
Using Social Network Information for Survey Estimation

Thomas Suesse1 and Ray Chambers1

Model-based and model-assisted methods of survey estimation aim to improve the precision
of estimators of the population total or mean relative to methods based on the nonparametric
Horvitz-Thompson estimator. These methods often use a linear regression model defined
in terms of auxiliary variables whose values are assumed known for all population units.
Information on networks represents another form of auxiliary information that might increase
the precision of these estimators, particularly if it is reasonable to assume that networked
population units have similar values of the survey variable. Linear models that use networks
as a source of auxiliary information include autocorrelation, disturbance, and contextual
models. In this article we focus on social networks, and investigate how much of the
population structure of the network needs to be known for estimation methods based on these
models to be useful. In particular, we use simulation to compare the performance of the best
linear unbiased predictor under a model that ignores the network with model-based estimators
that incorporate network information. Our results show that incorporating network
information via a contextual model seems to be the most appropriate approach. We also
show that one does not need to know the full population network, but that knowledge of the
partial network linking the sampled population units to the non-sampled population units is
necessary. Finally, we also provide an estimator for the mean-squared error to make an
informed decision about using the contextual information, as well as the results showing that
this adaptive strategy leads to higher precision.
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1. Introduction

Survey estimation typically focuses on estimating the total TY ¼
P

i[UYi of the values of

a variable Y defined over a finite population U. Here i [ U denotes the N units making up

the population U. Given a sample s of n units from U, TY is usually estimated by

T̂Y ¼
P

i[s wiYi, where the wi are sample weights and i [ s denotes the n units in the

sample. Traditionally, these weights are expansion weights, that is wi is the inverse of the

selection probability of the ith population unit. However, expansion weights can be quite

inefficient, and alternative weighting methods derived from model-based and model-

assisted methods of survey estimation, see Chambers and Clark (2012) and Särndal et al.

(1992), are used to increase the precision of T̂Y . In most cases this is done by defining the

sample weights so that T̂Y is an efficient unbiased predictor of TY under a linear regression

model for Y in terms of a multivariate auxiliary variable X.
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Population regression models that link an individual’s value of Y to auxiliary variables

corresponding to that individual’s geographic location, gender, and age are commonly

used in survey estimation. However, auxiliary information can be more complex than this.

In particular, information about other individuals in the population that are ‘linked’ to a

particular individual also constitutes auxiliary information about that individual. This is

sometimes referred to as network information, and typically indicates between individual

correlation in the population values of Y. In this article we describe model-based survey

estimation methods that exploit auxiliary information about population networks. In

particular, we describe how the specification of the Best Linear Unbiased Predictor

(BLUP) of TY can be tailored to allow for between individual correlation induced by the

presence of a population network. Such correlation or association between individuals

with similar characteristics is often referred to as homophily in the network literature.

In order to motivate the use of network information in survey estimation, consider the

case of the British Household Panel Study (BHPS, https://www.iser.essex.ac.uk/bhps/).

This is an annual longitudinal survey of British households that has been conducted since

1991. It is based on a sample of approximately 5,500 households, covering more than

10,000 individuals. The main objective of the survey is to further the understanding of

social and economic change at the individual and household level in Britain. However, in

addition to information about the surveyed individual, the BHPS also provides information

about a person’s three closest friends. Variables collected on the three closest friends are:

age, sex, ethnicity, distance to friend (,1 mile, between 1 and ,5 miles, between 5 and 50

miles, .50 miles), and unemployment status. This information is available in seven

waves, corresponding to the even-numbered years 1992–2004.

Because friends tend to share common characteristics, it is plausible that the BHPS

information on friendship ties may be of value when modelling the other survey variables,

in the same way as the ties between household members are typically viewed as influential

in determining the outcomes of many social and economic variables. For example, a

person whose friends are older than the norm might have a higher than average income,

even after adjusting for that person’s age and gender. As a consequence, one might think of

also controlling for the average age of friends when predicting a person’s income. A model

of this type is referred to as a contextual model in what follows since it controls for

contextual effects, such as the average age of friends. Clearly, since the BHPS collects

information on a person’s three best friends, there is scope for applying a contextual model

when estimating using BHPS data. This might lead to more precise survey estimates, as a

contextual variable represents an additional source of information.

The friendship data collected in the BHPS are a special case of a general type of

auxiliary data whose availability is becoming increasingly widespread, especially with the

rapid uptake of modern telecommunications technology. This is network data, defined by

the existence, direction and strength of relationships between individuals in a population

of interest. Statistical modelling of networks is now reasonably well established, see, for

example Frank and Strauss (1986), Snijders (2002), Hunter and Handcock (2006), though

applications to very large networks (e.g., defined by populations similar in size to those

covered by a survey like the BHPS) are still rare, with data on very large networks now

considered to be part of the ubiquitous Big Data concept. Furthermore, we are not aware of

any attempt to use the information in a network defined on a population of interest to
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improve survey estimation for that population, although, as the argument put forward in

the previous paragraph indicates, there may be value in doing so.

In order to use network information in a model linking a survey variable Y to the

auxiliary variable X we need to characterise the population network as the outcome of a

random process. In this context, we focus in this article on a network that identifies the

existence and direction of a relationship between individuals in a population of size N. It is

standard to represent such a network by a matrix of zeros and ones, Z ¼ ðZijÞ
N
i; j¼1 with

Zii ¼ 0 by convention. If a relationship exists between two individuals i and j, then Zij ¼ 1

and we refer to i and j as being linked; otherwise Zij ¼ 0. Such a network is said to be

undirected if Z ¼ Z`, otherwise it is a directed network.

Networks are most useful when characteristics of the individuals that make up the

population covered by the network are also known. In such networks one not only knows

the characteristics of a particular individual, but also the characteristics of the other

individuals in the population linked to that individual via the network. This external

auxiliary information may be useful in discriminating between individuals, and hence may

be useful in prediction, the ultimate goal of survey estimation. For example, the BHPS

collects information about the three best friends of a surveyed individual, without

identifying the friends. Given that the links corresponding to being ‘one of three best

friends’ define a network, this information can be treated as auxiliary data for the surveyed

individual, and, combined with a model for the network, may help with formulating a more

efficient prediction model for the population.

Linear models that use a social network as additional information to model the expected

value of a response variable include contextual network (CN) models (Friedkin 1990).

However, this information can also be used to model between unit correlation in the

population values of the response variable. Such second order models include network effects

models, also known as autocorrelation (AR) models, and network disturbance (ND) models

(Ord 1975; Doreian et al. 1984; Duke 1993; Marsden and Friedkin 1993; Leenders 2002).

When the network defined by Z is known for all N individuals in the population, the CN,

AR and ND population models can be used for survey estimation. However, in practice it

is extremely unlikely that Z will be fully known, and a more realistic scenario is one where

one or more components of this matrix will be known. The most obvious is where only the

component Zss corresponding to the sub-network of relationships between the n sampled

individuals in s is known. Unless the sampling fraction is large, or the sample is highly

clustered, it is unlikely that this sub-network will contain much useful information. Of

more use, perhaps, is the component Zsr, defined by the links between the sampled

individuals and the remaining N 2 n non-sampled individuals in the population, denoted

collectively by r. Clearly, if the network is an undirected one, the links from the non-

sampled individuals to the sampled individuals will then also be known since, under

symmetry, Zrs ¼ Z`
sr . The remaining component of Z is Zrr, which corresponds to the

sub-network defined by the links between the N 2 n non-sampled individuals in the

population. This will generally be unknown. Using network information in a survey

sampling context therefore implies that one has to deal with situations where partial

network information is observed. This inevitably means that one needs to either use more

complicated modelling methods or that one needs to somehow impute the missing network

components.
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The main focus of this article is on the potential use of network information in survey

estimation. In particular, we aim to address three questions: (i) Is embedding network

information useful for survey estimation based on linear models? (ii) If the answer to (i) is

yes, then which network models are potentially useful? and (iii) How much network data

needs to be collected in order to obtain potentially higher precision for survey estimation?

In Section 2 we provide some context for these questions by defining a standard linear

model that is often used for survey estimation. This linear model does not incorporate

network information, so we then describe three widely used linear models that allow for

the availability of network information in addition to standard covariate information.

In Section 3 we briefly discuss estimation of the population mean of a survey variable

using the empirical version of the BLUP (typically referred to as the empirical best linear

unbiased predictor or EBLUP) based on a linear model for this variable, and its application

under the network models introduced in the previous Section. In Section 4, the

Exponential Random Graph Model (ERGM) for a network is introduced and a simple

imputation of missing network information is described, with the aim of using this

imputed information in the network model-based estimators introduced in Chapter 3.

These ideas are then brought together in Section 5 where we describe a simulation study

that investigates the performances of the imputation-based EBLUPs defined by these

different network models. In particular, we compare these estimators with the standard

linear estimators that ignore network information. In Section 6 we use data from “wave N”

(year 2004) of the BHPS to illustrate age by sex by region estimation of population means

based on a model that includes age by sex effects and a contextual variable corresponding

to the maleness proportion of an individual’s three best friends. Section 7 completes the

article with a discussion of our findings as they relate to the three questions raised above.

2. Linear Models on Networks

In this section we describe a number of population level linear models that use network

information. Throughout, we use a friendship social network structure for simplicity of

exposition. In order to develop our notation, the starting point is the linear model that

assumes uncorrelated errors.

2.1. The Standard Model

The classical linear model for a population of N individuals can be written in matrix

form as

Y ¼ Xbþ e; e , Nð0;s2IÞ; ð1Þ

where Y ¼ ðY1; : : : ; YNÞ
` is a population vector of responses, X ¼ ðX1; : : : ;XNÞ

` with

Xi ¼ ðXi1; : : : ;XipÞ
` is the model design matrix for the population with p columns

defined by a set of covariates that depend on auxiliary population information, e ¼

ðe1; : : : ; eNÞ
` is the vector of population model residuals with e i , Nð0;s2Þ and b ¼

ðb1; : : : ;bpÞ
` is the vector of regression coefficients. The population mean vector and

population covariance matrix of Y are then m ¼ Xb and V ¼ s2IN . Here IN denotes the

identity matrix of order N.
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It is assumed that the matrix X defined by the auxiliary population information does

not include variables related to social networks, so (1) does not use social network

information.

Survey populations are often hierarchical and can be characterised as grouped into

clusters, with each cluster j accounted for by a cluster-specific random effect uj in the

model. This can be modelled by a linear mixed model to incorporate dependence of units

in the same cluster. See Chambers and Clark (2012, Chapter 6) for more details.

2.2. The Contextual Network (CN) Model

Consider an educational modelling exercise where Academic Performance (AP) is the

response variable and Socioeconomic Status (SES) of the student is the explanatory

variable. A classical contextual approach might then lead one to include the average SES

of the student’s school as another explanatory variable. Friedkin (1990) adapts this idea

to network data by considering models where the response for a particular subject also

depends on the characteristics of other subjects that are linked to the one of interest. In our

example this would correspond to modelling AP in terms of both the student’s SES as well

as the SES values of the student’s friends. Since a student will generally have several

friends, a student’s AP could then be modelled in terms of his/her SES as well as the

average SES of his/her friends.

In general, such a CN model can be written in matrix form as

Y ¼ Xbþ Ugþ e; ð2Þ

where Y and X have the same meaning as for Model (1), but the columns of U correspond

to statistics derived from the variables that are measured on the network. In particular, the

ith row of U contains appropriate summary characteristics of those other individuals on the

network that are linked to individual i. Thus, in the preceding example, assuming that SES

is the only covariate measured on the network, then U is the column vector of length N

whose ith value is SESi, the average SES of all friends of student i. More generally, let
~X denote the population matrix of covariates measured on the network. The matrix ~X can

be a subset of X but can also include other variables that are not in X.

Then one way of defining U is via the identity

U ¼W ~X; ð3Þ

where W ¼ Z=Z1N;N is a row-normalised version of Z, that is the rows of W sum to one.

In general, U ¼ gðZ; ~XÞ is a function of the network Z and ~X. A contextual variable for

person i often includes the value for this person, for example a household contextual effect

is computed over all household members including person i. However, the contextual

value for person i defined by (3) excludes person i, because Zii ¼ 0 by definition.

2.3. The Autocorrelation (AR) Model

The matrix ~X introduced in the preceding description of the CN model can be any set of

measurements on the individuals in the network. In particular, it can be Y. This leads to

another class of models, called Autocorrelation (AR) models, and also known as network

effects models, that incorporate network information into a linear structure. See, for
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example, Doreian et al. (1984), Duke (1993), Marsden and Friedkin (1993), and Leenders

(2002), and in the context of spatial models, Ord (1975). Under an AR model,

Y ¼ u �Yþ Xbþ e; ð4Þ

where �Y ¼ ð �Y1; : : : ; �YNÞ
` and �Yi is the average response of the individuals in the network

that are linked to individual i, so �Y ¼WY, with W defined in the previous subsection.

The conditional (on X) mean and variance of Y under (4) are m ¼ D21Xb and

V ¼ s2ðD`DÞ21, where D ¼ IN 2 uW. Note that W can be defined in a variety of

ways, see Leenders (2002), though typically it is defined as the row-normalised version of

Z, that is,
PN

j¼1 Wij ¼ 1. The parameter u is restricted u � { 1
l1
; : : : ; 1

l1
} as a necessary

condition for V to exist, where li are the eigenvalues of the row-normalised W. Often u is

restricted to (21, 1).

In the context of the academic performance example introduced in the previous

subsection we see that (4) implies that a student’s AP score now depends on his/her SES

value as well as the average AP scores of his/her friends.

2.4. The Network Disturbance (ND) Model

Models of this type have been considered by Ord (1975) and Leenders (2002) among

others, and correspond to imposing an AR structure on the error term in the standard linear

model (1). They are referred to as Network Disturbance (ND) models and are specified by

Y ¼ Xbþ e; e ¼ u �e þ v; v , Nð0;s2INÞ: ð5Þ

Here �e ¼ ð �e1; : : : ; �eNÞ where �e i is the average error of those individuals in the network

linked to individual i. Returning to the academic performance example introduced in

Subsection 2.2, the model can be interpreted as implying that if a student’s friends have a

below/above average AP value (as predicted by their SES values), then the student is more

likely to have an AP value that is also below/above average.

Note that the Model (5) can be rewritten as

Y ¼ Xbþ e; e , Nð0;s2ðD`DÞ21Þ; ð6Þ

where D was defined in Subsection 2.3, with the same restrictions in place on u as for the

AR model. The parameter u is an indicator of the strength of the between individual

correlations generated by the network. For u ¼ 0, the correlation between the Y values of

any two individuals in the network is zero after one adjusts for their respective values of X.

Under (6), the conditional (on X) mean and variance of Y are m ¼ Xb and V ¼

s2ðD`DÞ21 respectively.

It is worth pointing out that under the ND model, m ¼ Xb is unaffected by the social

network, whereas under the AR model (4), m ¼ D21Xb depends on the network through

D. That is, under the ND model, the expected value of Y for an individual only depends on

the values of that individual’s covariates. Unbiased prediction of Y can therefore ignore the

network. Of course efficient prediction depends on the second order moments of (6), and

so requires network information – as does prediction variance and mean squared error

estimation. This is analogous to estimation under a multi-level model, where one can
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ignore the multi-level structure of the data if unbiased estimation is the aim, but one needs

to take this structure into account for efficient inference.

3. Prediction of Population Totals Using Network Models

The models discussed in the previous section are predictive models, that is, when second

order moments are known, they can be used to compute efficient predictions of unknown

values of the response variable. We now describe how these models can be fitted, and how

predicted values derived from them can be used to estimate the population total TY ¼P
i[U Yi given the sample values {Yi i [ s}, the population matrix of model covariates X

and either part of or all of the network matrix Z. Throughout we assume that inclusion in

sample does not depend on Z and that there is non-informative sampling given X, see

Section 1.4 in Chambers and Clark (2012). Consequently, all unknown parameter values

for the standard model (1) can be estimated from the sample data and predicted values of Y

for the non-sampled population individuals can be computed. We start by summarising

known results from finite population estimation theory.

3.1. The Empirical Best Linear Unbiased Predictor

Let EðYÞ ¼ m ¼ Hl, where H is a known matrix with N rows and q columns and l is an

unknown parameter vector of length q. Also, suppose that VarðYÞ ¼ V is a positive

definite matrix of order N whose value is known up to a constant of proportionality.

Examples of H and V are given in the following subsection. The best linear unbiased

predictor or BLUP of the population total TY ¼
P

i[U Yi is then an efficient estimator of

this quantity, see Royall (1976). In order to specify the BLUP, let s and r denote the

n sampled and N 2 n non-sampled population individuals respectively, and put H ¼

H`
s ;H

`
r

� �`
and Y ¼ Y`

s ;Y
`
r

� �`
. The matrix V can then be partitioned conformably as

V ¼
Vss Vsr

Vrs Vrr

 !

:

A standard expression for the BLUP is its so-called predictive form

T̂
BLUP

Y ¼
i[s

X
Yi þ

i[r

X
Hil̂þ

i[s

X
tiðYi 2 Hil̂Þ; ð7Þ

where Hi is the ith row of H, l̂ ¼ ðH`
s V21

ss HsÞ
21H`

s V21
ss Ys is the best linear unbiased

estimator (BLUE) of l, and ti is the ith element of the vector V21
ss Vsr1N2n, with 1N2n

denoting a vector of ones of size N 2 n.

Note that the BLUP can also be expressed as a weighted sum T̂
BLUP

Y ¼
P

i[s wiYi ¼

w`
s Ys of the sample values of Y, where

ws ¼ 1n þM` H`1N 2 H`
s 1n

� �
þ In 2 M`H`

s

� �
V21

ss Vsr1N2n ð8Þ

is the vector of BLUP weights. Here 1n is a vector of ones of size n and matrix M is defined

as M ¼ H`
s V21

ss Hs

� �21
H`

s V21
ss .

A key assumption of the BLUP is that the variance matrix V is known up to a constant of

proportionality. This is often unrealistic, since V can depend on unknown parameters,
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which must then be estimated. Methods for doing this are described in the next section.

Substituting these estimates into V defines its plug-in estimator V̂, which can be used in (8)

instead of V. The resulting estimator of the population total is called the empirical BLUP

or EBLUP.

3.2. Calculating the EBLUP under Network Models

In order to use the EBLUP with the different network models defined in the previous

section, we need to specify H and V as well as estimators of the unknown parameters that

underpin these matrices. These are defined as follows:

Standard Model: Here H ¼ X and V ¼ s2IN . The residual mean squared error defines

an unbiased estimator of s 2.

CN Model: For this model H ¼ ½X;U� and V ¼ s2IN . We can unbiasedly estimate s 2

using the residual mean squared error.

AR Model: In this case H ¼ D21X with D ¼ IN 2 uW and V ¼ s2ðD`DÞ21.

Estimates of s 2 and u can be obtained by Maximum Likelihood (ML). Restricted ML

(REML) is often used to obtain unbiased variance estimates but it cannot be applied

here, because both the mean and variance depend on the parameter u. The EBLUP

uses the plug-in estimates of H and V defined by the ML estimates of s 2 and u.

ND Model: Here H ¼ X and V ¼ s2ðD`DÞ21. ML estimation of s 2 and u can be

carried out, and the resulting plug-in estimate of V is used to calculate the EBLUP.

ML estimation of s 2 and u for the AR and ND models is not straightforward. Both

models are not reproducible, that is, they do not share the property that the model for a

subset of units of the population has the same form as the model for the whole population.

To see this, note that the variance of the population response vector Y under both models is

s2ðD`DÞ21 so that the variance for the sample response vector Ys is s2½ðD`DÞ21�ss. In

general, this will not equal s2ðD`
ssDssÞ

21, which is the assumed variance if the model is

fitted via ML at the sample level. This misspecification can lead to biased estimates of the

model parameters. A modified approach that yields unbiased estimates of the fixed effects

in the model is described in Suesse (2012a). However this is computationally intensive. An

alternative approach replaces D21 by a fourth order Taylor series approximation. This

speeds up computation considerably since it effectively replaces matrices of dimension

N £ N by matrices of dimension n £ n. See Suesse (2012a) where it is shown that ML

estimates based on this approximation are essentially identical to those obtained using the

modified ML method. An alternative exact ML method that is computationally more

demanding was considered by Suesse and Zammit Mangion (2017).

3.3. Variance Estimation for the EBLUP

The prediction variance of the BLUP is

VarðT̂BLUP 2 TÞ ¼ ~w`V ~w ð9Þ

with ~w` ¼ w`
s 2 1`

n ;21`
N2n

� �`
. This formula assumes that the vector of survey weights

ws is fixed. We can use the same formula for the EBLUP, although from (8) it is clear that
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the EBLUP weights are not fixed in general because the plug-in estimates of H and V used

to calculate them will depend on estimated parameters. However, the increase in the

prediction variance due to ML estimation of these parameters will be small for large

sample sizes, and can be ignored, see Chambers et al. (2011).

Using (9) to estimate the prediction variance of the EBLUP depends on correct

specification of the second order moments of Y. For the standard model and the CN model,

we can avoid this by using an alternative prediction variance estimator that does not rely

on specification of these second order moments, see Section 9.2 of Chambers and Clark

(2012). This estimator is given by

dVarVar ðt̂BLUP 2 tÞ ¼
i[s

X
ðwis 2 1Þ 2ðYi 2 m̂iÞ

2 þ ðN 2 nÞŝ 2 ð10Þ

where m̂i is the estimated mean for i [ s, that is m̂i ¼ Xib̂ for the standard model and

m̂i ¼ Xib̂þ Uiĝ for the CN model, with ŝ2 corresponding to the usual unbiased

estimator of s 2 under each model.

For the AR and ND models we use Equation (9) with a plug-in estimator V̂. In this

context, we note that ML estimates of variance parameters are known to be biased, which

could therefore lead to a bias in V̂ and in the resulting plug-in estimator defined by (9).

The standard approach to dealing with this issue is to apply REML instead of ML.

Unfortunately, the AR model does not allow the application of REML, and furthermore

REML is computationally more complex when fitting these population models.

Consequently a bias-corrected version of ML was applied, based on the approach set

out in Goldstein (1989), which adjusts Iterative Generalized Least Squares (IGLS) to

obtain estimates that are equivalent to REML. The details of this are outlined in the

Appendix of Suesse and Chambers (2014).

4. Modelling of Networks

Our EBLUP development in the previous section assumed that the matrix Z defining the

network is known. This is rather unlikely to be the case. It is far more likely that we will

know either just that part of the network defined by the sampled individuals (i.e., Zss) or

that part of the network defined by the sampled individuals and their corresponding

network links (i.e., Zss and Zsr).

An implementation of a ‘network-based’ EBLUP in this situation must therefore take

account of this incomplete network data. In this section we describe simple model-based

imputation methods that can be used to approximate the impact of the unknown full

network (i.e., Z) on this EBLUP. In turn, this requires that we have a way of modelling Z,

given that we see only a part of this matrix. We start with a brief overview of models for

networks.

4.1. Exponential Random Graph Models

A popular class of models that is able to describe dependencies in a network Z is the class

of (curved) exponential random graph models (ERGMs), these are discussed in

Wasserman and Faust (1994) and Carrington et al. (2005). Under an ERGM, the
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distribution of Z is characterised by

PrðZ ¼ zÞ ¼ exp hðz Þ0GðzÞ2 kðz Þ
� �

; ð11Þ

where z is the vector of model parameters, hðz Þ is a mapping from the p-dimensional to

the q-dimensional space with p # q, and kðz Þ is the normalising constant. Here G(z) is a

vector of q ‘network statistics’ which, together with z, completely characterises the

distribution of Z. Simple examples of network statistics are the number of ‘edges’ in the

network (i.e., the number of observed links, usually expressed as a fraction of the total

number N(N 2 1) of possible links) and the number of triangles (a triangle is said to exist

between individuals i, j and k, if Zij ¼ Zjk ¼ Zik ¼ 1). A more complicated, but widely

used network statistic is GWESP, or the geometrically weighted edgewise shared partner

statistic. Roughly speaking, this corresponds to a weighted sum, over possible values of m,

of counts of the number of links ‘connecting’ any two individuals in the network who are

themselves linked to exactly m other individuals. Like interaction terms in regression, such

statistics allow one to model networks whose ‘connectivety’ structure is extremely

complicated.

Fitting an ERGM via ML is usually not possible, mainly because direct calculation of

the normalising constant k(z) is infeasible. One way of circumventing this problem is to

sample from the network distribution (11) using a Markov-Chain-Monte-Carlo (MCMC)

algorithm in order to obtain a stochastic approximation to the maximum likelihood

estimate of z. Such estimates are called MCMC ML estimates (Hunter and Handcock

2006). Describing the network distribution via simple network statistics, such as the

number of triangles then becomes problematic, because such specifications often lead to

degenerate MCMC samples. Some authors (Snijders 2002; Snijders et al. 2006) have

therefore proposed the use of more complex network statistics, such as the family of

GWESP statistics, for which degeneracy seems less of a problem. For more details of

network modelling, see Strauss and Ikeda (1990), Hunter and Handcock (2006), Hunter

(2007), Hunter et al. (2008a), and Butts (2008).

4.2. Types of Partially Observed Networks

In the first case, denoted by SS in what follows, only Zss is observed and so Zsr, Zrs and Zrr

are missing. In the second case, denoted by SSþSR in what follows, Zss and Zsr are

observed but Zrs and Zrr are missing. This might appear strange, because for an undirected

network Zsr ¼ Z`
rs . This situation is motivated by the BHPS data set for which contextual

information Us is available for the sample but not for the non-sample that is, Ur is

unavailable. This corresponds to knowing Zss and Zsr, but not knowing Zrs and Zrr, because

Us is function of Zss, Zsr and ~X and Ur is function of Zrs, Zrr and ~X. See Appendix C for

more details on the relationship between U and Z and ~X and simple estimators.

The third case, denoted SSþSRþRS is where Zss, Zsr and Zrs are observed, with Zrr

missing. The second and third cases are more realistic from the viewpoint of having usable

network information, since here we at least have complete network information for all

sampled individuals. In this context, we note that the second case provides a scenario

which is related to the situation of the BHPS, where the network is not directly available

but where contextual variables defined by the sample, that is Us, are known.
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4.3. Imputation of Partly Observed Networks

An estimate Ẑ of the full network is necessary for calculation of the EBLUP under the

network models considered in this article. However, in practice only part of the network

will be observed, say Zobs, and another part will be missing, say Zmis. For example, for

the scenario SS the observed network Zobs is Zss and the missing network Zmis is

Zsr < Zrs < Zrr . Note that here we focus on single-value imputation of Zmis. Our

approach can be extended to multiple imputation.

We apply a simple, robust and computationally feasible approach for imputation.

Standard ERGMs, for example the ERGM with EDGES and GWESP, imply a fixed

marginal probability of the form PðZij ¼ 1Þ ¼ p. However, this probability cannot in

general be analytically determined from the model parameters, and must instead be

estimated separately, for example either via simulation from the underlying ERGM using

plug-in estimates of the ERGM parameters, or more simply by the moment estimator

p̂ ¼ 1
jZobsj

P
i;j;i–j Zobs

ij . In what follows, we apply the latter approach as this is a standard

estimator for a proportion, replacing all Zmis
ij by p̂. This approach is simple and clearly can

be improved upon as it uses the unconditional expectation EðZmisÞ as an estimator of the

conditional expectation EðZmisjZobs ¼ zobsÞ. However, estimating the latter expectation

requires first fitting an ERGM to the incomplete network data obtained from the sample,

calculating model parameter estimates û, and then applying model-based imputation

methods, for example multiple imputation. This approach was infeasible for the simulation

study reported next, as fitting an ERGM with a large portion of the network missing took

more than four hours on a single core of type Intel Xeon E5-2620 v2 – 2.10GHz for

a single data set with the latest available version of ergm (Hunter et al. 2008b). In

comparison, when no missing data are present, this fitting process took only a few seconds.

Note that such considerations may not be relevant in an application where imputation of a

single network is required. In this case, adopting a more sophisticated imputation method

may be advisable, for example by applying the approach of Pattison et al. (2013). However

even if its estimation could be improved, sampling a large number of networks is needed to

obtain an estimate of EðZmisjZobs ¼ zobsÞ or even only E(Z). But when N is large, for

example N ¼ 100,000, this also may not be feasible since sampling one network took 31

hours, meaning that for large N using a more sophisticated method is impractical even if

estimation is not an issue. That is, in practice, for large N the simple method mentioned

above appears to be the only feasible method.

5. Mean Squared Error Estimators under the Standard and

Contextual Linear Model

The AR and the ND models are difficult to fit for large N when the networks are imputed,

because then the contiguity matrices are not sparse any more, making it near impossible

to calculate the log-likelihood. From a practical perspective, only the contextual model is

feasible to fit for large N when the network is imputed. We consider now mean squared

error estimation under the standard linear model and under the contextual model when the

network is only partially available (situation SSþSR) but when ~X is available for the

whole population. For this situation, the population total TU ¼ 1`
N U with U ¼ U`

s ;U
`
r

� �`

referring to the total of the contextual variable must be estimated, that is Û ¼ gðẐ; ~XÞ.
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In Appendix C, we show under SSþSR (Us known) that Ûr has a simple form that does not

require the network to be observed, but only requires an estimate of the constant

PðZij ¼ 1Þ ¼ p, ~X and the parameters N and n. Hence even for the BHPS for which p is

known, this estimator Û can be calculated relatively easily and the estimated total T̂U

obtained. Appendix C shows the estimator T̂U along with a (co)variance estimator denoted

by V̂T̂U
.

Let the mean squared error (MSE) of the EBLUP T̂ be denoted by MSE½T̂ � and let the

EBLUP for the linear model without contextual information be denoted by T̂I and the

corresponding EBLUP defined by the contextual model be denoted T̂C.

PutD ¼ MSE½T̂C�2 MSE½T̂I�. See Appendix B for an expression forD depending on T̂U

and V̂T̂U
along with an estimator D̂. In practice we propose to use these estimators to choose

between the models without and with contextual information. When D̂ , 0 we propose

to use the contextual model and when D̂ $ 0, we propose to use the standard model.

Appendix B also shows expressions forD and an estimator for D̂ for the unrealistic situation

that U is fully known, using the estimator D̂ proposed by Clark and Chambers (2008).

6. Simulation Study

6.1. Study Design

This section contains the results from a simulation study whose aim was to investigate

the effect of using networks as an additional source of information when estimating the

population total TY of a survey variable Y. A networked population of size N ¼ 1,000 was

independently simulated 2,000 times, balancing computation time against the number of

different scenarios that were explored in the study, and independent simple random

samples of size n ¼ 100 and n ¼ 200 were independently selected without replacement

from each simulated population. This study comprises all four models under investigation.

We also consider larger N, but then estimation of the AR and ND models becomes

infeasible. To illustrate the effect of large N, only the contextual model is compared with

the standard linear model.

6.1.1. Network Generation

We mainly consider undirected networks in our simulations. The literature on network

analysis suggests that such networks are often well characterised by an ERGM defined in

terms of an EDGES (number of edges) statistic and a GWESP statistic (Hunter et al.

2008b). Consequently, Z was generated as a random draw from an ERGM with an EDGES

statistic equal to u on the logit scale and a weight parameter of 1.0 for the GWESP statistic.

In what follows we use ERGM(m) to denote such an ERGM, where m is the network

density, that is the average number of links per individual. The values of u were then

chosen in order to generate a network with a density of about m ¼ 3, 15, 50 network links

respectively for each individual, that is m < PðZij ¼ 1Þ £ N with PðZij ¼ 1Þ < expitðuÞ.

Note that with this specification the number of network links for an individual is random,

with only the approximate population average number of links fixed.

In this study we consider the three types of partially observed networks mentioned

before, namely SS, SSþSR and SSþSRþRS. Finally, we also considered the situation
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where no network data are used (the standard model) and also the case where the

population network is fully known.

6.1.2. Parameter Specification for Linear Network Models

We generated data under the CN, AR and ND linear network models, see Section 2.

Population data were simulated assuming s 2 ¼ 32 ¼ 9, b0 ¼ 1 and b1 ¼ 2. Furthermore,

the auxiliary variable X was defined so that it took values randomly in the set {1; : : : ; 9}.

This model has medium to high predictive power, since the Standard model implies a

theoretical value of approximately R 2 ¼ 0.75.

CN Model:

Yi ¼ b0 þ Xib1 þ Uigþ e i; e i , Nð0;s2Þ

Here g ¼ 2 and the contextual variable Ui is defined as the average value of X for all other

individuals in the network that individual i has links with, that is U ¼WX, where W is the

row-normalised version of Z and X denotes the vector of population values of X.

AR Model:

Y ¼ uWYþ b0 þ Xb1 þ e; e , Nð0;s2INÞ

with u ¼ 0.5.

ND Model:

Y ¼ b0 þ Xb1 þ e; e ¼ uWeþ v; v , Nð0;s2INÞ

with u ¼ 0.5.

6.2. Simulation Results

Results for the n ¼ 100 case are presented. Table 1 show the Monte Carlo relative mean

squared errors of the estimates of T when the network is generated under an ERGM where

the total number of friends is random, with expectations three and ten respectively.

Corresponding simulation results for X , Nð0; 25Þ can be found in Suesse and Chambers

(2014). Results for the n ¼ 200 case are similar. Note that we do not show Monte Carlo

bias, since these values were effectively zero for all methods. The results displayed in each

table include the two cases where the network is ignored (the ‘standard’ model) and when

the population network matrix Z is fully known (‘True Model and ZU known’). For

partially observed network data we show results for the SS case (only Zss known), the

SSþSR case (Zss and Zsr known, simple imputation) and the SSþSRþRS case (Zss, Zsr

and Zrs known, simple imputation). All results are shown relative to those for the BLUP,

which uses complete network information as well as knowledge of u. Although the level

of knowledge required to compute the BLUP is unrealistic in practice, its performance

provides us with a benchmark against which to gauge the relative benefit of putting more

effort into collecting more network information and in carrying out more intensive

network modelling for imputation of the unknown parts of the network. Furthermore,

comparisons with the ‘Standard’ case allow us to assess how much efficiency is lost by

ignoring network information.
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It is clear from the results shown in Table 1 that ignoring the network (i.e., using the

‘Standard’ model for estimation) can lead to a large loss in efficiency if in fact either the

AR or the CN models are true. Interestingly, our results also seem to indicate that adopting

the CN model when in fact the AR model is true seems as good as using the correctly

specified AR model when the number of friends is not small. Note that when the ND model

is true, ignoring the network information in the data only leads to a marginal loss in

efficiency. In fact, the EBLUPs based on the different network models are all almost fully

efficient in this case, irrespective of whether the assumed network model is true.

When Z is known, but not u, we see a loss of efficiency under the AR model, mainly

because the pseudo-design matrix D21ðuÞX for this model depends on the estimated value

of u. As the number of friends increases, this loss of efficiency associated with having to

estimate u from the sample data decreases in importance. This problem is much less of an

issue for the ND model because in this case the design matrix does not depend on u.

Obviously, there is no impact under the CN model.

In order to see why the CN model yields similar results as the AR model when in fact

the AR model holds, we note that the mean of the AR model is m ¼ DðuÞ21Xb.

If we approximate DðuÞ21 by a first order Taylor series around zero, that is

Table 1. n ¼ 100: Undirected ERGM(3) and ERGM(10) networks with X drawn randomly from {1, : : : ,9}.

Ratio of MSE(EBLUP) to MSE(BLUP).

Population data generated under model

ERGM(3) ERGM(10)

CN AR ND CN AR ND

Actual MSE 86, 474 101, 148 101, 082 86, 537 89, 483 89, 705

Relative EBLUP to
actual MSE based on

True model
and ZU known

1.00 1.00 1.01 1.00 0.99 1.02

CN
SSþSRþRS 1.11 1.09 1.04 1.03 1.02 1.00
SSþSR 1.11 1.09 1.04 1.03 1.02 1.00
SS 2.33 1.37 1.03 1.32 1.07 1.01

AR
SSþSRþRS 1.34 1.05 1.05 1.09 1.01 1.00
SSþSR 1.20 1.06 1.05 1.07 1.01 1.00
SS 2.42 1.39 1.03 1.33 1.06 1.01

ND
SSþSRþRS 2.21 1.31 1.03 1.36 1.06 1.00
SSþSR 2.36 1.35 1.01 1.34 1.07 1.01
SS 2.42 1.40 1.02 1.34 1.07 1.01

Standard 2.40 1.40 1.03 1.33 1.07 1.00
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DðuÞ21 ¼ ðIN 2 uWÞ21 < IN þ uW, then

m < Xbþ uWXb ¼ Xbþ Ug

with g ¼ ub and U ¼WX. That is, the implied mean structure under the AR model is

approximately the same as that under a CN model.

When Zss and Zsr are observed, the EBLUP based on the CN model appears to perform

well generally. This is because the EBLUP under this model does not depend on either Zrs

or Zrr and hence is unaffected by imputation of this part of the network. This is in contrast

to the performance of this EBLUP when only Zss is observed. Here we see that the need to

impute Zsr leads to a significant loss of efficiency. Since estimation of u in the pseudo-

design matrix DðuÞ21X under the AR model has a larger negative effect than the

approximation of the AR model by the CN model, we conclude that the EBLUP based on

the CN model seems a generally more robust method for estimating the population total

than the EBLUP based on the AR model.

It is interesting to also observe that the EBLUP based on the AR model and SSþSR

network data performs generally better than the same EBLUP with access to more

extensive SSþSRþRS network data when the CN model holds, reflecting the interaction

of model misspecification and imputation biases. However, this effect is reversed when a

ND-based EBLUP is used and a CN model underpins the network.

When we focus on where the expected number of friends per subject is small, here equal

to three (see Table 1), we note that there is only a small gain associated with using

imputation method SS compared to ignoring the network information and basing

estimation on the ‘Standard’ model. In this situation network imputation based on SSþSR

or SSþSRþRS provides the largest gains relative to ignoring the network when the

contextual CN or AR model is fitted.

To investigate the effect for larger N only the contextual model and the standard

model are compared, as the AR and ND models are infeasible to fit. Table 2 shows

the MSE of the BLUP and various EBLUPs including the adaptive strategy

that chooses either model depending on the sign of D̂ for an undirected ERGM

network with approximately ten friends per person. Table 3 shows results for a

directed ERGM network with approximately three friends per person. The tables also

show the empirical mean of D̂ denoted by EðD̂Þ and D. Note that the estimator D̂ has

only a small bias.

The results also show that the adaptive strategy is effective and that this strategy also

works for large N and small sampling fractions. Surprisingly the efficiency gains even

increase as the sampling ratio increases. This might be due to the fact that the simple

estimate p̂, the proportion of links in the observed network, is more precise with increasing

N because the number of dyads in Zobs is n(N 2 1) and increases with N.

Average lengths and associated coverages for nominal 95% Gaussian confidence

intervals generated by the estimates of the mean squared errors of the different estimators

are set out in Table 6, see the Appendix. Results for X , Nð0; 25Þ can be found in Suesse

and Chambers (2014). Monte Carlo coverages in all cases are close to the nominal level.

However, the average confidence interval length in the SSþSR/SSþSRþRS case is

considerably shorter than that for the SS case when estimation is carried out under the AR
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and CN models. This provides further support for the conclusion reached above, that

basing an EBLUP on a CN model seems a generally robust approach to using network data

when estimating a population total, even though one must keep in mind that the simple

linearization-based prediction variance estimator (10) used with the CN model slightly

Table 3. Directed ERGM(3) network with X drawn randomly from {1; : : : ; 9}. Ratio of MSE(EBLUP) to

MSE(BLUP) and estimated and true MSE-difference D.

Settings of N and n

N 1,000 10,000 10,000 100,000 100,000 100,000
n 100 100 200 100 200 1,000

BLUP -actual MSE
multiplied by 100/N 2

8.401 9.062 8.931 9.293 9.156 9.051

Relative MSE of
EBLUP based on

ZU known 1.000 1.000 1.000 1.000 1.000 1.000

SSþSR 1.122 1.013 1.024 1.001 1.002 1.011
SS 2.202 529.1 21.59 2349 2936 2.300
Standard 2.201 2.259 2.274 2.267 2.262 2.310

Adaptive strategy 1.122 1.013 1.024 1.001 1.002 1.011

2D relative to BLUP 1.079 1.246 1.250 1.266 1.261 1.299
Eð2D̂Þ relative to BLUP 1.095 1.288 1.265 1.252 1.241 1.262

Table 2. Undirected ERGM(10) network with X drawn randomly from {1; : : : ; 9}. Ratio of MSE(EBLUP) to

MSE(BLUP) and estimated and true MSE-difference D.

Settings of N and n

N 1,000 10,000 10,000 100,000 100,000 100,000
n 100 100 200 100 200 1,000

BLUP -actual MSE
multiplied by 100/N 2

8.653 9.095 8.940 9.310 9.160 9.064

Relative MSE
of EBLUP based on

ZU known 1.000 1.000 1.000 1.000 1.000 1.000

SSþSRþRS 1.092 1.004 1.006 1.000 1.001 1.001
SSþSR 1.075 1.004 1.006 1.000 1.001 1.001
SS 1.334 22.69 1.334 1658 734.1 1.321
Standard 1.337 1.318 1.340 1.335 1.317 1.323

Adaptive strategy 1.078 1.004 1.006 1.000 1.001 1.001

2D relative to BLUP 0.249 0.314 0.328 0.334 0.316 0.322
Eð2D̂Þ relative to BLUP 0.253 0.316 0.322 0.318 0.317 0.318
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underestimates random variation due to its assumption of fixed sample weights, resulting

in too narrow confidence intervals with slight undercoverage.

7. Illustrative Example

The British Household Panel Study (BHPS) is an annual multi-purpose household panel

survey in the United Kingdom that focuses on gaining insight into the social and economic

change at the individual and household level in Britain and the UK, see https://www.iser.

essex.ac.uk/bhps/ for more details.

We focus on an individual’s annual income (in pounds sterling) as the variable of

interest. Our aim is to investigate how the use of network information available in BHPS

impacts on average income estimates for the cross-classification age by gender by region,

using six categories for age 15218 (1), 19221 (2), 22230 (3), 31250 (4), 51264 (5),

65þ (6) (in years), two for gender (1: male, 0: female) and five regions defined as:

(1) ‘E/North’ consisting of East Midlands, West Midlands Conurbation, Rest of West

Midlands, Greater Manchester, Merseyside, Rest of North West, South Yorkshire, West

Yorkshire, Rest of Yorks & Humberside, Tyne & Wear, Rest of North; (2) ‘E/South’

containing Rest of South East, South West and East Anglia; (3) ‘London’ includes inner

and outer London; and finally (4) ‘Scotland’ and (5) ‘Wales’. Northern Ireland is

excluded from our analysis because BHPS sample sizes in Northern Ireland were too

small to cross-classify by age and gender. We also exclude persons who did not report a

positive income.

Incomes estimates for the cross-classification age by gender by region based on the

linear model with two-way interaction effects age by sex are shown in Table 4. The BHPS

also collects information from a respondent on his/her three best friends, consisting of the

genders and ages of these friends, duration of friendships, frequency of contact, distances

to the friends, their job/employment statuses, and their ethnicities. A contextual model can

take a contextual effect based on the three friends and the collected variables into account.

Table 4. Gender by age by region cross-classification of estimated mean annual income in pounds sterling,

using BHPS data and with weighting based on model with age by sex interactions.

Region

Gender Age London E/North E/South Scotland Wales

Female #18 2,668 3,666 2,279 1,678 4,120
19221 6,989 7,134 6,818 7,036 8,976
22230 17,068 12,759 13,403 14,147 12,774
31250 20,266 14,881 16,514 16,043 14,565
51264 12,129 10,725 10,931 11,822 11,279

$65 8,582 7,283 7,952 7,851 8,793

Male #18 1,257 3,896 2,180 2,578 4,897
19221 10,102 7,600 9,735 6,735 16,270
22230 15,617 15,617 18,294 20,719 15,960
31250 23,884 23,884 29,216 29,216 21,947
51264 20,186 20,186 23,293 27,237 19,305

$65 11,775 11,775 14,540 12,055 12,613
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This situation of having contextual variables Us available from the sample s corresponds

to the SSþSR case, as Us is defined by Us ¼Ws
~X with Ws ¼ DiagðZs1NÞ

21Zs and

Zs ¼ ðZss;ZsrÞ, see Equation (3). As the number of friends is fixed, PðYij ¼ 1Þ ¼ p does

not need to be estimated, but is known to be p ¼ 3=ðN 2 1Þ, as there are N 2 1 candidate

friends.

Table 5 shows the difference in estimates to Table 4 when estimation is based on a

contextual model with effects age by sex and a contextual gender effect, where gender is

a binary variable indicating whether a friend is male. In this context the model implies that

a person’s income is not only predicted by age by sex but also by the average income of the

person’s three best friends. For further details on how these estimates were obtained, see

Suesse and Chambers (2012).

Table 5 shows that the application of the contextual model leads to substantially

different results, as many differences are larger than 1, 2, 3, and often 4 standard errors.

We calculated the value of D for all cells presented in Tables 4 and 5. For most of the

cells, D̂ . 0 and hence the standard model should be used, however there are some cells

for which indeed D̂ , 0 and the contextual model is deemed as better in terms of a lower

predicted MSE. For the London region the cells with D̂ , 0 are with the estimated

improvement of the MSE relative to the standard model in brackets: female and 19–21

years (6%), female and 31–50 years (0.1%), and male and $65 years (1%). These results

are based on reconstructed data using the publicly available survey weights, so these

statements are to be treated with caution, as the real data might yield different results.

8. Discussion

At the end of Section 1, we stated that our aim in this article is to address the questions: (i)

Is embedding network information useful for survey estimation? (ii) If the answer to (i) is

Table 5. Change in estimated mean annual income when BHPS data are weighted using the CN model based on

age by sex interactions plus a main effect for maleness.

Region

Gender Age London E/North E/South Scotland Wales

Female #18 162 2102 21104 4584 3914

19221 3241 474 0 21274 23724

22230 222 24 234 2104 274

31250 772 224 264 234 2294

51264 28 214 54 264 224

$65 27 54 21 44 44

Male #18 21763 2204 994 1064 27714

19221 1391 254 2154 714 27104

22230 223 414 2474 2894 204

31250 21341 304 2604 1144 2144

51264 22141 404 2504 2094 564

$65 1191 254 223 2744 124

1, 2, 3, 4 Difference larger than 1, 2, 3, 4 estimated standard errors.
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yes, then which models are potentially useful? and (iii) How much network data needs to

be collected in order to obtain potentially higher precision for survey estimation? Given

the simulation results that we present in Section 6, our tentative answer to (i) is yes, and

our corresponding answer to (ii) is the CN and AR models when either model is true,

because in both cases the mean of the response depends on the network. Our simulation

results provide some evidence that this conclusion may hold more generally.

However when the mean does not depend on the network, as is the case under the ND

model, our results suggest that ignoring the network does not result in a significant loss of

efficiency. We have also investigated this for other ‘network covariance’ models, where

the mean structure is unaffected by the network, and we have observed similar results, see

Suesse and Chambers (2014). In effect, ignoring the network under the CN and AR models

leads to a misspecification of the mean model, but this does not apply for the ND (and

similar) models. Finally, our answer to (iii) is that in realistic applications it will usually be

impossible to collect the full network, and our simulation results are some evidence that

when either the CN model or the AR model is true then both Z ss and Zsr must be collected

or alternatively the contextual sample information Us along with an estimate of p ¼

PðZij ¼ 1Þ must be available, as for the BHPS data set, in order to obtain efficiency gains.

Knowledge of Zss alone is not enough.

In practice, we suggest a careful model fitting exercise be carried out before attempting

to use either the CN model or the AR model for survey estimation. Given the numerical

difficulties with fitting the AR model, see Suesse (2012a), we recommend that the CN

model be used if it is a reasonable fit to the data and when D̂ , 0, otherwise caution is

warranted and ignoring the network might be the best option.

Clearly, more extensive information on networks needs to be collected in conjunction

with standard survey data to gain further insight into the usefulness of network models

for survey estimation. However, it is extremely unlikely that in practical applications

complete network data will be available, in which case the issue of imputation for missing

network data arises. In this article we base this imputation on the fact that the sample

proportion of links per individual is a simple nonparametric estimator of the marginal

probability of an unobserved link. A reasonable question to ask then is whether it is better

to use an imputation method based on EðZmisjZobs ¼ zobsÞ? The numerical intensity of the

MCMC methods used to fit network models like the ERGM when population sizes are

large meant that we could not fully explore this issue here. There is current research that

tries to address some of these issues (Koskinen et al. 2010), but more is required, because

even if the time issue of fitting a partially observed network is solved, simulating many

ERGM networks to obtain EðZmisjZobs ¼ zobsÞ or even just E(Z) for large N . 100; 000

still appears infeasible.

Suesse and Chambers (2014) considered the case of known ERGM parameters (without

estimating them) and then applied a more sophistcated method, however even this method

was consistently worse than the simple method, despite having full knowledge of the

ERGM parameters. Based on these results we anticipate that more sophisticated

imputation methods are unlikely to lead to substantial efficiency gains in most cases. Our

simulation results indicate marginal differences between the SSþSR case and where ZU

is known. We therefore hypothesize that more sophisticated imputation methods will

also only provide marginal gains for estimation of a population total, and not alter the
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conclusions of this article. Efficient imputation methods when the target of inference is

more complex require further research.

All network models considered in this article assume that the value of the response

variable Y for an individual in the study population depends on a linear combination of the

values of this variable for the other individuals in the population that are linked to this

person in the network. If there is an implicit ordering in the strength of these links, then

this can be allowed for in the network model for Y. For example, in the case of a ‘best

friend’ network, where the friendships are ordered by their strength, one can modify the

CN model so that there is a separate parameter for each level of ‘best friend’, see Friedkin

(1990) for similar examples. To illustrate, in the BHPS application, when this extended

contextual model is fitted, a Wald test for equality of these effects supports the assumption

of a common effect.

The use of ERGMs to model the network and the use of the three main regression

models in Section 2 using the network as additional information might be restrictive.

There are many other approaches to model networks, for example adding latent variables

to a logistic regression model, as proposed by Handcock et al. (2007), but also many

extensions to include network information in a regression model, see Leenders (2002) for

some model extensions and the various options to define the weight matrix W based on the

network Z. The use of particular models might be beneficial or detrimental and exploring

the use of alternative models could be useful. The same holds for using particular network

structures in the modelling approaches. Conducting other simulation studies to investigate

the merits of different models is subject to future research.

Finally, we note that throughout this paper we have assumed that the method of

sampling is independent of the network structure given the available population auxiliary

information. In effect, we assume that measurement of the network is something that is

done on the sample (as in our BHPS application), rather than sampling being something

that is carried out on the network. However, there are important applications, see

Thompson and Seber (1996), where inclusion in sample depends on being linked to

another sampled individual via a network. It is clear that in these cases we cannot treat the

observed network structure in Zss and Zsr in the same way as we have in this article, and

this ‘informative’ method of sampling needs to be taken into account when we attempt to

impute the unknown components of Z. Work on this problem is continuing.
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Appendix

A. Further Simulation Results

B. Derivations

Suppose the contextual model (CN Model) holds Yi ¼ Xibþ Uigþ e i such that

EðYiÞ ¼ Xibþ Uig, VarðYiÞ ¼ s2
i ¼ vis

2 and CovðYi; YjÞ ¼ 0 for i – j. The column

vector b is of length p and g of length q. When not using the contextual information

(standard model), then g ¼ 0 and EðYiÞ ¼ Xib.

Define Hi ¼ ðXi;UiÞ and l ¼ ðb`; g`Þ`. Under independence, the weights of the

BLUP T̂ ¼ w`
H Ys given by (8) simplify to wH

wH ¼ 1s þ D21
v Hs H`

s D21
v Hs

� �21
T`

Hr; ð12Þ

where THr ;
P

i[r Hi ¼ Hr1r is a row vector of length q þ p, similarly the population

totals are defined, for example TH ;
P

i[U Hi ¼ H1.

Table 6. n ¼ 100: ERGM(3) and ERGM(10) network with X drawn randomly from {1, : : : ,9}. Ratio of average

lengths of nominal 95% Gaussian CIs (EBLUP/BLUP), with % actual coverage in subscript.

Population Data Generated Under Model

ERGM(3) ERGM(10)

CN AR ND CN AR ND

Actual BLUP
av(length)

1, 12894.2 1, 27395.0 1, 27395.0 1, 12794.1 1, 16095.2 1, 16095.2

Relative av(length)
EBLUP based on

True Model
ZU known

0.9893.2 0.9894.2 0.9894.1 0.9893.4 0.9894.4 0.9894.3

CN
SSþSRþRS 0.9891.7 1.0294.1 1.0194.9 0.9893.2 0.9994.2 0.9994.7

SSþSR 0.9891.9 1.0294.1 1.0194.9 0.9893.1 0.9994.4 0.9994.6

SS 1.4792.9 1.1694.8 1.0194.6 1.1193.4 1.0394.9 0.9994.9

AR
SSþSRþRS 1.0892.5 0.9993.6 1.0094.2 0.9892.8 0.9894.0 0.9894.5

SSþSR 1.0192.0 0.9992.9 1.0094.4 0.9893.1 0.9894.0 0.9894.5

SS 1.4692.4 1.1394.2 0.9994.8 1.1193.3 1.0294.5 0.9894.1

ND
SSþSRþRS 1.0883.9 0.9991.5 1.0094.6 0.9889.1 0.9894.1 0.9894.3

SSþSR 1.4292.4 1.1294.0 0.9894.2 1.1193.2 1.0294.7 0.9894.5

SS 1.4992.8 1.1493.7 0.9894.2 1.1293.7 1.0294.7 0.9894.5

Standard 1.4993.6 1.1794.5 1.0194.8 1.1393.7 1.0395.2 0.9994.6
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We aim at comparing the MSE of the CN and the standard model, but also under

the situation SSþSR, that is when contextual information needs to be estimated for

the non-sample.

MSE½T̂ � ¼ E½ðT̂ 2 TY Þ�
2

¼ E
i[s

X
wHiYi 2

i[U

X
Yi

8
<

:

9
=

;

2

þVar
i[s

X
ðwHi 2 1ÞYi 2

i[r

X
Yi

2

4

3

5

¼ E w`
H Ys 2 Y`1

� �2
þVar ðwH 2 1sÞ

`Ys 2 Y`
r 1r

� �

ð13Þ

Then according to Clark and Chambers (2008), MSE½T̂ � can be re-written as

MSE½T̂� ¼
i[s

X
wHiHi 2

i[U

X
Hi

0

@

1

Al

8
<

:

9
=

;

2

þ
i[s

X
ðwHi 2 1Þ2VarðYiÞ

þ
i[r

X
VarðYiÞ ð14Þ

¼ dHðll
`Þd`

H þ
i[s

X
ðwHi 2 1Þ2s2

i þ
i[r

X
s2

i ð15Þ

where dH ¼
P

i[s wHiHi 2 TH. The term ll` can be estimated by l̂l̂` 2 Var̂ðl̂Þ.

Let the EBLUP under the CN model using Hi be denoted by T̂C and that of standard

model using only Xi for i [ U by T̂I .

Then the difference D ; MSE½T̂C�2 MSE½T̂I� can be estimated by

D̂ ¼ dHðl̂l̂
` 2dVarVarðl̂ÞÞd`

H 2 dXðl̂l̂
T 2dVarVar ðl̂ÞÞd`

X

þ
i[s

X
ðwHi 2 1Þ2ŝ 2

i 2
i[s

X
ðwXi 2 1Þ2ŝ 2

i :

Since we assume that the contextual model holds dH ¼ 0 and

D̂ ¼ 2dXðl̂l̂
` 2dVarVarðl̂ÞÞd`

X þ
i[s

X
ðwHi 2 1Þ2ŝ 2

i 2
i[s

X
ðwXi 2 1Þ2ŝ 2

i :

According to Clark and Chambers (2008) the contextual model is chosen when D̂ , 0.

For the simple case of one contextual variable Ui the result of Clark and Chambers

(2008) applies and D̂ simplifies to

D̂ ¼ T2
Ur 2ŝ2S21

u 2 ĝ2
� �

; ð16Þ

and the contextual model is chosen when ĝ2 . 2ŝ2S21
u , where Sc ;

P
i[s ci and ci ;

Ui 2 C `X`
i with C ;

P
i[s X`

i Xi

� �21
X`

i Ui.

Now suppose that Xi is known for all units i [ U and Ui is only known for i [ s, that is

the population totals TX ;
P

i[U Xi of the covariates Xi are known, whereas TUr ;
P

i[r Ui is unknown and must be estimated and its estimate is denoted by T̂Ur.
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The weights wi are now a function of the sample values of Xi and Ui but also of the

known population total TX and the estimated non-sample total of the contexual variables

T̂Ur. The weights depending on T̂Ur are denoted by ŵi. The EBLUP based on the estimated

T̂Ur is denoted by T̂.

Now the MSE can be expressed as follows

MSE½T̂ � ¼ E½ðT̂ 2 TY Þ�
2

¼ ðEðT̂ 2 TY ÞÞ
2þVarðT̂ 2 TY Þ

¼ ðE½EðT̂ 2 TY jT̂UrÞ�Þ
2þVar½EðT̂ 2 TY jT̂UrÞ� þE½VarðT̂ 2 TY jT̂UrÞ�

ð17Þ

Previously with known TUr

EðT̂ 2 TY Þ ¼
i[s

X
wiXi 2

i[U

X
Xi

0

@

1

Abþ
i[s

X
wiUi 2

i[U

X
Ui

0

@

1

Ag

¼
i[s

X
wiHi 2

i[U

X
Hi

0

@

1

Al:

Now the conditional expectation given T̂Ur gives

EðT̂ 2 TY jT̂UrÞ ¼
i[s

X
ŵiXi 2

i[U

X
Xi

0

@

1

Abþ
i[s

X
ðŵi 2 1ÞUi 2 T̂Ur

0

@

1

Ag

The outer expectations/variances are always with respect to the distribution of T̂Ur and are

usually suppressed, unless necessary. Now assuming that T̂Ur is an unbiased estimate of

TUr, equivalently T̂U is unbiased estimate of TU with estimated (co)variance matrix VT̂U
.

It follows that the estimated weights ŵi depending on T̂Ur, see Equation (12), are also

unbiased, that is EðŵiÞ ¼ wi. First we obtain a variance estimate for ŵ using T̂Hr ¼

ðTXr; T̂UrÞ

VarðŵÞ ¼ Var 1sþD21
v Hs H`

s D21
v Hs

� �21
T̂

`

Hr

� 	

¼ D21
v Hs H`

s D21
v Hs

� �21
VT̂H

H`
s D21

v Hs

� �21
H`

s D21
v

with

VT̂H
¼

0 0

0 VT̂U

0

@

1

A:

Some blocks are zero because TX is known, hence there is no variability with respect to

the distribution of T̂Ur. By defining the n £ ð pþ qÞmatrix B¼ D21
v Hs H`

s D21
v Hs

� �21
and

partitioning as

B¼ Bp Bq

� 	
;
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such that Bp is of dimension n £ p and Bq of dimension n £ q. We can write now

VarðŵÞ ¼ BqVT̂U
B`

q : ð18Þ

We obtain

EðEðT̂ 2 TY jT̂UrÞÞ ¼ E
i[s

X
ŵiXi 2

i[U

X
Xi

 !

bþ
i[s

X
ðŵi 2 1ÞUi 2 T̂Ur

 !

g

( )

¼
i[s

X
wiXi 2

i[U

X
Xi

 !

bþ
i[s

X
ðwi 2 1ÞUi 2

i[r

X
Ui

 !

g

¼
i[s

X
wiHi 2

i[U

X
Hi

 !

l:

By ignoring terms that do not vary with respect to T̂Ur and collecting the remaining terms

we obtain

VarðEðT̂ 2 TY jT̂UrÞÞ ¼ Var
i[s

X
ŵiXi 2

i[U

X
Xi

 !

bþ
i[s

X
ðŵi 2 1ÞUi 2 T̂Ur

 !

g

( )

¼ Var ŵ`Hsl2 T̂Urg
� �

¼ ðHslÞ
`VarðŵÞHslþ g`VT̂U

g2 2Covðŵ`Hsl; T̂UrgÞ

¼ ðHslÞ
`BqVT̂U

B`
q Hslþ g`VT̂U

g2 2Covðŵ`Hsl; T̂UrgÞ

¼ B`
q Hsl

� 	`

VT̂U
B`

q Hslþ g`VT̂U
g2 2ðHslÞ

`Covðŵ; T̂UrÞg

¼ B`
q Hsl

� 	`

VT̂U
B`

q Hslþ g`VT̂U
g2 2ðHslÞ

`BqVT̂U
g

¼ B`
q Hsl

� 	`

VT̂U
B`

q Hslþ g`VT̂U
g2 2 B`

q Hsl
� 	`

VT̂U
g

¼ B`
q Hsl2 g

� 	`

VT̂U
B`

q Hsl2 g
� 	

Using EðX 2 1Þ2ai ¼ ðEðXÞ2 1Þ2aiþVarðXÞai for any r.v. X and constant ai, we obtain

EðVarðT̂ 2 TY jT̂UrÞÞ ¼ E
i[s

X
ðŵi 2 1Þ2s2

i þ
i[r

X
s2

i

 !

¼
i[s

X
ðwi 2 1Þ2s2

i þ
i[r

X
s2

i þ
i[s

X
s2

i VarðŵiÞ

¼
i[s

X
ðwi 2 1Þ2s2

i þ
i[r

X
s2

i þ ðs
2Þ`Diag BqVT̂U

B`
q

� 	
;

where s2 ¼ s2
1 ; : : : ;s

2
n

� �`
and Diag(A) gives the vector on the diagonal of matrix A.

Finally using that under the CN model dH ¼ 0 and using b ¼ B`
q Hsl 2 g ¼

ðH`
s HsÞ

21H`
s Hs

� �
q
l 2 g ¼ g 2 g ¼ 0 (½A�q refers to the last q rows of matrix A,
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we obtain

MSE½T̂ � ¼
i[s

X
wiHi 2

i[U

X
Hi

 !

l

( )2

þ
i[s

X
ðwi 2 1Þ2s2

i þ
i[r

X
s2

i

þb`VT̂U
bþ ðs 2Þ`DiagðBqVT̂U

B`
q Þ

¼ dHðll
`Þd`

H þ
i[s

X
ðwi 2 1Þ2s2

i þ
i[r

X
s2

i

þ0`VT̂U
0þ ðs2Þ`DiagðBqVT̂U

B`
q Þ

¼
i[s

X
ðwi 2 1Þ2s2

i þ
i[r

X
s2

i þ ðs
2Þ`DiagðBqVT̂U

B`
q Þ;

ð19Þ

which differs from (14) by the additional last term.

In practice MSE½T̂ � can be estimated by

dMSEMSE½T̂ � ¼
i[s

X
ðŵHi 2 1Þ2s2

i þ
i[r

X
s2

i þ ðs
2Þ`Diag BqV̂T̂U

B`
q

� 	
; ð20Þ

Now D can be estimated by

D̂ ¼ 2dXðl̂l̂
` 2dVarVarðlÞÞd`

X þ
i[s

X
ðwHi 2 1Þ2ŝ2

i 2
i[s

X
ðwXi 2 1Þ2ŝ2

i

þðs2Þ`Diag BqV̂T̂U
B`

q

� 	
:

We propose to use the contextual model when D̂ , 0 and the model without the

contextual effects otherwise. When only one contextual variable is provided and s2
i ¼ s2,

then the first three terms are replaced as in Clark and Chambers (2008) and we obtain

D̂ ¼ T̂
2

Ur 2ŝ2S21
u 2 ĝ2

� �
þ ŝ21`

s Diag BqB`
q

� 	
V̂T̂U

;

where the last term disappears when the total TU is known, as then V̂T̂U
¼ 0, and then the

formula coincides with (16).

C. Estimation of Contextual Population Information

For notational convenience, we use 1s as the vector of length n, 1r as the vector of length

N 2 n, 1N as the vector of length N and similarly the matrices of ones 1s,N, 1r,N 1N,N with

appropriate sizes.

The contextual population information is often not available. As defined before ~X is a

vector of population covariates, then the vector of contextual population information can

be obtained by the formula

U ¼W ~X ð21Þ

W ¼ Z=Z1N; N ; ð22Þ
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where the division refers to element-wise division of the matrices, it is an expression for

dividing each row of Z by the number of friends of person i (the sum of row i ). Often the

number of friends is fixed, for example for the BHPS, each person has exactly three

friends, then W ¼ 1
3

Z.

Suppose that U is available for the sample, that is Us, and that the full Z is not available.

We outline here a simple method to obtain T̂U and V̂TU
under a simple ERGM and a

simple estimator for Ẑ.

The ERGM under consideration is outlined in Sections 4 and 6 and has an edges statistic

and a GWESP statistic. One can show that (e.g., when simulating under this ERGM) that

PðZij ¼ 1Þ ¼ p is a constant (irrespective of whether the network is undirected or

directed), that is for each dyad the same marginal probability applies. However dyads are

usually not independent.

Under the situation SSþSR we can estimate p by

p̂ ¼
1

nsðN 2 1Þ i[s

X

j–i;j[s;r

X
Zij ¼ 1`

s Zs1N=ðnsðN 2 1ÞÞ:

Under independence and from general properties of a Binomial random variable

Varðp̂Þ ¼ p̂ð1 2 p̂Þ=ðnsðN 2 1ÞÞ. Due to dependence the real variance will be larger (as the

covariances between dyads are usually positive) and might be estimated by simulating

under an ERGM. However from simulations, see for example Suesse (2012b) where a

correlation matrix has to be estimated by simulating a large number of ERGM networks to

fit a certain class of network models, it can also be shown that most correlations between

dyads are near zero and that only some correlations for dyads sharing a node, for example

Yij and Yik, are positive but small in magnitude, for example 0.02. Hence the correlation

structure under the independence assumption (meaning that all correlations are exactly

zero) does not deviate much from the true correlation structure and we expect the

estimated variance derived under the binomial distribution to hold approximately.

Now we use p̂ and the simple estimator Varðp̂Þ to estimate TU and VT̂U
: Using (21) and

(22) we can write under SS þ SR using Zr ¼ ðZrs;ZrrÞ

TU ¼ 1`
N U ¼ 1`

s Us þ 1`
r Ur ð23Þ

and

Ur ¼
a1

a2

¼
Zr

~X

Zr1N

:

Now Zr is not observed and must be estimated, here by Pr ¼ EðZrÞ. Note that Pr is a

ðN 2 nÞ £ N matrix, but has zeros along the off-diagonal that correspond to the diagonal of

Z because Z has zero diagonal entries. The other entries are constant and equal p̂.

Now

a1 ¼ P̂r
~X ¼ p̂{N1r

~X� 2 ~Xr}

with the population average of ~X denoted by ~X� and

a2 ¼ P̂r1N ¼ p̂ðN 2 1Þ1r;
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provided the number of friends is not fixed and unknown. If fixed, as for the BHPS, the

network is not required to estimate p, because p is known and equals 3
N21

, as each person

has three friends in the population with N 2 1 possible candidates. Then a2 has simple

structure, it is a vector with elements equal to this number, that is 3.

The estimator of Ur is

Ûr ¼
p̂{N1r

~X� 2 ~Xr}

p̂ðN 2 1Þ1r

¼
N1r

~X� 2 ~Xr

ðN 2 1Þ1r

and hence an estimator T̂U of TU is obtained by replacing Ur by Ûr in (23).

Assume for simplicity the denominator is fixed (as for the BHPS) and we have only one

contextual variable, then we approximate VT̂U
by

V̂T̂U
¼

{N1r
~X� 2 ~Xr}

`{N1r
~X� 2 ~Xr}

p̂2ðN 2 1Þ2
dVarVarðp̂Þ ð24Þ

Otherwise when the denominator is not fixed, then the variance of the ratio might be

obtained by the delta method or by simulation under a network model or re-sampling

methods, as the parametric bootstrap method. In the following we ignore the variability of

the denominator and apply naively Equation (24).
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