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We consider the linkage of two or more registers in the situation where the registers do not
cover the whole target population, and relevant categorical auxiliary variables (unique to one
of the registers; although different variables could be present on each register) are available in
addition to the usual matching variable(s). The linked registers therefore do not contain full
information on either the observations (often individuals) or the variables. By treating this as a
missing data problem it is possible to construct a linked data set, adjusted to estimate the part
of the population missed by both registers, and containing completed covariate information
for all the registers. This is achieved using an Expectation-Maximization (EM)-algorithm. We
elucidate the properties of this approach where the model is appropriate and in situations
corresponding with real applications in official statistics, and also where the model conditions
are violated. The approach is applied to data on road accidents in the Netherlands, where the
cause of the accident is denoted by the police and by the hospital. Here the cause of the
accident denoted by the police is considered as missing information for the statistical units
only registered by the hospital, and the other way around. The method needs to be widely
applied to give a better impression of the range of problems where it can be beneficial.
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1. Introduction

In recent years there has been continuing pressure on National Statistical Offices (NSOs)

and other organisations producing official statistics to produce more, better quality and

more detailed statistics, generally with decreasing resources. One of the important ways

NSOs have responded has been to increase the use of administrative data sets, which provide

relatively large amounts of information, generally at a small marginal cost. Often the desired

range of statistical units or variables is not available on a single administrative data set, and

therefore linking of administrative data sources (we call them registers) is also becoming

more and more popular as a means to provide more comprehensive statistics.

There are several methodological problems that NSOs encounter when they are using

registers for the production of official statistics. One is that registers, even when linked,
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under-cover the population of interest. A second problem is that missing values will be

generated if two or more registers are linked. The values of variables that are only

available in a subset of the registers are not known for the records that are not present in

this subset. In this article, we present a framework for solving both undercoverage and

these missing values in one procedure. We do not consider other methodological problems

such as overcoverage and item missingness in single registers, although we return to them

in the discussion. Figure 1 is a graphical representation of the linkage of two registers. The

representation shows the linked data with observations (often individuals) in the rows and

variables in the columns. The data for variables available only in register A are on the left

and denoted by a, the data for variables only in register B are on the right and denoted by b,

and in the middle are the data for variables that register A and B have in common, denoted

by ab. Typically the variables in ab include the variables used for linking the registers.

As Figure 1 illustrates, each register has some unique variables. In a we find data for the

covariates in register A that are not in register B. It follows that for the individuals in

register B that are not in register A these covariates are missing. This is represented by

the grey bitmap block at the bottom left in the representation in Figure 1. Similarly,

individuals that are in register A but not in register B have missing values on the variables

that are unique for register B, and this is represented by the grey bitmap block top right in

Figure 1. In this article we consider the presence of the two grey bitmap blocks as a

missing data problem that we solve by estimating the missing data. (It is evident that

estimating missing covariate values only makes sense for covariates that pertain to all

registers involved. An example where estimation of missing covariate values does not

make sense: consider a population register coupled with a hospital register, then the
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Fig. 1. Graphical representation of two linked registers, see text for details.
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hospital register covariate “type of medical problem” should not be estimated for all

individuals in the population register who do not appear in the hospital register, as it is

likely that they do not have a medical problem at all.)

In addition, the linked registers may not cover the population perfectly, and two-source

estimation may be applied to estimate that part of the population missed by both registers.

This is depicted by the white area at the bottom of Figure 1. Notice that the aim is here not

only to estimate the number of missing individuals but also their covariate data. Also

notice that, in common with the basic population size estimation problem using two

registers, individuals can be observed in three ways: individuals only in register A (on top),

individuals in both register A and B (in the middle), and individuals only in register B (at

the bottom). We note that when there are two registers, two-source estimation assumes

independence conditional on covariates. Heterogeneity of inclusion probabilities can lead

to marginal dependence between the registers. When this heterogeneity is caused by

observed covariates, using these covariates in the model can compensate for this

dependence. However, there may be dependence that is not caused by observed covariates

and one way to handle this true dependence is by inclusion of a third register (compare the

International Working Group for Disease Monitoring and Forcasting 1995) or by using

latent variable models (compare Darroch et al. 1993; Fienberg et al. 1999). We will show

that the approach we adopt can also be elaborated for more than two registers.

Thus there is a missing data problem in the covariates and a population size estimation

problem, and both problems are handled simultaneously. In earlier work, Zwane and

Van der Heijden (2007) and Van der Heijden et al. (2012) studied the situation where the

missing variables are categorical and Zwane and Van der Heijden (2008) where they are

continuous. In this article we review the case of categorical variables only, where the

problem will be solved by applying the Expectation-Maximization (EM)-algorithm to

estimate the missing observations in the context of population size estimation. We will in

particular investigate the properties of the chosen solution as well as applying it within

simulation studies.

Secondly, we will discuss an application where a single concept is measured by one

variable in A and another in B, but where the validity of the variable in A is considered to

be better than the validity of the variable in B. Notice that the concept is not represented by

a single variable in part ab in Figure 1, but by a variable in part A and a different variable in

part B and in this case the variable is clearly relevant in both (all) registers. Now the focus

is on the estimation of the missing data of the grey bitmap part at the bottom left of the

representation in Figure 1.

A good overview of two-source and multiple-source estimation where registers are

linked is Bishop et al. (1975, Ch. 6). Important work in official statistics includes Wolter

(1986), Bell (1993) and Griffin (2014) for the US Census, and by Brown et al. (1999),

Brown et al. (2006) and Brown et al. (2011) for the UK. In epidemiology important

reviews are by the International Working group for Disease Monitoring and Forecasting

(1995) and Chao et al. (2001). For a Bayesian perspective, see Madigan and York (1997).

In this article the covariates in a population size estimation model play an important

role. Earlier work in this area is from Bishop et al. (1975, Ch. 6), Alho (1990), Huggins

(1989), Baker (1990), Tilling and Sterne (1999), and Zwane and Van der Heijden (2005);

for a review see Pollock (2002). Bishop et al. (1975) discuss the use of categorical
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covariates, and Alho (1990) and Zwane and Van der Heijden (2005) discuss how inclusion

probabilities may be functions of continuous auxiliary information, where Alho (1990)

predicts the inclusion probabilities using logistic regressions for two registers and Zwane

and Van der Heijden (2005) generalize this to more than two registers. These papers do not

discuss the problem of partly missing covariates.

The problem of partly missing covariates which we discuss here arises because the

registers available describe different parts of populations, for example, the registers cover

different but overlapping regions in a country, or cover different but overlapping periods

in time. Zwane et al. (2004) and Sutherland et al. (2007) also approach this problem as a

missing data problem, where, for the region example, the regional parts of a register that

are missed by design are estimated using the EM-algorithm. Here the dependence structure

between the registers in those regions that are observed by more than one register is

projected onto those regions where one or more registers are missing. Zwane et al. (2004)

and Sutherland et al. (2007) illustrate this for an example of six registers on spina bifida

that are operative in different but overlapping time periods, where they fit log-linear

models in the M-Step, and Pelle et al. (2016) fit multidimensional Rasch models to

these data.

In the following we will first present the theory and properties of our approach,

including the extension to more than two registers. This is followed by simulation studies

showing the circumstances under which our approach is better than ignoring the additional

variables. We end with an application to the estimation of the number of serious casualties

from traffic accidents in the Netherlands measured by the police and by hospitals.

2. Population Size Estimation in the Presence of Missing Covariates: Theory

The basic idea of the methodology that we review can easily be explained by an example

taken from Van der Heijden et al. (2012) and Gerritse et al. (2015b), involving the

estimation of the population size of people with Afghan, Iranian, or Iraqi nationality

(hereafter “AII”) in the Netherlands, see Panel 1 in Table 1. Register A is a population

register in the Netherlands and register B is a police register. From the population register

A the variable Marital status is used, and denoted by X1, with X1 ¼ 1 referring to married

or living together and X1 ¼ 0 referring to unmarried, divorced, or widowed. From the

police register B the variable “Police region where apprehended” is used, and denoted by

X2, with X2 ¼ 1 referring to one of the five biggest cities of the Netherlands and X2 ¼ 0

referring to the rest of the country. Notice that Marital status is not available in register B

and “Police region where apprehended” is not available in register A. Clearly Marital

status is a relevant variable for people in the police register; “Police region where

apprehended” is not so obviously relevant for the population register, since most people

will not have been apprehended. However, we can consider it as an approximation to usual

residence, and therefore it is a relevant variable (though imperfectly measured in this

source). If we compare the variables in Table 1 to Figure 1, we see that X1 in Table 1 is a

variable in region A in Figure 1, and X2 in Table 1 is a variable in region B in Figure 1. In

Table 1 A and B are variables denoting presence in registers A and B respectively, with

categories 0 ¼ no and 1 ¼ yes; the variables A and B in Table 1 are dichotomous variables

in Figure 1 in the areas A and B.
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The eight counts in Panel 1 of Table 1 correspond to Figure 1 as follows: four counts for

AII individuals that are in both register A and register B, which cross–classify individuals

using the variables X1 and X2; two counts for AII individuals that are only in register A,

which categorize them using variable X1 only, as variable X2 is missing for the individuals in

register A; and two counts for AII individuals that are only in register B, which categorize

them using variable X2 only, as variable X1 is missing for the individuals in register B.

In Panel 2 of Table 1 the counts 13,898 and 12,356, and the counts 91 and 164, are

distributed over the levels of the missing variables. For example, 13,898 is distributed over

the levels of X2 into 4,510.8 and 9,387.2, and the ratio of these two counts is equal to the

ratio of the observed counts 259 and 539. Similarly, 91 is split up into 63.9 and 27.1, and

the ratio of these two counts is equal to the ratio of the observed counts 259 and 110. As a

result, in Panel 2 the odds ratio for the counts 259, 539, 110, and 177 is projected to the

four cells on the right and the four cells at the bottom. The theoretical motivation of this

projection is given by a Missing At Random (MAR) assumption, and the estimates are

found using the EM-algorithm (Zwane and Van der Heijden 2007). The EM-algorithm is

an iterative procedure where each iteration has an expectation (E) and a maximization (M)

step. In the E-step the expectations of the missing values are found given the observed

values and the fitted values under a model, here some log-linear model. The E-step yields

completed data. Then, in the M-step, the log-linear model is fitted to the completed data

and this updates the fitted values that are used in the next E-step. This proceeds until

convergence. The algorithm has linear convergence, which may make the algorithm very

slow. Yet the likelihood increases in each step and therefore convergence is guaranteed.

We illustrate the EM-algorithm for the maximal model in the next section, but first we

elaborate some theoretical properties of this approach.

In the lower right corner of Panel 2 of Table 1 the missing part of the population is

estimated (compare the white area in Figure 1). This estimate is a by–product of the

Table 1. Covariate X1 (Marital status) is only observed in population register A and X2 (Police region where

apprehended) is only observed in police register B.

Panel 1: Observed counts of AII individuals

B ¼ 1 B ¼ 0
X2 ¼ 0 X2 ¼ 1 X2 missing

A ¼ 1 X1 ¼ 0 259 539 13,898
X1 ¼ 1 110 177 12,356

A ¼ 0 X1 missing 91 164 –

Panel 2: Fitted values under ½AX2�½X1X2�½BX1�

B ¼ 1 B ¼ 0
X2 ¼ 0 X2 ¼ 1 X2 ¼ 0 X2 ¼ 1

A ¼ 1 X1 ¼ 0 259.0 539.0 4,510.8 9,387.2
X1 ¼ 1 110.0 177.0 4,735.8 7,620.3

A ¼ 0 X1 ¼ 0 63.9 123.5 1,112.4 2,150.2
X1 ¼ 1 27.1 40.5 1,167.9 1,745.4
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estimation using the EM-algorithm. For example, the missed count for X1 ¼ 0 and X2 ¼ 0

is 1,112.4, and this value is found by assuming independence between A and B given X1

and X2, so that 4; 510:8 £ 63:9=259 ¼ 1; 112:4. This last step is made under the usual

assumptions in population size estimation using two registers taking into account the

covariates, that is, (i) perfect linkage, (ii) independence between A and B conditional on

X1 and X2, (iii) for each of the four subpopulations the population is closed, and (iv)

homogeneity of inclusion probabilities for A or B, conditional on X1 and X2. The use of the

word “or” in assumption (iv) may come as a surprise as in many papers homogeneity is

formulated as an assumption that should hold for both A and B. However, if it holds

for only one of the registers, this is sufficient, see Chao et al. (2001) and Van der Heijden

et al. (2012).

2.1. Maximal Models

The most complicated model that can be fitted is

logpijkl ¼ lþ lA
i þ lB

j þ lX1

k þ lX2

l þ lAX2

il þ lBX1

jk þ lX1X2

kl ; ð1Þ

with identifying restrictions that the parameters l, lA
1 ; l

B
1 , lX1

1 ; l
X2

1 ; l
AX2

11 ; lBX1

11 ; lX1X2

11 and

lAX2

11 are free, and the other parameters are restricted to be zero. The two-factor interactions

are closely related to odds ratios; for example, exp lX1X2

11

� �
is the conditional odds ratio

between X1 and X2. Another way to denote log-linear models is to use the highest fitted

interactions to codify the model, the highest interactions implying the inclusion in the model

of all lower order effects; for this model this corresponds to the notation ½AX2�½X1X2�½BX1�.

Model ½AX2�½X1X2�½BX1� has eight free parameters, namely an intercept, four main effects,

and three interactions. This number of parameters corresponds to the number of counts

in Panel 1 of Table 1, that is also eight. Notice that the term AX1 is not included in the

model, because when A ¼ 0, X1 is missing and unknown. Therefore only three counts are

available for the term AX1. On the other hand, for the term AX2 four counts are available,

namely (259 þ 110), (539 þ 177), 91 and 164, so this term is included in the model (and

similarly for BX1). A maximal model is also a saturated model in the sense that the fitted

counts for a maximal model are equal to the observed counts. (Notice that violations of this

model, such as dependence between A and B conditional on the covariates, cannot be tested.

We come back to this issue in Section 3, where we investigate sensitivity to such model

violations.)

The fitted values for this model are obtained with the EM-algorithm. The algorithm

starts with the initial estimates n̂ð0Þ10ðlkÞ and n̂ð0Þ01ðlkÞ, that are found by evenly distributing the

observed frequencies n10ðlþÞ and n01ðþkÞ over the corresponding cells. In the first M-step,

the log-linear model ½AX2�½X1X2�½BX1� is fitted to the completed data, with the cells

corresponding to ði; jÞ ¼ ð0; 0Þ specified as structural zeros. This yields the estimates p̂ð1ÞijðlkÞ,

which are then used in the first E-step

n̂ð1Þ10ðlkÞ ¼
p̂
ð1Þ
10ðlkÞ

p̂
ð1Þ
10ðlþÞ

n10ðlþÞ; n̂ð1Þ01ðlkÞ ¼
p̂
ð1Þ
01ðlkÞ

p̂
ð1Þ
01ðþkÞ

n01ðþkÞ; ð2Þ

to compute the updates n̂ð1Þ10ðlkÞ and n̂ð1Þ01ðlkÞ. These estimates are then used in the second

M-step to find the updates p̂
ð2Þ
ijðlkÞ, and so on until convergence is reached at iteration t.
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Equation (1) also allows for an alternative way to estimate the four cells in the lower

right part of Table 1. For example, the upper left element 1; 112:4 ¼ expðl̂Þ, as for the cell

with indices i; j; k; l
� �

¼ 0; 0; 0; 0
� �

the parameter values are zero except for the intercept.

Similarly, 2; 150:2 ¼ expðl̂þ l̂
X1

1 Þ. In other words, the parameters of the model are

estimated and projected to cells that refer to the part of the population missed by both

registers.

Model 1 can easily be extended when there are additional covariates. For example,

consider the situation that in addition to X1 being observed in A and X2 in B a variable X3 is

observed in A and B; then the maximal and saturated model is ½AX2X3�½X1X2X3�½BX1X3�.

And, as a second example, consider the situation that in addition to X1 being observed

in A and X2 in B a variable X4 is only observed in A, then the maximal model is

½AX2�½X1X2X4�½BX1X4�.

For each of the three models discussed it is possible to investigate whether more

restrictive models also fit the data. For example, for the model ½AX2� ½X1X2�½BX1� it is

useful to investigate whether one of the interactions can be eliminated without the fit

deteriorating. For example, if the covariate X1 is statistically independent from the

covariate X2, then the model becomes ½AX2�½BX1�, and under this model A and B are

statistically independent, and not independent conditional on X1 and X2.

Example. For model 1 the likelihood ratio chi-square is zero with zero degrees of

freedom. We may want to investigate whether imposing the additional restriction lX1X2

kl ¼

0 is allowed, so that the model becomes ½AX2�½BX1�. The difference between the likelihood

ratio chi-squares for these two models is 3.2 (df is 1), which is not significant at the five

percent level. The estimated population size under model 1 is 33,769.9, whereas for model

1 with lX1X2

kl ¼ 0 it is 33,764.2, only marginally different. This corresponds to the odds ratio

estimated from the four elements where X1 and X2 are both observed, 259, 539, 110, and

177, which yields a value of 0.7732 with a 95 percent confidence interval of (0.5842,

1.0234). The z-statistic to test whether the odds-ratio is significantly different from 1 is

1.798, which is not significant in a two-sided test but is significant in a one-sided test.

2.2. Collapsibility, Active and Passive Variables

The maximal models just discussed have interesting properties in terms of collapsibility

over variables X1 and X2 (Van der Heijden et al. 2012). We use the following terminology.

We use the word marginalize to refer to the contingency table formed by considering a

subset of the original variables. We use the word collapsibility to refer to the situation that

when a table is marginalized the population size estimate remains invariant. Using these

terms the properties of maximal models can be easily explained using interaction graphs of

the log-linear models involved. See Figure 2. Log-linear model ½AX2X3�½X1X2X3�½BX1X3�

has graph M1. This is a maximal model. The log-linear model where X1 and X2 are

conditionally independent given the variables A;B; and X3 is ½AX2X3�½BX1X3� and this

model has graph M2. What follows are three models where one of X1, X2, or X3 is not

available. In model M3 the variable X1 is not available, and the log-linear model is

½AX2X3�½BX3�. In model M4 the variable X2 is not available, and the log-linear model is

½AX3�½BX1X3�. Finally, in model M5 the variable X3 is not available, and the log-linear
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model is ½AX2�½X1X2�½BX1�. This last model is the model that is the focal point in the

exposition in this article.

Interaction graphs are useful tools for assessing collapsibility. We make use of the

concept of a short path (Whittaker 1990): two registers A and B are connected by a path if

there is a sequence of adjacent edges connecting the variables A and B in the graph.

A short path from A to B is a path that does not contain a sub-path from A to B. The rule is

that when a covariate is on a so-called short path from A to B, the contingency table cannot

be marginalized over this variable, and vice versa, that is when a covariate is not on a short

path, the contingency table can be marginalized over this variable. We now discuss this for

models M1 to M5. In M1 the data cannot be marginalized over any of the variables X1 to X3.

The reason is that there are two short paths, namely A 2 X2 2 X1 2 B and A 2 X3 2 B,

and each of the variables X1 to X3 is on one of the two short paths. In M2 the data are

collapsible over X1 and over X2, the reason being that the only short path is A 2 X3 2 B.

In M3 the data are collapsible over X2, the reason being that the only short path is

A 2 X3 2 B. In M4 the data are collapsible over X1, the reason being that the only short

path is A 2 X3 2 B. In M5 the data cannot be marginalized over X1 and X2, because both

variables are on the short path A 2 X2 2 X1 2 B.

When a model (or graph) is collapsible over a variable, this means that in both the

original model and collapsed model the same estimate of the population size is obtained.

For example, models M2, M3, and M4 yield the same population size estimate, and this

estimate is identical to the population size estimate of model ½AX3�½BX3�. However, it may

still be interesting to fit a model M3, for example, because then this total population size

estimate is spread out over the levels of variables X1 and X2. In Van der Heijden et al.

(2012) the variables X1 and X2 in model M2 are referred to as passive, in the sense that they

do not have an impact on the estimate of the total population size. In contrast, variables X1

A

A A A BBB

B

X2 X1

M1

M3 (no X1) M4 (no X2) M5 (no X3)

M2

X3

X3 X3

X2 X1 X2 X1

A B

X2 X1

X3

Fig. 2. Graph representations of some log-linear models.
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and X2 in model M1 are referred to as active, because these variables do influence the

total population size estimate.

Example. In the former section we saw that in model ½AX2�½X1X2�½BX1� the additional

restriction lX1X2

kl ¼ 0 does not deteriorate the fit, so that a more parsimonious model is

½AX2�½BX1�. As there is no short path any more between A and B, this means that we can

marginalize over X1 and X2, showing that the population size estimate for model ½AX2� �

½BX1� is identical to the population size estimate for model ½A�½B�. We do not state that the

original table should necessarily be marginalized over X1 and X2, because the original

table can give insight into how the total population size is spread out over the levels of X1

and X2. Van der Heijden et al. (2009) and Van der Heijden et al. (2012) consider other

examples with a larger number of covariates, namely five. They show that, by estimating

the missing covariates and the number of individuals missed completely, the coverage of

the population register can be evaluated in terms of the five covariates.

2.3. Precision and Sensitivity

Figure 1 illustrated that there are two estimation problems: estimating the missing

covariates (the grey bitmap parts) and estimating the number of individuals (and their

covariate values) missed by both A and B (the white parts in Figure 1). For both estimation

problems we are interested in the precision when the model assumptions are true, and the

sensitivity of the outcomes to deviations from the model assumptions.

We first discuss precision and start with the precision of the estimates for the missing

covariates. Here precision is to be understood as an overall term referring to the variance

of the estimates. Under the EM approach the model fitted is ½AX2�½X1X2�½BX1�. As can be

seen in Table 1, the odds ratio ð259 £ 110Þ=ð539 £ 177Þ ¼ 0:7732, is used to calculate the

expectations for the part of the table where X1 is missing and the part where X2 is missing.

Under the model, the more precise this odds ratio, the more precise these expectations.

This precision is directly related to the size of the population that is in both A and B: the

larger this size, the smaller the standard error of the odds ratio and the standard errors of

the estimates and the larger the precision.

The precision of the data for the individuals missed by A and B is the outcome of two

sources: first, the precision of the estimates of the missing covariates that we just discussed,

and, second, implied coverage. Precision of the estimates of the missing covariates has a

direct impact on the precision of the data for the individuals missed. Consider again

Table 1. Because, in Panel 2 of Table 1, the estimate 1; 112:4 ¼ 4; 510:8 £ 63:9=259,

when the estimates 63.9 and 4,510.8 are imprecise, the estimate 1,112.4 will be imprecise

as well.

The second source of imprecision is related to implied coverage. We explain this for

ðX1;X2Þ ¼ ð0; 0Þ. For the population register A the coverage of A implied by B is

259=ð259þ 63:9Þ ¼ 0:802. However, for the police register B the coverage of B implied by

A is only 259=ð259þ 4; 510:8Þ ¼ 0:057. The equation 1;112:4 ¼ 4; 510:8 £ 63:9=259

shows that if either or both of these implied coverages is low, the estimated number of

missed individuals is large relative to the number of individuals seen, and hence imprecise.

Estimates of the precision can be obtained using the parametric bootstrap (compare

Buckland and Garthwire 1991). The parametric bootstrap provides a simple way to find the
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confidence intervals when the contingency table is not fully observed. To compute the

bootstrapped confidence intervals for a specific log-linear model, we need to first compute

the population size under this model and the probabilities on the completed data under this

model, that is, by including the cells that cannot be observed by design. A first multinomial

sample is drawn given these parameters, and the sample is then reformatted to be identical

to the observed data (for example, the sample in the format of Panel 2 of Table 1 is recoded

into the format of Panel 1). The specific log-linear model used is then fitted to the resulting

data, resulting in an estimate of the population size. Then this is repeated K times. By

ordering the K bootstrap population size estimates, a percentile confidence interval can be

constructed. We use this approach later on.

Up to this point we have discussed precision when the model assumptions are correct. We

now discuss the sensitivity of the estimates to violations of the assumptions of the model. It

is possible to investigate whether maximal models can be reduced by setting some

parameters equal to zero. For example, in model M5 (i.e., Equation 1) it is possible to test

whether the parameter lX1X2

kl is needed to give an adequate description of the data. However,

it is not possible to test whether parameters that are not included in the maximal model,

should be included. In other words, we cannot reject the MAR assumption using the data.

However, as was shown in this context by Gerritse et al. (2015b), it is possible to

investigate for a particular data set how sensitive the outcome of the maximal model is to

the assumption that certain parameters are zero. Take model M5. The maximal model

assumes that three two-factor interactions are zero, that is, lAX1

ik ¼ lBX2

jl ¼ lAB
ij ¼ 0, and all

three- and four-factor interactions are zero. Consider lAX1

ik ¼ 0. The maximal model is

extended with a fixed parameter value for lAX1

ik . We denote such a fixed parameter with the

tilde ~l, and the model to be fitted becomes

logpijkl ¼ lþ lA
i þ lB

j þ lX1

k þ lX2

l þ lAX2

il þ lBX1

jk þ lX1X2

kl þ ~l
AX1

ik : ð3Þ

Such a model can be fitted for a range of values of lAX1

11 . Appropriate values can be chosen

by making use of the fact that log-linear parameters are closely related to odds ratios.

Technically, the model may be fitted as a log-linear Poisson regression with offset

exp ~l
AX1

ik

� �
(see Gerritse et al. 2015b, for details).

Gerritse (2016) argues that the sensitivity of outcomes of the analyses to violation of the

independence assumption and to violation of perfect linkage is larger when the implied

coverage is lower. In the absence of covariates this can be explained as follows. Let mij be

the expected count for cell (i; j) (i; j ¼ 0; 1), where m00 is the missing count to be

estimated. Under independence the odds ratio is 1, that is, m00m11=m01m10 ¼ 1, so that

m00 ¼ m01m10=m11. Under dependence with odds ratio u, m00u ¼ m01m10=m11. Thus,

the smaller the overlap in cell (1,1), and hence the smaller the coverage, the larger the

estimated value for cell (0,0), and this holds both for independence and dependence. In

the same way, when links are missed, this increases the expected values m01 and m10 and

decreases m11, with the result that m00 is larger, and this effect is larger the smaller the

overlap m11.

Example. We carried out sensitivity analyses for the omission of parameters ~l
AB

ij ;
~l

AX1

ik ;

and ~l
BX2

jl . The results are shown in Table 2. Conditional odds ratios of 0.67 and 1.5 are

used. For our example the model without the fixed parameters has an estimated missed
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population size of m̂00 ¼ 6; 176 and an estimated population size of N̂ ¼ 33; 770.

Violation of the model because there is direct dependence between A and B in the form of

conditional odds ratios 0.67 or 1.5 has a large effect, because this leads to estimated missed

population sizes of m̂00 ¼ 4; 117 and m̂00 ¼ 9; 264 respectively. Plugging in a missed odds

ratio ~l
BX2

jl has a minor effect on the estimated missed population size: for conditional odds

ratios of 0.67 and 1.5 it leads to estimated values 6,136 and 6,220, both values being close

to 6,176. However, plugging in a missed odds ratio ~l
AX1

ik has a larger effect on the

estimated missed population size: for conditional odds ratios of 0.67 and 1.5 it leads to

estimated values 6,736 and 5,711.

2.4. Extension to More than Two Registers

The advantage of being able to use more than two registers is that the restrictive

(conditional) independence assumption between variables A and B can be replaced by less

restrictive assumptions. For example, in the situation of three registers without covariates,

the saturated model is the model with all two-factor interactions. Now it is possible to

search for more restrictive models that still describe the data well. One can consult the

references provided in the introduction for details, see, for example, Bishop et al. (1975).

For three registers the problem of incomplete covariates has been studied by Zwane and

Van der Heijden (2007), who show that for this problem the EM-algorithm can easily be

adapted. Van der Heijden et al. (2012) discuss graph representations of the models and

collapsibility, but do not touch incomplete covariates.

An interesting official statistics application is found in Gerritse et al. (2015a). The

problem is to estimate the number of usual residents for the Dutch census 2011. Here usual

residence is defined as, roughly, living in the Netherlands for a continuous period of twelve

months before the reference time. Three registers are available, namely the population

register, the employment register and a crime suspects register. Given this definition we

are interested in a dichotomized version of duration, namely longer than or shorter than a

year. From both the population register and the employment register residence duration

can be derived (for details see Gerritse et al. 2015a), so when people are only in the

population register or only in the job register a measurement for a persons’ duration is

available. For persons who are both in the population register and the employment register

the overlapping durations are reconciled and dichotomized. The crime suspects register

has no variable for duration. This is not problematic for persons who are also in the

population register or the employment register, because then the residence variable of the

latter can be used, but it is problematic for individuals who are only in the crime suspects

Table 2. Sensitivity analyses. The maximal model is ½AX1�½X1X2�½BX2�, where m̂00 ¼ 6;176 and N̂ ¼ 33;770.

Fixed conditional odds ratios are plugged in for ~l
AB

ij ;
~l

AX1

ik and ~l
BX2

jl .

Term Size(OR) m̂00 N Size(OR) m̂00 N

~l
AB

ij 0.67 4,117 31,711 1.5 9,264 36,858

~l
AX1

ik 6,736 34,330 5,711 33,305

~l
BX2

jl 6,136 33,730 6,220 33,814
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register. See Table 3, taken from Gerritse et al. (2015a), where counts for people born in

Poland and registered in one or more of the three registers are displayed. We find a

2 £ 2 £ 2 table for residence duration longer than a year and a 2 £ 2 £ 2 table for residence

duration shorter than a year, where two cells are indicated with the label ‘missing’. As

these two cells refer to persons only in the police register, the sum of the counts for the two

cells is known, namely 1,043. The EM-algorithm is used to distribute these 1,043 persons

over the two cells under some log-linear model, and the parameters of the final model are

projected on the two (0,0,0) cells to find the number of persons missed by all three

registers. We refer to the Supplementary materials, Section 1, for further details (Available

online at: www.dx.doi.org/10.1515/jos-2018-0011).

A similar example can be found in Héraud-Bousquet et al. (2012), where there are three

registers, and in two of the registers place of birth is available, but in a third register it is

not. For those individuals only in the third register the missing values are imputed using

multiple imputation. Multiple imputation has wider application when covariates are

continuous instead of categorical, when the EM-algorithm loses its simplicity. Zwane and

Van der Heijden (2008) apply multiple imputation using predictive mean matching in this

situation.

3. Simulations

Earlier simulation results can also be found in Zwane and Van der Heijden (2007) for

two registers and two partially observed covariates. These results are not completely

transparent as the covariates used in the simulation are correlated continuous variables that

are dichotomized. Thus the true model structure from which samples are drawn cannot

easily be understood from the perspective of a log-linear model. In the simulations that we

present here the true model is a log-linear model in which marginal probabilities and

conditional odds ratios are specified to describe the dependence between the variables.

We refer to the Supplementary materials, Section 2, for details on how true models are

generated (available online at: www.dx.doi.org/10.1515/jos-2018-0011).

We carried out simulations to compare the behaviour of the classical model (denoted

by LL), where incomplete covariates are ignored, with the model where incomplete

Table 3. Polish individuals by the population register, the employment register and the crime suspects register,

by usual residence. The counts for the two cells labeled “missing” add up to 1,043. Data from Gerritse et al.

(2015a).

Crime suspects
Usual residence Population Employment Yes No

No Yes Yes 32 3,523
No 34 3,225

No Yes 149 60,190
No missing 0

Yes Yes Yes 183 21,309
No 195 14,052

No Yes 81 20,216
No missing 0
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covariates are completed with the EM-algorithm (denoted by EM). For each choice of

conditional odds ratios this yields population probabilities from which we sample. In each

instance of the simulation study 25,000 samples are taken. For LL, for each sample the

classical model ½A�½B� is estimated on the marginal table formed from A and B, where

the sampled count in cell ðA;BÞ ¼ ð0; 0Þ is made missing, and subsequently estimated

assuming independence between A and B. Similarly, for EM for the same samples the

model ½AX2�½X1X2�½BX1� is estimated, where the four cells where ðA;BÞ ¼ ð0; 0Þ are made

missing.

In the first simulation study the population model is ½AX2�½X1X2�½BX1�, so that the

model estimated by EM is identical to the true model. The prespecified marginal

probabilities are PðA ¼ 1Þ ¼ 0:3, PðB ¼ 1Þ ¼ 0:3, PðX1 ¼ 0Þ ¼ 0:5 and PðX2 ¼ 0Þ ¼ 0:5.

Conditional odds ratios different from 1 are specified between A and X2, between X1 and

X2 and between B and X1, so that the true model is ½AX1�½X1X2�½BX2�. We denote the

conditional odds ratio between A and X2 by ORðA;X2). Note that the theoretical results in

earlier sections show that, when one of the three conditional odds ratios ORðA;X2),

ORðB;X1) or ORðX1;X2) is 1, the model is collapsible over the covariates so that identical

results are found for LL and EM. Therefore conditional odds ratios equal to 1 are not used.

Also note that, for example, ORðA;X2Þ ¼ ORðB;X1Þ ¼ 0:5 leads to the same population

probabilities as ORðA;X2Þ ¼ ORðB;X1Þ ¼ 2, as this is equivalent to the recoding of levels

0 and 1 in X1 and X2. Therefore we only use odds ratios of 2.

In Table 4 results are reported. In the upper part the true population size is 1,000. We

first plug in conditional odds ratios of moderate size. In the first two lines the three odds

ratios plugged in are ORðA;X2Þ ¼ ORðB;X2Þ ¼ ORðX1;X2Þ ¼ 2. The average observed n,

over 25,000 samples is 511, which is approximately 1; 000 £ ð1 2 0:7 £ 0:7Þ, where 0.7 is

the probability of not being selected in A or B. Note that the implied coverage, derived by

collapsing over the covariates, is low, namely 0.3, that is, given population A, when

linking to population B 70 percent of the observations in B were not seen before (in A).

Under LL, the average estimated mean is 1,014.9 (with SE ¼ 76.3 calculated over the

25,000 samples), the average estimated median is 1,009.9 (with SE ¼ 76.4) and the RMSE

is 77.7. Under EM, the average mean is 1,004.9 (SE ¼ 75.4), the average median is

1,000.1 (SE ¼ 75.6) and RMSE is 75.6. For N ¼ 1,000 two other triples of conditional

odds ratios are investigated. As expected, under EM the average mean and (in particular)

the average median under the log-linear model are very close to the population value,

where under LL there is some bias. Notice that the median has less bias than the mean,

due to the non–normality of the distribution of estimates. With the population size of

1,000, the RMSE’s of LL and EM are close. In the following four instances the population

size is 10,000. The bias of the means and medians become a bit smaller, and as the

standard errors become smaller (due to the increased population size) the RMSE’s of EM

become smaller than those of LL. The same holds for N ¼ 50,000. It seems that the bias

found for LL is approximately equally large but opposite for conditional odds ratios

ORðX1;X2Þ ¼ 0:5 and ORðX1;X2Þ ¼ 2, and this is in contrast to the results in Zwane and

Van der Heijden (2007).

In Table 5 the coverage is higher, with PðA ¼ 1Þ ¼ PðB ¼ 1Þ ¼ 0:6. When the coverage

is higher, the part of the population missed is smaller, and violation of assumptions will

have a smaller effect. This is also apparent by comparing Table 5 with Table 4, which
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shows that the bias for LL in Table 5 is smaller than the bias in Table 4. The bias in EM is

negligible, in particular when N increases.

Simulations suggested by the Census Coverage Survey for England and Wales are

reported in the Supplementary materials, section 3 (available online at: www.dx.doi.org/

10.1515/jos-2018-0011). We also did simulations where the model ½AX2�½X1X2�½BX1�,

assumed in the EM approach, is violated. These results can be found in the Supplementary

materials, section 4 (available online at: www.dx.doi.org/10.1515/jos-2018-0011). Overall

the simulations show that, when the MAR assumptions are fulfilled, the EM approach does

better, though sometimes only slightly better, than the traditional approach. When the

MAR assumptions are not fulfilled, the bias can be substantial, in particular when the

inclusion probabilities are low.

4. Novel Application: The Same Variable Measured in Both Registers

We present a novel application of the above methodology. It concerns two registers that

both measure the same variable, and the measure in one register is generally considered to

be more trustworthy, or valid, than the measure of the same variable in the other register.

This is closely related to the classical two-phase sampling problem, where there is an

inexpensive but low quality measurement which can be obtained from a large sample, and

a more expensive and more accurate approach which is used on a subsample. Two-phase

sampling concentrates on combining the small sampling variance of the large sample

measure with the measurement accuracy of the small sample measure. In our case we will

apply the EM-algorithm to complete the missing information on the highest quality

measure, and additionally to provide this information for statistical units which are missed

in both the registers (a situation which cannot generally be handled by two-phase

sampling). The example we deal with is the number of serious road injuries in the

Netherlands. The first author was consulted by the Ministry of Transport with the question

whether the current methodology applied for estimating this number was sufficiently

appropriate. In the Netherlands the number of serious road injuries is important because it

is used for assessing the road safety target.

In the Netherlands there are two parties that can deliver information on serious road

injuries, namely the police and hospitals. Both parties are usually present after the

occurrence of such an accident. The police are supposed to record the accident and its

cause in the police crash record database, but this regularly does not happen for some

Table 5. Simulations. PðA ¼ 1Þ ¼ 0:6, PðB ¼ 1Þ ¼ 0:6, PðX1 ¼ 0Þ ¼ 0:5 and PðX2 ¼ 0Þ ¼ 0:5. The

conditional odds ratios refer to ORðA;X2Þ, ORðB;X1Þ and ORðX1;X2Þ.

N
Odds
ratios

Mean
(n) Mean Median

SE
mean

SE
med. RMSE

LL 10,000 2,2,0.5 9906 10,001.7 10,001.9 10.8 10.8 10.9
EM 9,999.9 10,000.0 10.8 10.8 10.8
LL 10,000 2,2,2 9903 9,998.1 9,998.2 11.0 11.0 11.2
EM 9,999.9 10,000.0 11.0 11.0 11.0
LL 10,000 2,2,5 9901 9,995.9 9,996.0 11.0 11.0 11.8
EM 10,000.0 10,000.1 11.1 11.1 11.1
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reason, such as that it is not clear which police officer has to file the accident report, or that

the injury is not considered very serious. The hospital that treats the seriously injured, can

report the cause of the injury in the hospital inpatient registry but this is sometimes

forgotten and then such a patient’s connection to a traffic accident is lost. Thus there are

two register sources that both have coverage problems. Many details of the registration by

the police and the hospitals can be found in Reurings and Stipdonk (2011), who report

research conducted at the SWOV Institute for Road Safety Research. They state that the

police database in particular suffers from serious underreporting, and is inaccurate in

indicating injury severity, whereas the hospital database is inaccurate in indicating that a

patient was involved in a road crash but in principle contains all serious road injuries.

For the year 2000 Reurings and Stipdonk (2011) present the data in the upper panel of

Table 6. (We refer to their paper for a detailed discussion regarding the linking of the two

Table 6. Road accidents in the Netherlands in 2000, from Reurings and Stipdonk (2011). Motorized vehicle

involved X1 is only observed in the Police register (A) and Motorized vehicle involved X2 is only observed in

hospital register (B). Levels of X1 and X2 are 1 ¼ yes, 2 ¼ no.

Panel 1: Observed counts

B ¼ 1 B ¼ 0
X2 ¼ 1 X2 ¼ 2 X2 missing Total

A ¼ 1 X1 ¼ 1 5,970 287 1,351 7,608
X1 ¼ 2 28 256 70 354

A ¼ 0 X1 missing 2,947 4,120 – 7,067

Total 8,945 4,663 1,421 15,029

Panel 2: Fitted values under ½AX1�½X1Y�

B ¼ 1 B ¼ 0
X2 ¼ 1 X2 ¼ 2 X2 missing Total

A ¼ 1 X1 ¼ 1 5,970.0 287.0 1,351.0 7,608.0
X1 ¼ 2 28.0 256.0 70.0 354,0

A ¼ 0 X1 ¼ 1 2,509.6 120.6 567.9 3,198.1
X1 ¼ 2 437.4 3,999.4 1,093.6 5,530.4

Total 8,945.0 4,663.0 3,082.5 16,690.5

Panel 3: Fitted values under ½AX2�½X1X2�½BX1�

B ¼ 1 B ¼ 0
X2 ¼ 1 X2 ¼ 2 X2 ¼ 1 X2 ¼ 2 Total

A ¼ 1 X1 ¼ 1 5,970.0 287.0 1,289.0 62.0 7,608.0
X1 ¼ 2 28.0 256.0 6.9 63.1 354,0

A ¼ 0 X1 ¼ 1 2,933.2 2,177.6 633.3 470.2 6.214,3
X1 ¼ 2 13.8 1,942.4 3.4 478.8 2.438,4

Total 8,945.0 4,663.0 1.932,6 1,074.1 16,614.7
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registers.) The police register has a larger undercoverage than the hospital register. Yet it is

reasonable to assume that, where the police registers do record the mode of transport of

injured persons, they do this more accurately than the hospital. The reason is that assessing

the cause of accidents is a more important function for the police, because liability plays a

role, than of the hospital, which is more concerned about the type of serious casualty and

who will be focused more on health related issues than on the cause and details of the

accident. Notice that in the 2 £ 2 subtable that is fully observed, there are 287 joint

classifications not in agreement where the police recorded the involvement of a motorized

vehicle but the hospital recorded that no motorized vehicle was involved, and 29 vice versa.

As it turns out, two approaches can be taken for solving the missing data problem and

subsequently estimating the number of accidents missed by both registers for the 2 £ 2 £

2 £ 2 table. We discuss these options and then generalize to a situation where the number

of levels of the variables X1 and X2, Cause of the accident, is increased from two to seven.

4.1. The 2 £ 2 £ 2 £ 2 Table

As a first approach, Reurings and Stipdonk (2011) set up a system of linear equations to

estimate the number of seriously injured. They report 10,804 seriously injured in

motorized accidents and 5,891 seriously injured in non-motorized accidents. Using a log-

linear modelling framework that includes missing data we can obtain their results as

follows. We define a new variable Y with three levels, namely ðX2 ¼ 1;B ¼ 1Þ; ðX2 ¼

2;B ¼ 1Þ and ðX2 ¼ missing). We then fit model ½AX1�½X1Y� with X1–values missing for

A ¼ 0. The estimates using our procedure should in principle be identical to Reurings and

Stipdonk’s estimates but they are slightly different (probably due to rounding), see Panel 2

of Table 6, in the two last lines, and these lead to estimates of (7,608 þ 3,198.1 ¼ )

10,806.1 for motorized and 5,884.4 for non-motorized accidents. In this approach the

relative frequencies for 5,970, 287, and 1,351 are identical to those for 2,509.6, 120.6, and

567.9, and similarly for 28.0, 256.0, and 70.0 to 437.4, 3.999.4, and 1,093.6, while at the

same time the counts 2,947 and 4,120 are split up over the missing levels of X1. Notice that

we estimate that only (567.9 þ 1,093.6 ¼ ) 1,661.5 accidents with serious road injuries

are missed by both registers, which is approximately ten percent of the total estimated

population size. 95 percent confidence intervals of the estimates 10,806.1 and 5,884.4 are

obtained using the parametric bootstrap by the percentile method with 10,000 bootstrap

samples, and this yields 10,532 – 11,054 and 5,512 – 6,305.

As the second approach, we apply the methodology to this table that we applied before

in Table 1. That is, we assume that the hospital Cause of accident is missing for those

accidents only registered by the police whereas we assume that the police Cause of

accident is missing for those accidents only registered by the hospital, and fit model

½AX2�½X1X2�½BX1�. See Panel 3 in Table 6. This leads to very different estimates for

motorized and non-motorized accidents, namely 13,823 (95 percent CI 13,568 – 14,072)

and 2,791 (2,551 – 3,037). In this approach the four odds ratios for all combinations of

register A and B are assumed to be equal, and the counts 2,947 and 4,120 are now split up

in a way different from the first approach.

We make a few remarks. First, when we compare both approaches we have a preference

for our own approach using model ½AX2�½X1X2�½BX1� over the approach by Reurings and
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Stipdonk using model ½AX1�½X1Y�. This preference is not based on model fit as both

models are saturated and have a perfect fit. Instead we make a judgement based on a

professional opinion. We find it is reasonable to assume that, for example, the count 2,947

for which X1 is missing, should be split over motorized and non-motorized in the same way

as when X1 is not missing. Our approach is plausible, simple and transparent, as in the

saturated model we present here the estimates can be found by hand. The plausibility of the

approach by Reurings and Stipdonk can be argued, but it is less simple and transparent, as

it needs an iterative procedure, and in the next section we will see that it can have

numerical problems. We obtain additional support from the model-based bootstrap applied

to ½AX2�½X1X2�½BX1� which gives smaller confidence intervals (14,072 – 13,568 ¼ 504

and 486) than the estimates under model ½AX1�½X1Y� (11,054 – 10,532 ¼ 522 and 793).

This strategy is in line with Elliott and Little (2000)’s principles for choosing between

saturated models where, after a series of principles fail to distinguish models, then

principle 5 suggests using the model that gives estimates with reduced variance.

Second, when we compare our log-linear modelling procedure with the approach by

Reurings and Stipdonk of solving a system of linear equations, a number of differences

are apparent. Our approach is flexible because extra variables can be incorporated easily.

This will in principle also be the case in Reurings and Stipdonk’s approach. However,

when estimates become unstable due to low observed counts, our approach allows for

constraints on the log-linear parameters that can stabilize the model. The modelling

approach has the advantage that it always produces maximum likelihood estimates,

whereas solving a system of linear equations only leads to maximum likelihood estimates

when the estimates are non-negative. Also, we think that the flexibility of our approach is

important, because Reurings and Stipdonk (2011) report that they applied the method three

times separately, namely for the covariates transport mode (reported here), region and

injury severity. This has the drawback that three different estimates of the population size

will result. In our methodology it is easy to include all three covariates simultaneously, and

this will yield a single total population size that is consistent over the three covariates. It

also allows investigation of the relationships between the three covariates.

As a third remark, in situations like this a practical approach is often taken (Reurings

and Stipdonk 2011 are a noteworthy exception) when a measure of some variable in

register A is considered more trustworthy than a different measure of the same variable in

register B, so after linking registers A and B a new, composite variable is created that

makes the best of the information. In this new measure we fill in the values of the variable

from register A when it is available, we fill in the values of the variable from register B for

the observations that were missed by register A, and some ad hoc solution is found for

the observations that were missed by both registers. In the approaches presented here,

however, for those observations that were missed by register A we translate the values in

register B into what would have been found in register A using the subtable of A ¼ 1 and

B ¼ 1 to give the structure for those observations only found in register B, 2,947 and 4,120

at the bottom of Panel 1 of Table 1.

Last, notice that the odds ratio in this observed subtable is typically very large (in the

upper part of 6 it is almost 200), and in both approaches the odds ratio for the subtable of

A ¼ 1 and B ¼ 1 is used to find the estimates in the subtables of A ¼ 0 and B ¼ 1.

Journal of Official Statistics256



4.2. The 2 £ 2 £ 7 £ 7 Table

The reason that the Ministry asked Van der Heijden for a consultation had to do with a

generalization of the method applied by the SWOV Institute for Road Safety Research.

See Table 7 taken from Reurings and Bos (2012, 25) where we find for 2010 a much more

detailed coding of motorized mode of transport: where in Table 6 this only had one coding,

it now has six codings, namely “Sitting in car”, “Driving motorbike”, “Driving moped”,

“Bicycles in motorized accident”, “Pedestrians in motorized accident”, and “Other in

motorized accident”. Of course, this finer coding into seven levels can be useful for

assessing the cause of a rise or decline in accidents. Notice the occasional low off-diagonal

counts, that are attractive because they make the data plausible (we do not want “non-

motorized” to be mixed up a lot with “sitting in car”. A second difference between the data

for the years 2000 and 2010 is that the police registered many fewer accidents: in 2000 the

number in the police register was around 7,000 compared with 8,000 missed by the police

but found in the hospital registration, but in 2010 these numbers are approximately 3,500

and 14,000. In the same period, the quality of the hospital register went up: in 2000 1,400

accidents were observed by the police but not by the hospital, but in 2010 this was only

approximately 400.

The SWOV Institute for Road Safety Research generalized their approach of using

a system of linear equations and found unstable estimates for some cells, including

estimated counts that were negative. Using log-linear model ½AX1�½X1Y�, where Y has

eight categories, the EM-algorithm also produces unstable results in the sense that

convergence is not reached with 106 iterations, where in that last iteration two lines of

estimates where A ¼ 0 consisted of 0’s only. Therefore we will only present results for the

approach using model ½AX2�½X1X2�½BX1�.

Table 7. Road accidents in the Netherlands in 2010. Data from Reurings and Bos (2012, 25). Motorized vehicle

involved X1 is only observed in Police register (A) and Motorized vehicle involved X2 is only observed in hospital

register (B). m.a. ¼ motorized accident.

Observed counts

B ¼ 1 B ¼ 0
X2 X2

X1 1 2 3 4 5 6 7 missing Total

A ¼ 1
1. Sitting in car 856 7 12 26 61 62 18 130 1,172
2. Driving motorbike 3 261 33 0 7 5 2 20 331
3. Driving moped 7 83 504 19 8 60 21 47 749
4. Bicycles in m.a. 55 2 10 523 38 29 139 96 892
5. Pedestrians in m.a. 9 0 2 11 208 33 3 35 301
6. Other in m.a. 20 1 18 4 7 17 2 22 91
7. Non-motorized 2 0 0 9 1 7 82 12 113

A ¼ 0
missing 1,100 860 1,530 844 482 540 8,578 – 13,934

Total 2,052 1,214 2,109 1,436 812 753 8,845 362 17,583
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The estimates under model ½AX2�½X1X2�½BX1� can be found in Table 8. In order to

investigate the stability of the estimates we used a parametric bootstrap. The results are

reported in Table 9. The seven estimated total numbers of severely injured are rather

stable.

We conclude that, where classification by mode of transport in 2000 was stable, the

refined classification of “motorized” into six categories in 2010 is usable for policy

purpose when model ½AX2�½X1X2�½BX1� is applied.

5. Discussion

In this article we have presented a methodological framework that may be useful for the

production of official statistics based on linked registers where additional categorical

auxiliary variables are available. The methodology has potential for simultaneously

solving the problems of undercoverage and of missing covariate values for those persons

who are missed in some or all of the registers. This corresponds to solving the missing data

problem for the grey bitmap and white parts in Figure 1.

5.1. Extensions

The EM-algorithm can also be used to solve the problem of missing data in covariates that

are incompletely measured. There are many reasons why such data may be missing,

including administrative errors or lags in recording data. If there is only a single register

this is a simple missing data problem, but in the case of more than one register the extra

information can help to complete these variables. The software we employ, the CAT-

procedure in R, is able to handle this problem (Meng and Rubin 1991; Schafer 1997a,b).

Multiple imputation provides an alternative method for dealing with missing values in

covariates. It was used, next to EM, by Gerritse et al. (2015a) and they argue that in their

example, multiple imputation is more flexible. Their point is that in Table 3 the persons in

the two cells labelled missing are most similar to persons not in the population register,

and imputing from this subpopulation is easily accomplished using multiple imputation.

But this approach is separate from the estimation of the unobserved part of the population,

and does not benefit from the integrated way of dealing with these two issues.

Multiple imputation is however more natural in the case of continuous covariates, as

used in Zwane and Van der Heijden (2008). Further research into the benefits of improving

estimation using continuous covariates is also desirable. A more general strategy for

Table 9. Parametric bootstrap point estimates of causes according to the police, with 95 percent confidence

interval (percentile method) and median, under model ½AX2�½X1X2�½BX1�.

Mean 2.5 percent Median 97.5 percent

1. Sitting in car 3,307.1 2,997.9 3,300.6 3,644.9
2. Driving motorbike 1,195.0 1,071.2 1,190.8 1,336.8
3. Driving moped 3,317.2 2,996.6 3,312.6 3,657.6
4. Bicycles in m.a. 6,981.8 6,382.4 6,980.5 7,583.1
5. Pedestrians in m.a. 884.7 749.4 881.0 1,046.1
6. Other in m.a. 350.8 238.4 344.3 498.9
7. Non-motorized 3,099.3 2,565.1 3,094.4 3,646.8
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official statistics from linked registers which includes options for using categorical and

continuous auxiliary variables in the estimation could then emerge, and an important

element of that would be to have more examples of the usefulness of the approaches

presented in this article.

If the framework is used to produce register based official statistics in a complex system

with many registers, then it is more challenging to devise a procedure which ensures

consistency between different outputs. Unless all the registers are linked, using the EM

approach for different groups of registers using the same covariates, as would be likely in

the case for age and gender, would lead to inconsistent outcomes. It is an open research

question of how to build in this consistency.

The approaches presented here deal only with the problem of undercoverage. However,

many registers also contain overcoverage, and this can have an effect on the undercoverage

estimation by increasing the number of records to be linked. This will generally inflate

population size estimates by inflating the number of records appearing in only one register,

though it could have the opposite effect if the overcovered records appear in both registers.

Zhang (2015) provides a framework for models to deal with overcoverage error, but it is

important to have at least one source that does not suffer from overcoverage in order to

make a suitable adjustment. More work is needed on how the estimation of undercoverage

and overcoverage can be integrated into a set of procedures which can be applied in a wide

range of situations including the production of official statistics.

5.2. Conclusion

The simulation studies show that, in comparison with the classical method where those

partially observed covariates are ignored, the EM approach performs slightly better when

the underlying MAR assumption and the conditional independence assumption for

inclusion in the registers is met. When these assumptions are violated, both models can be

severely biased.

In the last example in this article we showed how this missing data approach can be

applied to the situation where a covariate of interest is measured in both registers.

Theoretically, the methodology can also be used when the number of covariates is large,

where stability can be improved by making some of the covariates passive (compare

Van der Heijden et al. 2012). In this instance there is little practical experience and we

hope that this methodology will be used more so that the practical benefits become clearer.
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