data

generating processes are confirmed here. Most notably, without the common feature

assumption the difference estimator outperforms the level estimator again, while the latter

is slightly better in case of common features.
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These outcomes suggest that the estimator choice should be based on whether the

idiosyncratic components are white noise or not, and that unnecessary differencing should

be avoided. The difference-based estimator appears as a robust choice since it is consistent

in both settings while the level-based estimator does not necessarily improve with sample

size in the general framework of this article.

Table 1. Precision of common component estimation by principal components in levels and differences (D4D)

for process (1A) without common features. The mean of the adjusted R 2 from regressions of true common

components on estimated factors is given.

pca in levels pca in differences

x 6 T N mt gt ct ut mt gt ct ut

1 1 250 10 0.260 0.506 0.270 0.338 0.229 0.551 0.310 0.430
1 1 250 50 0.427 0.633 0.272 0.338 0.507 0.836 0.637 0.756
1 1 250 100 0.499 0.688 0.270 0.333 0.736 0.917 0.812 0.873
1 1 250 500 0.634 0.780 0.278 0.338 0.941 0.983 0.959 0.973
1 1 500 10 0.260 0.496 0.253 0.333 0.232 0.548 0.306 0.418
1 1 500 50 0.369 0.588 0.260 0.336 0.564 0.846 0.676 0.773
1 1 500 100 0.427 0.638 0.260 0.346 0.770 0.922 0.830 0.884
1 1 500 500 0.550 0.720 0.257 0.338 0.951 0.984 0.964 0.976
1 1 1000 10 0.254 0.469 0.257 0.339 0.230 0.548 0.317 0.422
1 1 1000 50 0.309 0.504 0.262 0.348 0.588 0.853 0.698 0.785
1 1 1000 100 0.316 0.503 0.260 0.352 0.783 0.924 0.839 0.888
1 1 1000 500 0.347 0.520 0.265 0.355 0.953 0.985 0.966 0.977

1 2 250 10 0.136 0.287 0.445 0.499 0.096 0.291 0.483 0.603
1 2 250 50 0.254 0.366 0.550 0.516 0.147 0.627 0.799 0.861
1 2 250 100 0.336 0.414 0.584 0.522 0.260 0.783 0.889 0.924
1 2 250 500 0.517 0.516 0.655 0.535 0.806 0.951 0.976 0.984
1 2 500 10 0.127 0.277 0.420 0.499 0.094 0.288 0.490 0.603
1 2 500 50 0.209 0.343 0.439 0.523 0.157 0.655 0.808 0.867
1 2 500 100 0.259 0.371 0.440 0.525 0.369 0.807 0.898 0.928
1 2 500 500 0.425 0.459 0.448 0.532 0.864 0.959 0.979 0.985
1 2 1000 10 0.125 0.263 0.403 0.502 0.091 0.289 0.483 0.600
1 2 1000 50 0.151 0.275 0.407 0.528 0.167 0.668 0.813 0.869
1 2 1000 100 0.160 0.274 0.420 0.528 0.453 0.819 0.901 0.931
1 2 1000 500 0.180 0.294 0.418 0.535 0.883 0.962 0.980 0.986

2 1 250 10 0.492 0.716 0.487 0.473 0.497 0.783 0.605 0.695
2 1 250 50 0.717 0.841 0.514 0.453 0.878 0.959 0.911 0.939
2 1 250 100 0.767 0.869 0.537 0.447 0.941 0.980 0.956 0.970
2 1 250 500 0.825 0.901 0.628 0.422 0.988 0.996 0.991 0.994
2 1 500 10 0.482 0.717 0.417 0.484 0.500 0.788 0.603 0.695
2 1 500 50 0.668 0.820 0.387 0.465 0.884 0.959 0.914 0.940
2 1 500 100 0.714 0.845 0.373 0.463 0.942 0.980 0.957 0.970
2 1 500 500 0.764 0.872 0.378 0.460 0.988 0.996 0.992 0.994
2 1 1000 10 0.453 0.682 0.413 0.493 0.514 0.791 0.609 0.700
2 1 1000 50 0.546 0.726 0.387 0.480 0.885 0.960 0.916 0.940
2 1 1000 100 0.566 0.740 0.396 0.480 0.943 0.980 0.958 0.971
2 1 1000 500 0.620 0.773 0.378 0.466 0.989 0.996 0.992 0.994
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4.3. Estimation of Latent Processes

In a second part of this Monte Carlo study, we assess the two-step procedure with respect

to its ability to estimate a latent process u1t from incomplete data z1t and additional high-

dimensional data xt. We delete N/4 of the observations in z1t which is generated together

Table 2. Precision of common component estimation by principal components in levels and differences (D4D)

for process (1B) with common features. The mean of the adjusted R 2 from regressions of true common

components on estimated factors is given.

pca in levels pca in differences

x 6 T N mt gt ct ut mt gt ct ut

1 1 250 10 0.150 0.331 0.160 0.185 0.079 0.230 0.101 0.163
1 1 250 50 0.300 0.556 0.343 0.237 0.120 0.381 0.157 0.263
1 1 250 100 0.414 0.673 0.468 0.275 0.136 0.440 0.177 0.305
1 1 250 500 0.756 0.900 0.802 0.742 0.176 0.631 0.234 0.519
1 1 500 10 0.145 0.331 0.154 0.180 0.075 0.221 0.098 0.156
1 1 500 50 0.297 0.559 0.343 0.234 0.117 0.383 0.156 0.252
1 1 500 100 0.410 0.677 0.471 0.276 0.132 0.444 0.179 0.298
1 1 500 500 0.763 0.905 0.810 0.794 0.199 0.741 0.302 0.618
1 1 1000 10 0.143 0.338 0.158 0.175 0.073 0.220 0.100 0.148
1 1 1000 50 0.296 0.564 0.342 0.231 0.115 0.382 0.159 0.246
1 1 1000 100 0.414 0.678 0.475 0.287 0.133 0.448 0.183 0.300
1 1 1000 500 0.767 0.907 0.816 0.818 0.247 0.821 0.460 0.710

1 2 250 10 0.110 0.249 0.386 0.402 0.057 0.163 0.281 0.411
1 2 250 50 0.257 0.494 0.651 0.606 0.069 0.213 0.412 0.566
1 2 250 100 0.403 0.659 0.785 0.785 0.074 0.272 0.535 0.688
1 2 250 500 0.767 0.905 0.947 0.957 0.101 0.653 0.843 0.918
1 2 500 10 0.109 0.252 0.391 0.399 0.054 0.158 0.285 0.403
1 2 500 50 0.261 0.506 0.654 0.630 0.063 0.211 0.426 0.577
1 2 500 100 0.402 0.666 0.790 0.801 0.069 0.288 0.595 0.732
1 2 500 500 0.768 0.906 0.947 0.959 0.112 0.786 0.901 0.940
1 2 1000 10 0.109 0.250 0.388 0.394 0.051 0.148 0.279 0.396
1 2 1000 50 0.260 0.509 0.658 0.645 0.060 0.208 0.440 0.589
1 2 1000 100 0.404 0.668 0.791 0.808 0.068 0.330 0.639 0.755
1 2 1000 500 0.768 0.908 0.948 0.960 0.194 0.835 0.922 0.949

2 1 250 10 0.286 0.541 0.331 0.299 0.162 0.442 0.216 0.315
2 1 250 50 0.565 0.792 0.633 0.534 0.213 0.636 0.303 0.499
2 1 250 100 0.716 0.884 0.774 0.764 0.288 0.784 0.437 0.663
2 1 250 500 0.929 0.974 0.946 0.955 0.759 0.953 0.850 0.926
2 1 500 10 0.281 0.540 0.337 0.296 0.156 0.433 0.216 0.306
2 1 500 50 0.571 0.793 0.632 0.564 0.217 0.656 0.322 0.512
2 1 500 100 0.721 0.885 0.776 0.783 0.329 0.818 0.519 0.710
2 1 500 500 0.929 0.975 0.946 0.958 0.868 0.966 0.911 0.947
2 1 1000 10 0.282 0.543 0.332 0.291 0.151 0.426 0.213 0.304
2 1 1000 50 0.571 0.799 0.635 0.582 0.225 0.677 0.347 0.527
2 1 1000 100 0.725 0.887 0.779 0.791 0.407 0.838 0.593 0.743
2 1 1000 500 0.930 0.975 0.947 0.959 0.900 0.970 0.931 0.954
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with xt as a factor STSM for y 0t ¼ ðz1t; x
0
tÞ. Different alternative approaches are considered

to estimate u1t for each observation where z1t is missing. As an infeasible benchmark, (i)

the factor STSM with known factor process ft is considered in state space form, where

parameters are determined by maximum likelihood and missing values are estimated by

Table 3. Precision of compound factor estimation by principal components in levels and differences (D4D) for

processes (2A) and (2B) (without and with common features). The mean of the adjusted R 2 from regressions of

true common components on estimated factors is given.

r ¼ 1 r ¼ 2

(2A) (2B) (2A) (2B)

x 6 T N level diff level diff level diff level diff

1 1 250 10 0.970 0.994 0.998 0.985 0.644 0.760 0.463 0.283
1 1 250 50 0.973 0.999 1.000 0.999 0.798 0.951 0.752 0.494
1 1 250 100 0.969 0.999 1.000 1.000 0.843 0.976 0.850 0.614
1 1 250 500 0.978 1.000 1.000 1.000 0.932 0.995 0.964 0.919
1 1 500 10 0.977 0.995 0.998 0.986 0.628 0.764 0.469 0.279
1 1 500 50 0.983 0.999 1.000 0.999 0.772 0.952 0.753 0.507
1 1 500 100 0.987 0.999 1.000 1.000 0.825 0.976 0.850 0.684
1 1 500 500 0.990 1.000 1.000 1.000 0.915 0.995 0.964 0.945
1 1 1000 10 0.976 0.994 0.998 0.985 0.616 0.767 0.465 0.280
1 1 1000 50 0.990 0.999 1.000 1.000 0.761 0.953 0.754 0.527
1 1 1000 100 0.992 0.999 1.000 1.000 0.809 0.977 0.850 0.733
1 1 1000 500 0.996 1.000 1.000 1.000 0.907 0.995 0.964 0.954

1 2 250 10 0.965 0.994 0.998 0.992 0.642 0.746 0.586 0.414
1 2 250 50 0.972 0.999 1.000 1.000 0.801 0.951 0.850 0.694
1 2 250 100 0.978 0.999 1.000 1.000 0.843 0.975 0.916 0.857
1 2 250 500 0.974 1.000 1.000 1.000 0.928 0.995 0.981 0.972
1 2 500 10 0.970 0.993 0.998 0.995 0.627 0.750 0.593 0.414
1 2 500 50 0.985 0.999 1.000 1.000 0.772 0.952 0.847 0.731
1 2 500 100 0.987 0.999 1.000 1.000 0.829 0.976 0.916 0.878
1 2 500 500 0.991 1.000 1.000 1.000 0.913 0.995 0.981 0.977
1 2 1000 10 0.976 0.993 0.998 0.995 0.615 0.756 0.593 0.413
1 2 1000 50 0.986 0.999 1.000 1.000 0.759 0.952 0.849 0.756
1 2 1000 100 0.991 0.999 1.000 1.000 0.807 0.976 0.916 0.888
1 2 1000 500 0.996 1.000 1.000 1.000 0.905 0.995 0.981 0.979

2 1 250 10 0.985 0.999 0.999 0.999 0.867 0.930 0.710 0.538
2 1 250 50 0.990 1.000 1.000 1.000 0.948 0.988 0.914 0.872
2 1 250 100 0.988 1.000 1.000 1.000 0.965 0.994 0.955 0.941
2 1 250 500 0.988 1.000 1.000 1.000 0.985 0.999 0.991 0.988
2 1 500 10 0.991 0.998 1.000 0.999 0.844 0.931 0.708 0.540
2 1 500 50 0.994 1.000 1.000 1.000 0.933 0.988 0.915 0.885
2 1 500 100 0.997 1.000 1.000 1.000 0.955 0.994 0.955 0.945
2 1 500 500 0.998 1.000 1.000 1.000 0.982 0.999 0.991 0.990
2 1 1000 10 0.993 0.998 1.000 0.999 0.837 0.929 0.711 0.544
2 1 1000 50 0.996 1.000 1.000 1.000 0.928 0.988 0.915 0.890
2 1 1000 100 0.998 1.000 1.000 1.000 0.949 0.994 0.955 0.948
2 1 1000 500 0.998 1.000 1.000 1.000 0.980 0.999 0.991 0.990
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the state smoother. As the feasible counterpart, (ii) the two-step estimate proposed in this

article is used, where ft is estimated by the principal components based on data in

differences DD4xt. As one further straightforward benchmark we use (iii) a univariate

STSM which neglects information from xt. Comparison between (ii) and (iii)

straightforwardly illustrates the effect of taking into account the common part uC
t versus

ignoring it.

As a simple competitor that also uses time series information on z1t only, we interpolate

the series using (iv) a local mean of available D4z1t in the range of ^20 observations near

the period to be estimated. Cross-section information, but not the dynamics of the system

are utilized by static regression-based predictions of u1t using the difference-based

principal components of xt as predictors. The regression is run (v) in levels, (vi) applying

a yearly difference operator D4 to z1t and the principal component, or (vii) applying the

difference operator DD4 which is sufficient to make the variables stationary. A comparison

to the full state space model, possibly using the common features restriction, would allow

a measure of the undergone efficiency loss by our method but is beyond the scope of this

article: The high dimension makes the treatment computationally intractable both here and

in similar empirical problems, so that we omit it from this comparison.

Table 4 shows the corresponding root mean squared errors (RMSE) from estimating u1t

according to the data generating process (1B) with r ¼ 1. Not surprisingly, the infeasible

estimator (i) outperforms the others, while the feasible two-step strategy (ii) of utilizing

the factor STSM comes a close second. The loss from having to estimate ft is rather small

in this specification, and amounts to less than five percent of the overall RMSE in most

cases. Clearly, this result may strongly depend on the data generating process and the

corresponding precision of the principal components method. The differences vanish with

larger N.

The univariate STSM approach (iii) comes in third place, but missing information on

the factors leads to an efficiency loss which is more pronounced if either 6 ¼ 2 which

increases the noise which is unpredictable by univariate methods, or if x ¼ 2 where

the information content of xt is higher. However, taking the dynamics into account

appropriately pays off, which turns out from a comparison to the naı̈ve local averaging

method that performs clearly worse than all STSM approaches. The static regression

estimation with principal components as predictors (v) leads to very spurious results in

levels, while it still does not lead to a relevant improvement even over the local averaging

method when it is applied in differences (vi, vii).

5. Application to German Hours Worked Statistics

We apply the proposed techniques to the measurement of several components of hours

worked in Germany. Official statistics on hours worked per person and the overall volume

of work are determined by the IAB which contributes the corresponding time series to the

German national accounts. The working time measurement concept is a componentwise

system where collective, calendar, cyclical, personal and other components are

determined separately on a quarterly basis since 1991, and results are disaggregated

according to industries, regions, and employment status; see Wanger (2013) and Wanger

et al. (2016) for recent overviews.
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During a major revision in 2014 which also affected the methodology of the working

time measurement, state space techniques were introduced to enhance the estimation

precision for components with incomplete data sources, or where more than one source is

used in the measurement. In this section, we describe the computation of the cyclical

Table 4. RMSE of estimating N/4 randomly chosen missing values for z1t in process (2A) with r ¼ 1. (i) Factor

STSM with known factors ft, (ii) factor STSM with differenced pca factor estimates, (iii) univariate STSM,

(iv) mean of yearly differences of z1t within ^20 observations, (v)–(vii) static OLS of z1t on pca in levels and

differences.

x 6 T N
STSM

f t

STSM
pca

STSM
univar.

Mean
D4

OLS
level

OLS
D4

OLS
DD4

1 1 250 10 1.126 1.210 1.627 2.518 4.743 2.217 2.490
1 1 250 50 1.148 1.166 1.653 2.550 4.772 2.189 2.411
1 1 250 100 1.151 1.159 1.634 2.512 4.584 2.133 2.416
1 1 250 500 1.160 1.161 1.663 2.558 4.575 2.136 2.397
1 1 500 10 1.187 1.261 1.644 2.548 10.621 2.642 2.555
1 1 500 50 1.181 1.193 1.612 2.502 9.964 2.498 2.420
1 1 500 100 1.180 1.187 1.644 2.567 9.733 2.498 2.393
1 1 500 500 1.165 1.166 1.598 2.501 9.803 2.454 2.359
1 1 1000 10 1.275 1.328 1.636 2.567 26.310 3.195 2.562
1 1 1000 50 1.255 1.265 1.614 2.526 24.397 2.955 2.388
1 1 1000 100 1.268 1.274 1.630 2.554 24.386 2.986 2.386
1 1 1000 500 1.267 1.270 1.624 2.549 24.330 2.970 2.368

1 2 250 10 1.522 1.650 2.245 3.182 4.899 2.649 3.310
1 2 250 50 1.556 1.582 2.283 3.224 4.923 2.597 3.203
1 2 250 100 1.565 1.576 2.254 3.187 4.728 2.561 3.209
1 2 250 500 1.568 1.570 2.290 3.238 4.727 2.555 3.194
1 2 500 10 1.569 1.692 2.274 3.238 10.705 3.064 3.428
1 2 500 50 1.546 1.568 2.220 3.158 10.062 2.881 3.198
1 2 500 100 1.545 1.557 2.272 3.243 9.826 2.878 3.166
1 2 500 500 1.543 1.545 2.212 3.167 9.889 2.836 3.139
1 2 1000 10 1.595 1.700 2.259 3.246 26.281 3.561 3.400
1 2 1000 50 1.555 1.575 2.220 3.183 24.436 3.292 3.149
1 2 1000 100 1.573 1.583 2.241 3.218 24.424 3.328 3.151
1 2 1000 500 1.587 1.589 2.252 3.232 24.356 3.323 3.154

2 1 250 10 1.200 1.277 2.514 3.837 4.756 2.225 2.496
2 1 250 50 1.232 1.248 2.543 3.886 4.768 2.189 2.412
2 1 250 100 1.221 1.229 2.497 3.800 4.577 2.131 2.414
2 1 250 500 1.244 1.247 2.563 3.909 4.575 2.136 2.397
2 1 500 10 1.404 1.466 2.534 3.884 10.652 2.654 2.563
2 1 500 50 1.384 1.394 2.456 3.781 9.972 2.502 2.422
2 1 500 100 1.395 1.402 2.542 3.915 9.732 2.498 2.393
2 1 500 500 1.357 1.361 2.440 3.771 9.811 2.455 2.358
2 1 1000 10 1.683 1.719 2.512 3.893 26.520 3.209 2.571
2 1 1000 50 1.664 1.673 2.488 3.849 24.408 2.955 2.388
2 1 1000 100 1.677 1.683 2.518 3.901 24.416 2.985 2.385
2 1 1000 500 1.687 1.692 2.505 3.888 24.327 2.969 2.368
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components paid and unpaid overtime work as well as flows on working-time accounts.

These are of primary importance when assessing the business cycle fluctuations of hours

worked in real time.

5.1. Paid and Unpaid Overtime Hours

The computations of overtime hours in the working-time measurement concept are

primarily based on two yearly surveys. In the GSOEP, employed persons are asked for the

number of performed overtime hours in the recent month and the way overtime work

is typically compensated. From the responses, yearly time series on paid and unpaid

overtime hours since the 1980s can be constructed, but as has been mentioned in Section 3,

a changing distribution of interviews over the year has to be taken into account when

considering a target series of higher frequency. As a second primary data source, the

Microcensus offers information on paid and unpaid overtime hours since 2010 on the basis

of quarterly averages.

The main problem of constructing a quarterly time series in real time is the substantial

publication lag of each of the sources, since results from the GSOEP are available

approximately twelve months after the end of a reference year, while the Microcensus

results typically come in July of the following year. Hence, information regarding the first

quarter of each year is available only after about 21 months (GSOEP) and 16 months

(Microcensus), respectively. Additionally, the determination of intra-year fluctuations

before 2010 is challenging, since until then only yearly GSOEP data are available. In

response, we gather additional indicators to tackle these problems and to achieve the

highest possible precision for the given available data.

As an additional data source, we consider the Ifo Business Survey from the Ifo Institute

(Leibniz Institute for Economic Research at the University of Munich). In this survey,

establishments are asked in the last month of each quarter whether their employees

currently perform overtime work. Along with the log of the GSOEP and of the

Microcensus measures of overtime hours per week (z1t and z2t, respectively), the

logarithmic fraction of establishments with overtime work enters the model as a third

series of interest, z3t.

Further economic and labor market indicators (xt) are used to compute principal

components which enter the factor STSM. Here, we use real gross domestic product, the

production index, new orders for all manufacturing industries, the number of employed

persons, real compensation per employee (all from the Federal Statistical Office),

registered unemployment (from the Federal Employment Agency), business expectations,

business assessment and the employment barometer (from the Ifo Institute) as well as

the willingness to buy index (from GfK Nuremberg). These variables are considered

informative when assessing the current business cycle and labor market development, and

hence for the amount of overtime work. We refrain from using a data set of higher

dimension, since the additional data are likely to introduce irrelevant information and

require a higher number of factors. At the same time, we keep the updating process simple

by this choice.

Principal component estimates are computed after applying the natural logarithm to all

variables except business expectations, business assessment, the employment barometer
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and the willingness to buy index. Seasonally adjusted data are used in xt, so that yearly

differences are not needed to remove seasonal nonstationarity. Additionally, there is no

evidence for a changing slope in the processes: The p-values for tests of Sz ¼ 0 in

univariate STSM is 0.97 and 0.07 for the first and second principal component (based on

second differences), respectively. Hence, we base the subsequent analysis on re-cumulated

principal components from first differences of the raw data. Data gaps and mixed

frequency issues in xt are resolved by the algorithm described by Stock and Watson

(2002).

The resulting models for paid and unpaid overtime hours, respectively, are formulated

in terms of a monthly model frequency to precisely capture the timing of the measurement

process. Along with the r estimated factors �ft, which capture the compound common

components uC
t on a monthly basis, the measurement model is given by

�ft

logðot_gsoeptÞ

logðot_mctÞ

logðot_ifotÞ

0
BBBBB@

1
CCCCCA
¼

0

0

d2

0

0
BBBBB@

1
CCCCCA
þ

I 0 0

0 M11;tðLÞ 0

0 M21;tðLÞ 0

0 0 M33;tðLÞ

0
BBBBB@

1
CCCCCA

uC
t

u1t

u2t

0

BB@

1

CCAþ

0

0

12t

0

0
BBBBB@

1
CCCCCA
:

The model comprises a monthly variable �ft, a yearly ot_gsoept which is brought into the

model at the last month of the year only, the quarterly ot_mct, which is brought in at the

last month of the quarter, and the likewise quarterly ot_ifot, which refers to a single month

of each quarter where it comes into the model. The GSOEP measurement scheme M11;tðLÞ

is determined by the changing proportion of GSOEP-interviews in each month as in (8) so

that M11;tðLÞ ¼ M11;t;dec þM11;t;novLþ : : :þM11;t;janL11. As an example for the year

2013, the obsevation of ot_gsoept is given for t ¼ 2013M12, while all other months are

missing. The proportion of interviews accross months in 2013 leads to M11;2013M12;jan ¼

0:0010 since only 0.10% of interviews took place in January, M11;2013M12;feb ¼ 0:2656

since 26.56% of the sample were interviewed in February, M11;2013M12;mar ¼ 0:2824 for a

proportion of 28.24% of interviews in March, and so on. In contrast, M11;2013M01;m, : : : ,

M11;2013M11;m ¼ 0 for all m, since the yearly value is brought into the model in the last

month of the year, and hence all other months are missing. The Microcensus measures the

same underlying u1t as the GSOEP, but by quarterly averages according to (7), so that

M21;tðLÞ ¼
1
3
þ 1

3
Lþ 1

3
L2 for each t reflecting the last month of the quarter (March, June,

September, or December), and M21;tðLÞ ¼ 0 for other values of t. The Ifo measure of

overtime refers to a single month, and hence M33;tðLÞ ¼ 1 if data are available in month t

and M33;tðLÞ ¼ 0, otherwise.

Since for a long sample of data prior to 2010 the GSOEP is the only available statistic

directly measuring u1t, we implement this source as a benchmark, and force a weighted

average of u1t to fit the yearly GSOEP figure exactly. Recent Microcensus figures, in

contrast, enter the model with an adjustment term d2, and the survey error 12t is modeled

with a fixed variance which is estimated within the state space model. Since quantitative

information on the survey autocorrelation due to overlap is not available, we model the

survey error as serially uncorrelated.
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Since the Ifo series does not directly measure the overtime hours, but rather serve as

a correlated indicator, the inclusion of a measurement error is not important here. The

measurement error would be anyway exchangeable with the noise term in the dynamic

model, because the Ifo series estimates a single underlying series, and because the

measurement scheme does not involve a filter of lagged values so that there is no

autocorrelation induced by the measurement scheme.

We choose an unrestricted multivariate STSM formulation of uC
t and ut as the dynamic

model. In contrast to the Formulation (3), this approach allows for correlation between

u1t and u2t (fraction of establishments with overtime) beyond their dependence on the

common components, while nesting the strict factor specification. The need for this

additional flexibility is reasonable since the Ifo survey measures a concept relatively close

to the target series, and may provide specific information beyond the overall business

cycle.

A large gain in parsimony is associated by using only one factor instead of all ten

indicators in the model and hence drastically reducing the model by means of reduced rank

sparsity. Additionally, however, we conduct model selection and reduce the model

parameters by dropping different individual components from the model. The decision

to drop components is drawn from sequential tests based on each series individually.

Augmented Dickey Fuller tests, with lag lengths determined by AIC, fail to reject unit

roots for each of the series considered in the models (the exception being �f1t, with a p-value

of 0.0029). We hence include unit root components for all series and let jit – 0 in general.

We test the presence of slope changes zt, white noise terms ut, cyclical components ct,

and changes to the seasonal pattern vt in univariate STSMs, and present the p-value of

the corresponding hypotheses in Table 5. The time series of Microcensus data is not

sufficiently long for univariate analyses so that we base the specification for paid and

unpaid overtime on the yearly GSOEP series.

On a five percent significance level, there is no evidence for a changing slope in either of

the series. This again supports the computation of principal components based on first

differences rather than second differences of the data. We hence set Sz to zero in both the

model for paid and for unpaid overtime hours. According to additional test results, we

include a white noise term for the principal components, but not for the series in zt in what

follows. There is relatively strong evidence on the presence of cyclical components which

seems to be needed in each of the observed series. Finally, the Ifo survey is the only series

with a seasonal component that is reasonably modeled with a fixed seasonal pattern. The

Table 5. P-values from testing different null hypotheses on the presence of several components in univariate

structural time series models. The tests refer to the full model in the alternative. Models are formulated at the

original data frequency (monthly for f̂t yearly for GSOEP, quarterly for Ifo Business Survey).

f̂1t f̂2t

Paid Ot.
(GSOEP)

Unpaid Ot.
(GSOEP)

Overtime
(Ifo)

H0 : 6t ¼ 0 0.4213 0.0898 0.6815 0.9735 1.0000
H0 : ut ¼ 0 0.0008 0.0433 1.0000 0.0676 1.0000
H0 : ct ¼ 0 0.0000 0.0010 0.0053 0.0133 0.0000
H0 : vt ¼ 0 –– –– –– –– 0.4396
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seasonal figure in overtime hours comes in only trough the short Microcensus time series

and has therefore also to be set fixed.

Considering the joint dynamic process introduced above, a decomposition

uC
t

u1t

u2t

0

BB@

1

CCA ¼

mC
t

m1t

m2t

0

BB@

1

CCAþ

0

g1t

g2t

0

BB@

1

CCAþ

cC
t

c1t

c2t

0

BB@

1

CCAþ

uC
t

0

0

0

BB@

1

CCA

applies, with dynamic components driven by the processes introduced below Equation (1).

There, Sk and Sj are full symmetric (r þ 2) £ (r þ 2) parameter matrices, while Su is a

scalar and Sz ¼ Sv ¼ 0.

Both for paid and unpaid overtime hours, models with r ¼ 1 are estimated as the

baseline specifications, which appears reasonable due to the relatively small number of

indicators in xt and avoids parameter abundance. Setting r ¼ 2 while using the same

modeling strategy does not change the estimated time series in a relevant way. We assess

whether the data are consistent with a similar cycles assumption (ri ¼ r, li ¼ l) and

whether the overtime measures u1t and u2t have the same cycle shift with respect to the

business cycle factor (d2 ¼ d3). These restrictions are rejected neither for paid, nor for

unpaid overtime hours on a 5% significance level, so that they are maintained. The

estimated cyclical parameters are shown in the left two columns of Table 6.

For both models, we find that the cycles are relatively persistent, with a dampening

factor close to one, and that a typical cycle lasts about four and a half years. The cycles

are shifted by approximately three months to the right relative to the business cycle

of the principal component, so that a peak in overtime hours typically lags behind that

of the factor. Paid overtime hours appear to be more pro-cyclical, since the standard

deviation of the factor (log-scale £ 100) is more than twice as large as that for unpaid

overtime hours. At the same time, paid overtime hours exert a stronger correlation with

the business cycle.

Further results on the volatility and correlations of cycle and trend shocks are given for

paid overtime in Table 7 and for unpaid overtime in Table 8. We observe strong positive

cycle correlations also for the Ifo overtime hours, which justifies the inclusion of this

series. From the standard deviations of j1t for both model, it can be seen that the trend is

Table 6. Estimated parameters for cyclical components in models for paid and unpaid overtime hours (first two

columns) and flows on working time accounts (last two columns). A similar cycles assumption is imposed in each

of the models.

Paid Ot. Unpaid Ot. Inflow WTA Outflow WTA

Dampening factor r 0.9832 0.9880 0.9835 0.9835
Angle frequency l 0.1155 0.1128 0.1198 0.1198
Period 2p

l
54.42 55.70 52.45 52.45

Cycle standard deviation 8.45 3.89 15.04 9.34
Cycle shock correlation

with k c
t

0.69 0.45 0.60 20.42

Phase shift d 22.60 23.15 0.89 27.79
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more volatile for unpaid than for paid overtime, mirroring the larger impact of the cycle on

the paid overtime hours.

Figure 2 shows the smoothed estimate for paid overtime hours. The observations of the

GSOEP (round points, placed in March of each year) and Microcensus (crosses, net of the

constant d2) are shown along with the trend m1t (dotted), the seasonally adjusted estimate

m1t þ c1t (dashed) and the overall smoothed series including the seasonal component

(solid). The ordinate axis is depicted on a logarithmic scale to reflect the logarithmic

model formulation. The nearly linear long-term downward trend is visibly superimposed

by stochastic cycles which had a pronounced effect during the 2008/09 financial and

economic crisis and reflects well-known patterns from cyclical output movements. The

fixed seasonal component, which shows higher overtime usage in the second half of the

year, stems mostly from the short sample of Microcensus observations, and should

therefore be treated with care.

The unpaid overtime hours, shown in Figure 3, are driven by a rather volatile trend

which closely follows the observations. There are several periods of longer upward or

downward movements, and although unpaid hours rose in tendency over the whole

sample, there is a decline since about 2006 until now. The cycle is rather small, which

reflects the low business cycle sensitivity of this working-time component, while the

seasonal component is positive in the first and fourth quarter.

We assess the stability of the models by studying estimated parameters in different

subsamples. We estimate both the paid and the unpaid overtime models for subsamples of

two thirds of the monthly observations (200 of the 300 months from 1991 to 2015). Table 9

shows results for paid overtime in the left and results for unpaid overtime in the right

panel, where the subsample ranging from January 1991 to August 2007 is denoted by Smpl

1, the subsample from March 1995 to October 2011 is denoted by Smpl 2, and the

subsample from May 1999 to December 2015 is denoted by Smpl 3.

We find notable differences in the cyclical properties: The first subsample has a more

persistent cycle (higher r), smaller frequency (smaller l) and a longer phase shift of the

overtime variables (absolutely larger j ) for both models. Also the standard errors of trend

Table 7. Estimated standard deviations (main diagonal) and correlations (below diagonal) of cycle shocks kt

(left) and trend shocks jt (right) for paid overtime model.

kC k1 k2 jC j1 j2

kC 1.10 –– –– jC 0.60 –– ––
k1 0.69 1.55 –– j1 20.70 1.72 ––
k2 0.95 0.43 5.78 j2 20.94 0.41 4.12

Table 8. Estimated standard deviations (main diagonal) and correlations (below diagonal) of cycle shocks kt

(left) and trend shocks jt (right) for unpaid overtime model.

kC k1 k2 jC j1 j2

kC 1.14 –– –– jC 0.41 –– ––
k1 0.45 0.60 –– j1 0.21 2.87 ––
k2 0.94 0.74 5.51 j2 21.00 20.28 4.54
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shocks (sdðjjtÞ) are subject to change, most prominently for the first and second series of

the paid overtime model, where the standard deviations change by a factor of two or more,

and large trend variance in a given sample is associated with a smaller cycle variance

(smaller sdðkjtÞ). The correlations (corrðjjt; jitÞ and corrðkjt; kitÞ) even change sign in some

cases. The apparent structural instability is due to multiple maxima of the likelihood

function, where different local maxima dominate in different subsamples. Improved

stability, for example, by averaging over different local maxima or applying numerical

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

0.5

0.6

0.7

0.8

0.9

1

1.1 Trend
Trend+Cycle
Trend+Cycle+Season
GSOEP
Microcensus (adjusted)

Fig. 2. Paid overtime hours per week. The trend, cycle and seasonal figures are obtained by the state smoother

and shown along with the GSOEP and Microcensus observations. The latter is adjusted for the constant d2.

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

0.45

0.5

0.55

0.6

0.65

0.7

Trend
Trend+Cycle
Trend+Cycle+Season
GSOEP
Microcensus (adjusted)

Fig. 3. Unpaid overtime hours per week. The trend, cycle and seasonal figures are obtained by the state

smoother and shown along with the GSOEP and Microcensus observations. The latter is adjusted for the

constant d2.
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integration in a Bayesian approach are beyond the scope of this article, but are an

important topic of future research.

To illustrate the effect of using a multivariate approach, we contrast the result to a

univariate structural time series approach. To mimic the dynamic specification in the

multivariate approach, we fit a model consisting of level and cycle to the yearly GSOEP

series, but omit the seasonal which would not be identified. We use the same measurement

scheme as M11;tðLÞ above in the multivariate model. In Figure 4 the seasonally adjusted

multivariate estimate (dashed line) for paid overtime hours is shown along with the

GSOEP observations (points, again placed in March of each year) and the smoothed

estimate from the univariate approach (solid line). We see only slight differences between

the lines in the time span before 2013: The GSOEP observations are used as a benchmark

for the yearly weighted means of the estimates, and hence the latter do not move too far

away from the former. As a slight deviation, we see that a decline in overtime hours before

the global financial crisis is detected already in 2007 using all available indicators, while

the univariate GSOEP model gives a smoother change to the “crisis regime”. After 2010

when the Microcensus data come in and especially after the last GSOEP observation the

multivariate estimates clearly uses more relevant information than just an extrapolation of

the dynamics. Hence the additional indicators have the greatest impact where information

is most valuable: at the current edge. The figure for unpaid overtime hours, which shows

only minor differences between the univariate and the multivariate model, is available

from the author upon request.

Finally, we investigate the advantage of our modeling approach with respect to the

quality of early estimates in official statistics. A numerical assessment of the overall

precision of our estimates of paid and unpaid overtime hours is not possible: The truth is

not known and hence a straightforward benchmark as in the simulation study is not

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

0.5

0.6

Univariate Estimate (SOEP)
Multivariate Estimate
SOEP Observations

Fig. 4. Paid overtime hours per week. The seasonal adjusted multivariate estimate (dashed) is shown along with

a univariate structural time series model (solid) using SOEP data alone. The univariate model implies the same

dynamic properties as the multivariate model described in Subsection 5.1 and uses the same measurement scheme

with respect to the SOEP observations.
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available. We can however assess the timeliness of precise estimates by an ex-post

comparison of early estimates in real time to the final estimates where all data are

available. We figure out the value of additional information beyond the GSOEP data by

comparing the multivariate model to the univariate benchmark. Since the seasonality in

the multivariate model can be estimated only in recent years, the seasonal patterns in the

Microcensus would cause problems in the pseudo real-time study. We hence omit

the Microcensus data from the multivariate model and ignore seasonality both for the

univariate and multivariate model in our study.

We conduct the real-time experiment as follows: For the construction of data for a

given quarter, we take the indicators contained in xt and the Ifo Business survey for

that quarter as known. The GSOEP data are used with a time lag; the data from two

years earlier are used so that for example from the beginning of 2015 the data for 2013

are available. This is a realistic timing since first estimates are typically constructed in

the middle of the subsequent quarter. Having constructed pseudo-real-time estimates by

a Kalman filter for each of the two models and each quarter from 2004Q1 to 2015Q4,

we compare them to the ex-post estimate of each model using all available data. From

this comparison, the biases and root mean squared errors can be computed which are

shown in Table 10. There, along with the full evaluation sample (all), also results for

successive subsamples are given which divide the evaluation sample in four intervals of

three years.

Overall, in terms of the RMSE, we find that the multivariate model outperform the

univariate approach for paid overtime, while the approaches perform similar for unpaid

overtime where the univariate approach is slightly better. This is in line with the

finding that paid overtime is more correlated to business cycle indicators and thus the

latter help estimate paid overtime hours better than unpaid hours. The very

parsimonious univariate model has a smaller bias for both target measures. Considering

the subsamples, it is reassuring for the multivariate approach that the latter outperforms

the univariate approach in the last subsample, where more data are used in the Kalman

filter. The multivariate model is likely to dominate in larger samples which is reflected

here. In sum, it is preferable to use a factor approach as the one considered in this

article if the target series has a strong business cycle correlation, and if long enough

time series are available.

Table 10. Bias and root mean squared error (RMSE) for paid (left) and unpaid (right) overtime model and

univariate (univ.) and multivariate (mult.) model. An evaluation sample from 2003Q4 to 2015Q4 is used (all) and

four successive subsamples thereof.

Paid Overtime Unpaid Overtime

BIAS RMSE BIAS RMSE

Smpl univ. mult. univ. mult. univ. mult. univ. mult.

all 24.047 25.680 10.846 9.582 0.217 2.373 11.064 11.402
1 4.212 20.761 7.681 8.126 22.888 211.052 10.648 12.830
2 211.157 212.923 14.241 13.613 24.426 2.935 11.991 9.268
3 24.712 29.152 13.034 10.665 20.059 10.311 8.521 11.451
4 24.530 0.116 6.232 1.474 8.243 7.300 12.643 11.764
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5.2. Net Flows on Working Time Accounts

Not all additional hours worked by employees in a given period lead to a definitive

increase in the amount of labor over a longer time span. Some of them, termed transitory

overtime hours, are compensated by leisure time in a future period. The number of these

additional hours worked hence raise the credits on WTA, which are formal arrangements

to record such additional hours worked. When measuring hours actually worked per

period, the statistician has to track such inflows on WTA which raise hours worked, but

also the outflows from WTA which reduce the overall hours worked.

Only few data sources are available which allow to measure in- and outflows from WTA

in Germany on a regular basis. Besides paid and unpaid overtime hours, the GSOEP

questionnaire asks for overtime hours which are compensated with time-off, and which we

hence treat as inflows on WTA. A question regarding the reduction of such hours has been

included in the questionnaire only in 2014 and the results are not yet available. A similar

objection is faced by a new question regarding balances on WTA in the IAB Job Vacancy

Survey. It has been included in the establishment survey in 2013 and therefore still lacks a

sufficient history to base long time series estimates thereupon.

The Microcensus holds additional information on WTA flows over a longer time span,

which we exploit in our estimation strategy. Each employed household member is asked for

the regular weekly hours worked and for hours worked last week. If both differ, the main

reason for that difference is inquired, where possible answers include “compensation for

more hours worked (e.g., flexible working hours)” if actual hours were lower and “hours for

the accumulation of the time credit or for the reduction of time dept” if they were higher than

usual. These or analogous questions are available for the whole estimation period.

Since only the main reason for a difference is asked for in the Microcensus, there are

likely further WTA in- or outflows that are not revealed by the survey participants and

hence the results are biased. Our strategy thus combines information on the level of gross

inflows from the GSOEP with cyclical variations of the Microcensus figures on in- and

outflows around their trends to arrive at a final estimate of net flows. The maintained

assumption is that even if both WTA in- and outflows follow (possibly stochastic) trends,

the latter should be identical so that there is no long-run discrepancy between the both, and

the net flows average to zero in the long run. This allows us to estimate the trend by use of

the GSOEP series, while relative deviations from it are determined from the Microcensus.

Stated jointly with the estimated factors, the measurement model is

�ft

logðin_mctÞ

logðout_mctÞ

logðin_gsoeptÞ

0
BBBBB@

1
CCCCCA
¼

0

d1t

d2t

0

0
BBBBB@

1
CCCCCA
þ

I 0 0 0

0 M11;tðLÞ 0 0

0 0 M22;tðLÞ 0

0 0 0 M33;tðLÞ

0
BBBBB@

1
CCCCCA

uC
t

u1t

u2t

u3t

0
BBBBB@

1
CCCCCA
:

The measurement polynomials M11;tðLÞ, M22;tðLÞ and M33;tðLÞ are again designed to fit the

characteristics of the Microcensus and GSOEP surveys and in particular the distribution

of interviews over the time-spans for which the surveys can be distinctly evaluated. In

contrast to the overtime models in Subsection 5.1, for which Microcensus data are

available only since 2010, the restructuring of the Microcensus has to be taken into
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account in the current WTA model. In 2005, a fixed reference week each year (or less

frequently before 1995) was replaced by a continuous interviewing policy. This leads to a

change in the polynomials, which are given by M11;tðLÞ ¼ M22;tðLÞ ¼ 1 before 2005 and

M11;tðLÞ ¼ M22;tðLÞ ¼¼
1
3
þ 1

3
Lþ 1

3
L2 since then. Additionally, a level shift results from

the changing survey practice at this time which we model by setting d1t and d2t to nonzero

constants before 2005 and to zero afterwards. For the GSOEP measurement, given by

M33;tðLÞ, we use the same approach as for the paid and unpaid overtime models described

in Subsection 5.1.

In contrast to the case where two surveys measure the same underlying process, in the

case of one survey per series the survey error variance cannot be estimated from the data

when the underlying process has an additional noise term. The survey error variance could

be rather set fixed, based on further information from the survey design. As the pure

sampling uncertainty is very small for the large sample of the Microcensus, we do not

model survey errors explicitly in this case and set 1t ¼ 0, while allowing irregular

components within the model for ut.

We again conduct model selection by studying the individual processes first, and

include only components in the joint model which appear worthwhile from the univariate

tests. We thus again include a unit root component for all series in order to reflect results

from Augmented Dickey Fuller tests. A univariate analysis of the individual components

similar to Table 5 reveals that the GSOEP inflow series has a significant slope change

( p-value 0.04), while a noise term finds more support from the data than a cycle (for which

the p-value is 0.16).

For the Microcensus series, we set zt ¼ 0 and include a noise term along with the cycle

and random walk trends, which is also supported by statistical tests in the multivariate

model. As an a-priori modeling decision to gain parsimony, correlations between the

GSOEP and other series are not considered and hence the former is used solely to extract

its trend by univariate filtering and smoothing. The model is thus given by

uC
t

u1t

u2t

u3t

0
BBBBB@

1
CCCCCA
¼

mC
t

m1t

m2t

m3t

0
BBBBB@

1
CCCCCA
þ

0

g1t

g2t

0

0
BBBBB@

1
CCCCCA
þ

cC
t

c1t

c2t

0

0
BBBBB@

1
CCCCCA
þ

uC
t

u1t

u2t

u3t

0
BBBBB@

1
CCCCCA
;

where Sz has a single nonzero element associated with u3t, Su is diagonal, and Sj as well

as Sk are block diagonal with a full upper left 3 £ 3 submatrix.

The properties of the cyclical components of WTA in- and outflows are summarized in

the right two columns of Table 6. Again, we cannot reject the similar cycles restriction,

and the common period and the dampening factor are similar to the case of overtime hours.

Both components have a relatively strong cyclical pattern, and WTA inflows have

the highest cycle standard deviation among the variables under consideration. Not

surprisingly, shocks to inflows are positively, while outflow shocks are negatively related

to business cycle shocks. The phase shifts mean that typically seven months after

employees have built up most credit on the accounts, the outflows peak and reduce the

savings on WTA.
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The cyclical patterns of in- and outflows are shown in Figure 5, where cjt þ ujt, j ¼ 1,2,

is depicted for inflows (solid line) and outflows (dashed line) in logarithmic scale £ 100,

as annotated on the left axis. The mentioned phase shift between the cycles becomes

evident here. At most of the visible peaks of WTA inflows, the outflows are rising and

reach their highest value a few months later. Before the building up of credits beginning in

2005, the outflows dropped, while the credits were used up afterwards during the 2008/09

crisis, where outflows peaked again. The trending behavior of transitory overtime hours

from the GSOEP, which is used as the trend in both, in- and outflows from WTA, is shown

in hours per week as the thin dash-dotted line with annotation at the right axis. It shows a

flattening growth from below 0.5 hours per week to over one hour until 2010, and has

diminished slightly over the recent years.

The trend and log-scale cycles are combined multiplicatively to yield the net flow on

WTA, which is the relevant statistic measuring the effect on hours worked per period. We

compute this effect as

DWTAt < exp m z
3t

� �
g z

1t þ c z
1t þ uz

1t 2 g z
2t 2 cz

2t 2 uz
2t

� �
: ð9Þ

This overall effect is plotted in Figure 6, where also the seasonal patterns are assessed. The

overall increase in the scale of the fluctuations over time is partly due to the increased

overall importance of WTA corresponding to the upward trend of gross flows described

above, while the cyclical patterns from Figure 5 are closely reflected by the overall net

flows.

As for the results of paid and unpaid overtime hours, further processing of the data is

performed within the working-time measurement concept to yield quarterly results which

are partly decomposed for several groups of employees. These are published by the IAB in

the form of working time components tables, and also enter the publication of national

accounts by the German Federal Statistical Office.
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Fig. 5. Cyclical and noise components of in- and outflows (left axis) and trend in flows on working time accounts

(right axis). The cycle, noise and trend figures are obtained by the state smoother. Cycles and trends are

combined multiplicatively according to (9) to obtain estimated WTA net flows.
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6. Conclusion

We have proposed a factor structural time series model and discussed its implementation

for possibly high-dimensional problems in official statistics. The model has an intuitive

appeal due to its additive, componentwise structure and is quite unrestrictive in its

formulation. It is straightforward to apply using a two-step approach with principal

components and state-space techniques. In simulation experiments, we found that the two-

step approach works reasonably well and that the new method outperforms several

competitors in terms of its ability to estimate an unobserved target series. These results

show the potential to construct more timely and precise official statistics that use a wide

array of recently available data. The empirical application in the article illustrated the

usefulness of the method for the measurement of working time components. There, the

model was used to construct a time series that is longer, more frequent, and uses more

recent information than single survey data sources alone.

The main motivation of the approach was for smoothing latent series using surveys and

several other indicators, as is of foremost importance for statistical agencies. However,

the methods may reveal their strength also for other tasks such as exploration of the

componentwise dynamic properties and co-movements of several macroeconomic time

series, as well as forecasting. Additional research may also be concerned with correlated

unobserved components models in high dimensions, which allow for a more flexible

modeling of spillovers and structural identification.

Appendix A

Properties of the Factor Model in Differences

In this appendix, we show that the data generated by a factor STSM satisfy strong

assumptions on time and cross-section dependence when suitably differenced. These
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Fig. 6. Working time account net flows in hours per week, computed from smoothed cycles and trends by

DWTAt < exp mz
3t
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.
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are sufficient to ensure key results of Bai and Ng (2002). Denoting Xit :¼ DDsyit,

i ¼ 1; : : : ;N, and Fjt :¼ DD s f jt, j ¼ 1; : : : ; r, where yt is the vector of observed

variables and ft is the compound factor process introduced in the main text, the factor

model can be stated as

Xit ¼ Li�Ft þ eit:

Here, eit is cross-sectionally uncorrelated and independent from Ft by assumption, while

both Fjt and eit follow strictly stationary linear Gaussian processes with absolutely

summable coefficients, as we discuss in the following.

To see the dynamic properties more clearly, a generic element from eit is stated as

eit ¼ DDsmit þ DDsgit þ DDscit þ DDsuit;

where the I superscript is suppressed for notational simplicity. Since mit ¼ mi;t21þ

ni;t21 þ ji;t21, we have Dmit ¼ ni;t21 þ ji;t21, while from nit ¼ ni;t21 þ zi;t21, it follows

that nit ¼ ni;t2s þ zi;t21 þ : : :þ zi;t2s. Hence,

DDsmit ¼ Dsni;t21 þ Dsji;t21 ¼ zi;t22 þ : : :þ zi;t2s21 þ ji;t21 2 ji;t2s21;

where jit and zit are mutually independent Gaussian iid processes, and hence a finite-order

moving average structure is obtained for the differenced trend component, with

coefficients straightforwardly obtained from the s nonzero autocovariances.

A similar result is obtained for the seasonal component git ¼ 2gi;t21 2 : : :

2gi;t2sþ1 þ vi;t21. Applying first differences to both sides of this equation yields

git ¼ gi;t2s þ vi;t21 2 vi;t22, and hence

DDsgit ¼ D2vi;t21;

which is again a (over-differenced) finite-order moving average that trivially has

absolutely summable coefficients.

Regarding the cycle, Harvey (1991, Sec. 2.5.6) gives the stationary ARMA(2,1)

representation for jrij , 1, which leads directly to

DDscit ¼ DDs

1þ uiL

1 2 2ricosðliÞL 2 r2
i L2

~ki;t21;

where ui is a moving average parameter and ~kit is composed of the two jointly Gaussian iid

processes kit and k*
it. Since as a stationary ARMA process the fraction expands to a

polynomial with absolutely summable coefficients, also the entire expression for DDscit

shares this property while inheriting stationarity and Gaussianity. The same is true for

differenced noise term D4Duit. Hence, any linear combination of DDsmit, DDsgit, DDscit

and DDsuit is strictly stationary, Gaussian and has absolutely summable coefficients. The

statement is applicable both to the differenced idiosyncratic components eit and to series of

the differenced factor process Ft.

The properties of Ft and eit are clearly sufficient to assure Assumptions A (by a law

of large numbers drawing on ergodicity of Ft), C (since absolutely summable

autocovariances follow from absolutely summable Wold coefficients), and D (due to

the independence between eit and Ft) of Bai and Ng (2002), while their Assumption B on

the factor loadings has to be imposed additionally to obtain the main results of that article.
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Clearly, the squared autocorrelations of eit are also summablein our setup, and hence Bai

and Ng (2002, eq. (6)) yields mean-square convergence of estimated Ft to the true values

for a given t. Naturally, the consistency holds also for a cumulation of finitely many

estimated Fs, s # t. Hence, also thefactors �ft in level are found consistent for a fixed t. The

effects of the initial values are lost due to the differencing, however.

Appendix B

The State Space Form

The model given by (3) with measurement scheme (4) can be easily represented in linear

state space form which allows to use the techniques described in Durbin and Koopman

(2012). We adopt their notation as far as possible and state the system as

�ft

zt

 !
¼ ztat þ

0

1t

 !
; 1t , Nð0;HtÞ; ð10Þ

atþ1 ¼ Tat þ Rht; ht , Nð0;QÞ; t ¼ 1; : : : ; n: ð11Þ

For simplicity of exposition we assume that l $ s 2 1, so that l lags of all components

have to be included in the state vector to make the measurement equation (4) representable

in state space form. Hence, the state vector at holds the components mI
it, m

C
jt , n

I
it , n

C
jt , g I

it ,

g C
jt , ð~cI

it; ~c
I;*
it Þ, ð~c

C
jt ; ~c

C;*
jt Þ, uI

it and uC
jt , each for i ¼ 1; : : : ;Nz and j ¼ 1; : : : ; r, along with

l lags of each component. More precisely,

a 0t ¼ ðm
I
1t; : : : ; m

I
Nz;t
;

n I
1t; : : : ; n

I
Nz;t
;

g I
1t; : : : ; g

I
Nz;t
;

~cI
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I*
1t ; : : : ; ~c
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; ~cI*
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I
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1t; : : : ;m

C
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nC
1t ; : : : ; n

C
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1t ; : : : ; g

C
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1t; ~c

C*
1t ; : : : ; ~c

C
r;t; ~c

C*
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uC
1t; : : : ; uC

r;t;

: : :lagged components : : : ; uC
r;t2lÞ

0

is the m :¼ 6ðNz þ rÞðlþ 1Þ-dimensional state vector. Accordingly, the 6ðNz þ rÞ �

ðlþ 1Þ £ 6ðNz þ rÞðlþ 1Þ transition matrix is given by

T ¼

~T 0 : : : 0

I ..
.

. .
. ..

.

0 I 0

0

BBBBBB@

1

CCCCCCA
; where ~T ¼

Tm Tmn 0 0 0

0 Tn 0 0 0

0 0 Tg 0 0

0 0 0 Tc 0

0 0 0 0 Tu

0
BBBBBBBB@

1
CCCCCCCCA
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is a 6ðNz þ rÞ £ 6ðNz þ rÞ matrix with Tm ¼ Tn ¼ Tmn ¼ INzþr. Moreover, Tu ¼ 0Nzþr

and Tc is a 2ðNz þ rÞ £ 2ðNz þ rÞ block diagonal matrix with ith block given by

T ði;i Þc ¼ ri

cosli sinli

2sinli cosli

 !
;

for i ¼ 1; : : : ;Nz þ r. Here, ri and li correspond to the individual cycle parameters for

i ¼ 1; : : : ;Nz, while they correspond to the parameters of the joint cycles, ri ¼ rC
i2Nz

and

li ¼ lC
i2Nz

for i ¼ Nz þ 1; : : : ;Nz þ r. The transition innovation covariance matrix Q is

block diagonal with block element given by S
I
j, S

C
j , S

I
z, S

C
z , S

I
v, S

C
v, S

I
k^I2, S

C
k^I2, S

I
u

and S
C
u , respectively, while R is a vertical stacking of an identity and l quadratic zero

matrices that selects the contemporaneous states.

The observation matrices Zt reflect both the observation patterns for the variables and

the loading of common components on the individual series. We denote

~L ¼
0 Gm 0 0 0 Gg 0 �Gc 0 Gu

I Lu 0 0 I Lm
�I �Lc I Lm

0

@

1

A;

where the checked matrices reflect the phase shifts of the variables, so that the ith row of �I

is ðcosðlidiÞ; sinðlidiÞÞ^Ii�, the ith row of �Gc is ðcosðlidiÞ; sinðlidiÞÞ^Gc;i� and the ith row

of �Lc is ðcosðlidiÞ; sinðlidiÞÞ^Lc;i� which have twice the number of columns as the

unchecked quantities. Then, for

~MtðLÞ ¼ ~Mt0 þ ~Mt1Lþ : : :þMtlL
l

¼
I 0

0 M0t

 !
þ

0 0

0 M1t

 !
Lþ : : :þ

0 0

0 Mlt

 !
Ll

the time-varying observation matrices are given by

Zt ¼ ð ~Mt0
~L; ~Mt1

~L; : : : ; ~Mtl
~LÞ;

which completes the state space representation for the general case with dt ¼ 0.

If constant terms or statistical breaks occur, the transition matrix is enriched by

additional diagonal elements of 1, while the observation matrix reflects this by additional

columns with corresponding element either set to the constant values, or switching from

zero to that constant at a specified period. The state innovation error covariance matrix is

unchanged and the matrix R holds additional rows of zeros.
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