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A computational approach to optimal multivariate designs with respect to stratification and
allocation is investigated under the assumptions of fixed total allocation, known number of
strata, and the availability of administrative data correlated with thevariables of interest under
coefficient-of-variation constraints. This approach uses a penalized objective function that is
optimized by simulated annealing through exchanging sampling units and sample allocations
among strata. Computational speed is improved through the use of a computationally efficient
machine learning method such as K-means to create an initial stratification close to the
optimal stratification. The numeric stability of the algorithm has been investigated and
parallel processing has been employed where appropriate. Results are presented for both
simulated data and USDA’s June Agricultural Survey. An R package has also been made
available for evaluation.
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1. Introduction

An attribute of many federal surveys is the use of a stratified design. Stratified designs

allow the inclusion of knowledge about the Primary Sampling Units (PSU)s in a

population through administrative variables that are well correlated with the desired

estimators. Many federal surveys have the additional requirements of agency-mandated

quality constraints. These constraints are typically based on the Coefficient-of-Variation

(CV) or other functions of variance placed on either administrative variables or the survey

estimates. Besides quality constraints, financial constraints are also imposed on federal

surveys. This brings forth the question, “How can a federal survey practitioner optimally

stratify and allocate a survey to meet imposed quality constraints without spending any

more money?” In this article, a solution to this question is presented for the case of CV

quality constraints and a fixed sample size.

An important aspect of this question is the concept of an optimal stratified design, where

an optimal stratified design implies the joint optimization of stratification and allocation

with respect to a predeterminated objective function. If an optimal design can be found,

then it is optimal over all possible pairings of stratifications and allocations under the

design constraints. Joint optimization differs from optimal stratification with an a priori
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allocation or optimal allocation conditioned on a prior fixed stratification. Here a priori

allocation is defined as designs where the allocations are predeterminated functions of the

strata population sizes, such as proportional, uniform or other allocation methods that do

not admit administrative data. Both the a priori and conditional allocation place additional

constraints on the objective function. In the case of conditional allocation, the objective

function used for stratification lacks information about the optimal allocation, making it

necessary to optimize an alternative objective function. If an optimal allocation is

performed with the desired objective function, then the allocation is restricted by the prior

stratification. This restriction can lead to a nonoptimal design. In the case of a priori

allocation, only a subset of pairings of all possible stratifications and allocations are

considered; this subset is unlikely to contain the optimal allocation for a given objective

function due to ignoring administrative data. The importance and improvements provided

by assuming neither a priori allocation nor using conditional allocation are discussed and

displayed through empirical results in Benedetti et al. (2008), Day (2009), Baillargeon and

Rivest (2009), and Ballin and Barcaroli (2013). A comparison of a priori allocated designs

for multivariate surveys can be found in Kozak (2006b); further discussion can be found in

Gonzalez and Eltinge (2010).

One major advantage that a priori and conditional allocation designs have over optimal

stratified designs is that they are easy to obtain. Optimal stratified designs require an

exploration of a combinatorial space to find an optimal design. This is a nontrivial problem

for even small population and sample sizes. A solution to the problem of finding a

univariate optimal stratified design subject to a CV constraint using Neyman allocation

for a fixed sample size was proposed by Dalenius and Hodges (1959). This method is

commonly known as the cum
ffiffiffi

f
p

method (Särndal et al. 1991, Section 3.7) (Horgan 2006).

Lavallée and Hidiroglou (1988) and the multivariate extensions in Benedetti et al. (2010)

and Benedetti and Piersimoni (2012) provide optimal designs under CV constraints, but

restrict the strata to either two or three stratum. These stratum in Benedetti and Piersimoni

(2012) include a census (take-all) and sampled (take-some) strata and do not restrict the

sample size. Benedetti et al. (2010) included a third (take-none) stratum for the purposes

of cut-off sampling. These approaches are designed for highly skewed populations,

exploiting the similarity of the underlying population to a geometric progression (Gunning

et al. 2004). Benedetti and Piersimoni (2012) introduced a method for stratification which

uses multiple administrative variables. This method, which is motivated by the Lavallée

and Hidiroglou method, partitions the population into two strata, one which is sampled

and one, which is a take-all stratum. The partitioning is determined such that the sample

size is minimized for a target coefficient of variation of a response variable. In addition to

allocations with goals of increasing precision, allocations also consider data collection

costs and other practical constraints such as the method proposed by Valliant et al. (2014)

to allocate sample in household surveys using Address-Based Sampling Frames and

available commercial data.

Other multivariate approaches to optimal stratified designs can be found in Ballin and

Barcaroli (2013) and Benedetti et al. (2008). Both of these methods are designed to work

on a set of categorical administrative variables. These administrative variables work as a

means of data reduction by assigning each PSU to an initial stratum, called an atomic

stratum, defined by a unique combination of administrative values. To admit optimization
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under variance or CV constraints, each atom is assigned a variance estimate. Simultaneous

allocation in both cases is performed through optimal allocation as defined in Bethel

(1986), where strata allocations are round up to the nearest integer. The major difference

between these algorithms is how they explore the combinatorial space of the atomic strata.

A divisive tree-based approach is used in Benedetti et al. (2008). In this approach, at each

layer of the tree, a stratum is split by the administrative variable that results in the greatest

reduction of total sample size according to optimal allocation in Bethel (1986). This is

continued until a set of CV quality constraints are met. In Ballin and Barcaroli (2013), a

Genetic Algorithm (GA) is used to explore the space of strata formed by merging atomic

strata. At each iteration (generation) of the GA, a large collection of possible stratifications

are generated and evaluated through minimum sample size under CV constraints. A set of

sufficiently well-performing stratifications and allocations and a small number of less

optimal stratifications and allocations are retained to contribute to future generations.

The less optimal stratifications and allocations are retained to provide genetic diversity.

These stratifications and allocations, along with combinations and mutations of these

stratifications are then used as the next generation. Combinations of strata are formed by

exchanging atomic strata assignments between two stratifications, and mutations are

formed by randomly assigning an existing atomic stratum to another stratum. Iteration is

continued until changes in the objective function plateau. Both of these approaches

consider a variable number of strata with means to specify a maximum number of strata to

avoid an unstable stratified design.

A separate but important issue not directly addressed by the previously mentioned

works involves the relationship between the administrative variables being optimized and

the desired estimators. Even when the administrative variables and the desired estimators

are highly correlated, the optimal stratification and allocation under the administrative

variables may not be optimal for the desired estimators. In particular, an assumption that

meeting quality constraints for the administrative variables may not imply meeting

assumed quality constraints for the desired estimators. A discussion of this issue and

proposed solution for univariate stratified designs using anticipated moments can be found

in Baillargeon and Rivest (2009). Anticipated moments are moments of a random variable

calculated under the sample design and the super population model (Isaki and Fuller

1982). When the super population model, referred to as the model in this article, is

correctly specified or a sufficiently robust model is used, it is possible to construct strata

that on average meet the quality constraints for the desired estimators.

The prior literature on the subject of optimal stratified designs does not address three

important use cases; (1) multivariate optimal allocation with continuous administrative

variables with more than two strata, (2) multivariate optimal allocation using anticipated

moments to attain CV constraints for desired estimators, (3) application to fixed sample

sizes with CV constraints. In this article, a method to construct optimal multivariate

stratified designs for an arbitrary, but fixed, number of self-representing strata from

continuous valued administrative data is presented. This method admits a combination of

hard and soft constraints, where soft constraints are handled by a penalized objective

function and hard constraints are handled through traditional nonlinear programming

constraints. Anticipated moments can be used within the objective function to account for

the relationship between administrative variables and desired response. Accounting for
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this relationship allows for optimization with CV constraints on the desired estimators.

Optimization of this objective function is performed by simulated annealing, by moving

individual PSUs between strata. The use of soft constraints allows a survey practitioner to

find potential solutions by relaxing less important constraints. Unlike prior multivariate

methods, this choice of simulated annealing for optimization provides the theoretical

result of guaranteed convergence to the global optima, and good performance

characteristics. Simultaneous stratification and allocation is provided by also considering

changes in the allocation as part of the simulated annealing algorithm.

The problem of targeting multiple responses that are not-necessarily correlated with

each other is a characteristic of area surveys in agriculture. Agricultural production of

crops such as corn excludes using the land for another purpose such as growing soybeans.

The agricultural area survey examined in this article is the United States Department of

Agriculture (USDA) National Agricultural Statistics Service’s (NASS) June Agricultural

Survey (JAS). In particular, a proposed redesign of JAS using a permanent and fixed area

frame is examined. Prior work on optimizing the existing JAS design using simulated

annealing procedures has been proposed by Gentle and Perry (2000). This work focused

on creating strata that are homogeneous with respect to remote sensing imagery. Given the

quality of remotely sensed imagery at the time of publication, this approach provided

remarkable improvements in efficiency. However, the approach did not consider optimal

allocation, CV constraints, sampling unit dependent costs, or agricultural practices such as

crop rotations. The application of the proposed method does consider all four topics and

can be consider a modern revisit of the topic with the benefit of higher quality remote

sensing data and faster computing resources.

This article is broken into the following sections. In Section 2, details on the proposed

method, including the algorithm and objective function, are presented. In Section 3,

simulated data are used to illustrate the proposed method and the result is compared to

those from other stratification and allocation methods. In Section 4, the JAS is introduced

and the results of applying the proposed method to the JAS are compared to those from the

current univariate allocation method. The article concludes with a discussion and future

extensions to the proposed method that would account for measurement error and improve

computational efficiency.

2. Optimal Stratified Design Algorithm

The method proposed here uses a sequence of exchanges of PSUs between a set of initial

strata to improve an objective function. The objective function is a weighted vector norm

applied to the vector of administrative variable or modeled CVs attained by the current

stratification and allocation. A penalty function is added to this objective function, where

the penalty function is the sum of the element-wise products of penalty weights and

penalty values. The penalty weights serve as importance weights, as in Kozak (2006b)

with the exception that the weights can be set to zero once the constraint is met. The

penalty values are the difference between the attained CVs and the target CVs for each

administrative or modeled variable. This approach can be considered a weighted or

approximate constraint satisfaction problem in operations research (Freuder and Wallace

1992). Traditional hard constraints can be considered by setting the penalty weight to
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infinity. By allowing a combination of hard and soft constraints, survey managers and

stakeholders have flexibility in identifying essential CV constraints and nonessential,

but desirable, CV constraints. By defining these constraints separately, infeasibility of

the constrained design by fixed sample sizes can potentially be avoided. If the nonessential

constraints are violated, a design that minimizes the departure from the nonessential

CV constraints can be found, and the constraints can be prioritized through the choice of

penalty values.

The objective function optimizes the stratification and allocation through functions of

moments; in particular, the population total and variance. The population total and

variance are calculated from values assigned to individual PSUs. Therefore, either

administrative data highly correlated with the desired response or a modeled response is

required to find optimal stratification and allocation for a set of desired estimators. In the

case of administrative data, it is assumed that the data is complete and available for each

PSU. In the case of modeled response, it is similarly assumed that a model can be

constructed for each PSU; variances based on this model can be incorporated within the

objective function through anticipated moments. The later case will be discussed in

Section 3.

The strata formed by PSU exchanges are self-representing. Self-representing strata are

defined by PSU assignments, as opposed to any bounds on the administrative variables.

Since the self-representing strata are not defined by a set of hyper-planes from admini-

strative data bounds, they allow for strata that have nonlinear partitions and possibly

disjoint subsets of the space of the administrative data.

Self-representing strata are also found in Benedetti et al. (2010) and Benedetti and

Piersimoni (2012), however the approach presented can exceed three strata and is not

restricted to highly asymmetric populations. Instead, it relies on the observation that, given

an initial allocation and stratification, then a sequence of exchanges can be taken along

primarily stratum boundaries to attain a more optimal design. Optimal allocation is

performed simultaneously by potentially changing the sample size at each iteration.

Optimization of this problem is performed by a stochastic optimization method known as

simulated annealing (Metropolis et al. 1953). This optimization method is also used in

Benedetti et al. (2010) and Benedetti and Piersimoni (2012). This stochastic optimization

method is a metaheuristic that uses a Monte Carlo method to obtain an optimal solution by

generating a sequence of possible solutions that slowly converge to an optimal solution.

Simulated annealing has the useful property of being able to explore nonoptimal PSU

exchanges and sample size changes, allowing for a more exhaustive search of the feasible

region than deterministic optimization methods. This property allows for simulated

annealing to guarantee convergence of the sequence to an optimal solution given sufficient

run-time and precision.

Computational speed of the algorithm can be accelerated by starting with an initial

stratification and allocation close to the optimal stratification and allocation. Such a

stratification can be obtained through machine-learning methods such as K-means, and

optimal allocation can be provided though the popular multivariate optimal allocation

approach of Bethel (1986) with minor adjustments to ensure integer allocation and sample

size constraints. It should be noted that, given hard constraints, the initial starting point

must be in the feasible region; otherwise, single PSU exchanges are unlikely to result in a
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finite objective function. Furthermore, the proposed method can also be used for optimal

allocation, by running with only allocation changes. Additional hard and soft constraints

may also be added to the objective function. Such constraints include costs for PSU

collection, bounds on maximum stratum size, or spatial penalty functions.

An implementation of the proposed method has been written in the R Language (R Core

Team 2015), as an R package (Lisic 2016). This package supports second order moments

through per-PSU additive components and scaling. These second-order moment adjust-

ments allow for the adoption of linear or linearized relationships between administrative

variables and survey response. Furthermore, the additive per-PSU component can be used

to impose fixed per-PSU costs.

In this section the objective function is presented using administrative data with

weighting. Anticipated moments are introduced, followed by a discussion of the simulated

annealing algorithm.

2.1. Objective Function

Multivariate objective functions are vector valued functions that map from R J ! R,

where J is the length of the vector input. If the objective function is bounded over the

domain of the problem, then both a maximum and a minimum exist. Constrained objective

functions carve out a subset of the unbounded region known as the feasible region. In

methods to find optimal designs, the goal is to either minimize or to maximize an objective

function over this feasible region. Since all maximization problems can be written as

minimization problems by multiplying the objective function by negative one, only

minimization problems will be considered in this article.

For constrained objective functions, the feasible region may be empty, implying a

solution does not exist. This can be trivially seen when unrealistically small CV

constraints are imposed with fixed sample sizes. A way to avoid this issue is through

replacing hard constraints with soft constraints. Soft constraints can be violated without

reducing the feasible region, but at the expense of increasing the objective function. A

standard way of implementing soft objective functions is through the use of a penalty

function. Penalty functions impose a positive-valued penalty for violating a constraint.

The unpenalized objective function is a p-norm of the vector of CVs for a stratified survey

design with simple random sampling (SRS), SRS with replacement is shown for brevity,

k f ðXjI;hÞkp ¼ k f ðX�;1jI;hÞ; : : : ; f ðX�; jjI;hÞ; : : : ; f ðX�; JjI;hÞ
� �

kp; ð1Þ

where

xi ¼ the vector valued administrative variable of length J available for all PSUs,

identified with row i from matrix X;

kxikp ¼ a p-norm of vector xi equal to
PJ

j¼1 x
p
i;j

� �1=p

;

I ¼ a vector of strata assignment parameters;

h ¼ a vector of sample sizes for each stratum;

f ðX�;jjI ;hÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PH

h
h21

h
N2

h
S2

h;j

q

Tj
the CV for the j th characteristic, Tj ¼

PN
i¼1 xi;j and

S2
h;j ¼ var

PN
i¼1 xi;jII i¼hN21

h

� �

with h [ {1; : : : ;H} strata.
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It is assumed that the number of strata is known a priori, the goal is to estimate the

Horvitz-Thompson estimators for population totals, each element of X is nonnegative, and

there is at least one positive valued xi,j for each j. To avoid issues with dividing by zero, it

is also assumed that all strata have a minimum sample and population size of two. An

extension to probability proportional to size sampling has been developed, but only SRS

will be covered in this article.

If a set of quality constraints c are set through target CVs for J * # J administrative

variables with a fixed total sample size, then for a given set of strata the problem can be

written as

argminz;IkFf ðXjI;hÞkp ð2Þ

subject to

1. cj $ T21
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PH
h zhN2

hS2
h;j

q

; j [ {1; : : : ; J *};

2.
PH

h z21
h ¼ n;

3. z21
h is an integer;

4. each 0 , zh # 1=2.

where F is a square matrix of dimension J £ J with a diagonal equal to a vector of positive

valued penalty weights. The diagonal of penalty weights from F is identified as the vector

f; elements of f help prioritize reduction of the CVs, regardless of the target CVs being

met or not.

Soft constraints can be added to the objective function through the dot product of the

penalty weights l and penalty value vector gðXjc; I;hÞ:

argminz;IkFf ðXjI;hÞkp þ
j[ J **

X

ljg X�; jjI;h
� �

ð3Þ

where J ** is the set of administrative variables with soft constraints subject to the same

population and sample constraints in (2).

Each element of the penalty value vector gðXjI;hÞ is equal to the maximum of 0 or

f ðX�; jjI;hÞ2 cj. By this objective function, if all constraints are met, the problem is

simply minimizing the norm of the vector formed by the product of F and the vector of

CVs. It is possible to simplify (3) by removing the hard constraints and replacing them

with soft constraints using infinite valued penalty weights.

The choice of penalty weight vector l can be motivated by targeting specific variables

over others, or as a method to relate the administrative variables to the targeted response

variables Y. In the latter case, there are two potential solutions. The first would be to

consider weights proportional to the absolute value of the correlation between the

administrative variable and the response. This would favor a reduction in target CVs for

variables with stronger relationships between xj and yj over weaker relationships for

j [ {1; : : : ; J}. The second approach is the use of anticipated moments to explicitly model

the response in the objective function. For brevity, only the second approach is covered.

Categorical administrative variables can be used through binning or grouping PSUs into

disjoint sets identified by unique categorical values. This allows for the accommodation of

industry by occupational groupings in establishment surveys or census blocks in area

surveys.
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2.2. Anticipated Moments

In practice, we are interested in estimating the Horvitz-Thompson estimators of unknown

population characteristics that are correlated with an administrative variable. In Subsection

2.1, CV constraints placed on administrative variables serve as proxies for quality

constraints on the estimators for the unknown population characteristics. A more direct

approach is to place the CV constraints on the unknown population characteristic Y by an

assumed model. This is accomplished by substituting the moments of X in (3), namely Tj

and S2
h;j, of the objective function with the complimentary anticipated moments of Y.

This is the multivariate generalization of the univariate approach by Baillargeon and

Rivest (2009).

The exact form of the objective function is dependent on the choice of model for Y

given X. For many establishment surveys where yi is a scalar, the model

yi ¼ xibþ x
g
i e i; ð4Þ

E½e i� ¼ E½e i; e i 0 � ¼ 0 where (i – i0Þ, and E½e2
i � ¼ s2 can provide a reasonable model

(Kott et al. 2000). In the multivariate case considered, a generalization of this model for

vectored value yi is

yi ¼ xiBþ Viei; ð5Þ

E½ei� ¼ E½eT
i ei 0 � ¼ 0 where (i – i0), E½eT

i ei� ¼ S, and Vi is a symmetric matrix of

heteroscedastic weights for S.

To integrate the modeled response into the objective function, Anticipated Variance

(AV) is used. Anticipated variance is simply the expectation both using the model (Em) and

design, (Ed),

AVðT̂jÞ ¼ EmEd

h

T̂j 2 EmEd½T̂j�
i2

: ð6Þ

In the multivariate simple linear regression case with heteroscedastic variance, AV takes

the form

AVðT̂jÞ ¼
X

H

h¼1

1 2
nh

Nh

� �

N2
h

nh i[Uh

X

v2
i;js

2 þ
i[Uh

X

ðxiBj 2 �xhBjÞ
2

0

@

1

A: ð7Þ

Likewise, the Horvitz-Thompson estimator of the population total is,

EmEd½T̂j� ¼
X

N

i¼1

¼ xiBj ð8Þ

and the anticipated coefficient of variation (ACV) can be estimated as

dACVACVðT̂jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AVðT̂jÞ

q

XN

i¼1
xiBj

ð9Þ

Although not explored in this article, other models could be used in this framework.
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2.3. Simulated Annealing

To minimize the objective function (3), we only make changes to h and I. Since I is

binary, this optimization is a combinatorial optimization problem, where simulated

annealing is applicable. Simulated annealing is a stochastic optimization process that

minimizes an objective function (possibly with constraints), and avoids the pitfalls of

ending up in a local minima by admitting nonoptimal states. The general form of an

algorithm to perform this stochastic process on the objective function m optimized over

parameters u in the finite dimensional parameter space Q is detailed in Figure 1. Line five

is the key component of the simulated annealing algorithm, where nonoptimal states can

be accepted with nonzero probability r. This probability decreases as the number of

iterations increases, allowing for both early exploration and eventual convergence of the

simulated annealing sequence. The sequence t(l ) is called the cooling schedule and is a

nonincreasing function that governs how quickly the probability of accepting a nonoptimal

state decreases. Examples of t(l ) include (l þ 1)21 and (log(l þ 1))21. The algorithm

continues until either a fixed number of iterations L or threshold d are met.

An advantage that simulated annealing has over other searches of binary spaces as seen in

Benedetti et al. (2008) and Ballin and Barcaroli (2013) is the guaranteed theoretical

convergence to a global minima by the simple condition that there is a non-zero transition

probability between all possible states (Hajek 1988). This is not the case in Benedetti et al.

(2008) where strata splits are chosen not by global optimality but local optimality. Similarly,

genetic algorithms do not guarantee convergence to a global optimal solution in general.

One disadvantage of simulated annealing is its computational speed. Simulated

annealing can be quite slow relative to other methods such as tree based methods that can

partition a large number of sampling units at once. Similarly, genetic algorithms easily

admit parallel implementations as opposed to simulated annealing which has serial

dependence between each iteration (Henderson et al. 2003).

Simulated annealing applied to strata formation and allocation is straightforward and

detailed in Figure 2. Each new candidate state consists of a PSU exchange and a change in

allocation. The PSU exchange is generated by selecting a single PSU and a stratum to

move it to. The change in allocation is generated by increasing the sample allocation for a

randomly selected stratum by one, and decreasing the stratum allocation for another

stratum by one. The new stratum can be the same stratum in which the PSU resides,

Fig. 1. Pseudocode for the simulated annealing algorithm.
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likewise there may be no change in allocation. To help improve the chance of retaining

optimal allocation, multiple allocation exchanges are allowed per PSU change. In this

case, subsequent assignment changes are only accepted if they improve the proposed

objective function. In practice, the number of assignment changes required to maintain

near-optimal allocation in each iteration is small for nonhighly skewed populations. This is

due to a change in allocation dominating objective function changes when the sampling

fraction is small.

In this application only linear cooling functions will be used, tðl Þ ¼ aðlþ 1Þ21 where

a is a tunable parameter. Hard constraints on the objective function are handled by

generating states that satisfy the imposed constraints.

Although Benedetti et al. (2010) and Benedetti and Piersimoni (2012) also uses

simulated annealing, these methods differ in PSU selection. In the prior two papers, each

PSU is iteratively selected ensuring each member of the population is offered a chance to

move strata in a finite time-frame. The random search approach does not make this

guarantee. Instead, it is assumed that for a sufficient number of iterations all PSUs are

likely to be visited at least once. Furthermore, the introduction of nonuniform weighting in

PSU selection for random searches could greatly improve performance of the proposed

method by considering more likely PSU exchanges near stratum boundaries more

frequently than more-extreme valued PSUs.

The allocation approach is similar to the random search of Kozak (2006a), divergence

between the two methods occurs in both the use of penalized objective functions and the use

of simulated annealing to achieve a final allocation. Instead, Kozak (2006a) considers only a

sequence of allocations that are monotone increasing in objective function value. However,

both Kozak (2006b) and the proposed method do produce integer based allocations, unlike

Ballin and Barcaroli (2013) and Benedetti et al. (2008) that use Bethel (1986) allocation.

Where the final allocation from Bethel (1986) is rounded up to the nearest integer. This

rounding is generally nonoptimal, particularly when stratum sample sizes are small.

The performance of simulated annealing is governed by three primary factors

(Henderson et al. 2003): choice of cooling schedule, the shape of the objective function

surface, and the application or domain. The shape of the cooling schedule governs the

Fig. 2. Pseudocode for the simulated annealing algorithm applied to joint stratification and allocation.
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speed of convergence and the rate of accepting nonoptimal states. The literature on the

choice of cooling schedule is largely based on heuristics balancing run-time and

acceptable conditions (Romeo and Sangiovanni-Vincentelli 1991). Strenski and

Kirkpatrick (1991) provide some theoretical results for extremely small populations

with respect to optimal cooling schedules. The results of this analysis suggest that the

linear, used here, or geometric cooling schedules tend to out perform more complex

methods. Beyond the choice of cooling function, the only other controllable aspect of the

optimization is the objective function. Objective functions that have shallow local minima

tend to yield shorter run-times and better results due to the ease of escaping from

nonoptimal states. In the application to optimal stratification and allocation, the depth of

the local minima is a function of the shape of the function. Successful exchanges of PSUs

with large values relative to the other PSUs, such as large operations in highly skewed

populations, may cause changes in allocation. This can create local minima that are

difficult to escape, causing nonoptimal solutions (Hajek 1988).

Implementation of a high-dimensional simulated annealing algorithm for nontrivial

cases, however, is not so straightforward. The primary issues are:

. The computational cost of calculating the objective function;

. The likelihood of selecting a move that would reduce the objective function

(improving convergence speed).

Calculating the objective function directly is computationally challenging. An alternative

is to retain the S2
h;j component and to update a temporary candidate for S

2;*
h;j . Updates are

performed through the numerically stable online sample variance calculation algorithm

given by (Knuth 1997, 232), where online methods provide an iterative method to update

the variance as opposed to recalculation of the variance. Periodic recalculation of the

variances is provided to preserve numeric precision over a large number of updates, this

recalculation occurs every 1,000,000 accepted exchanges. The numeric stability of the

online algorithm was tested on simulated data using 1,000,000 iterations of the algorithm.

This result was compared against S2
h;j calculated directly from the current stratification.

The difference between these methods was less than e212. This error rate should be

acceptable for most applications. However, care should be taken for exceptionally large

populations. The application of a stable online method is also used by Benedetti et al.

(2008) and Ballin and Barcaroli (2013) without periodic recalculation of variances.

3. Simulated Examples

The effectiveness of the multivariate joint stratification and allocation method using

Simulated Annealing (SA) proposed in this article is compared to other methods in the

literature through two examples: A univariate example comparing SA to the univariate

joint stratification and allocation method of Lavallee-Hidiroglou (LH) using the R package

stratification (Baillargeon and Rivest 2011), and a multivariate example comparing SA to

the multivariate joint allocation and stratification using a genetic algorithm (GA) provided

in theR package SamplingStrata (Barcaroli et al. 2014). The tree based method in

Benedetti et al. (2008) was not considered due to lack of an available software package.

Each of the two examples model PSU response through one of two linear models.
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A homoscedastic linear model, and a heteroscedastic linear model where the variance is

proportional to administrative data.

The univariate comparison between SA and LH has four goals: (1) Provide a diagnostic

to ensure that SA has similar performance to known univariate optimal methods, as in

Barcaroli et al. (2014). (2) Provide empirical results with respect to penalty weight

selection. (3) Compare results using design variance and anticipated variance. (4) Show

improvements that can be obtained over univariate methods with the presence of

correlation. Similarly, the multivariate comparison between SA an GA has a two goals:

(1) Compare SA and GA with respect to statistical efficiency. (2) As in the univariate

example, to illustrate the advantage of using anticipated variance as a criterion for

optimization.

In both examples, a population of 5,000 PSUs is simulated from two sets of linear

models, a homoscedastic model and a heteroscedastic model. The homoscedastic model

provides a simple case where the variance of the response is independent of the

administrative data; the heteroscedastic model provides a more complex case where the

variance of the response is proportional to the administrative data. This later case is

common in many establishment surveys. In each set of linear models, each PSU, indexed

by i has a vector valued response yi ¼ {yi;1; yi;2; yi;3; yi;4; yi;5}, and each element of the

PSU is correlated with a vector zi ¼ {zi;1; zi;2} by a varying amount. Both elements of z1

and z2 are generated from a Chi-squared distribution with three degrees of freedom and

scaled by 50 to produce values largely in the range of 0 to 1,000. This distribution is

chosen to mimic the response of skewed populations common in establishment surveys.

The relationship between a response yi and zi is determined by a linear model. The linear

component of these models xi ¼ zibj j [ {1; : : : ; 5} will be used as an administrative

variable for both examples and models, where bj is assumed to be known. Examples and

model will instead vary on the objective functions used for SA and comparisons to

alternative methods.

In the homoscedastic linear model, the response vector for the i th observation, yi, is

generated from linear models of the form,

. yi;1 ¼ zib1 þ e i;1�z
g
1 with E½e2

i;1� ¼ s2
1,

. yi;p ¼ zibp þ e i;pkð�z1; �z2Þjj
g
2 with E½e2

i;p� ¼ s2
p for p [ {2; 3; 4}, and

. yi;5 ¼ zib5 þ e i;5�z5g with E½e2
i;5� ¼ s2

5.

Each model error e i ¼ {e i;1; e i;2; e i;3; e i;4; e i;5} is distributed N ð0;SÞ where S is a

diagonal matrix, and �zj is the mean of the variable zj over all PSUs. To avoid cases where

the response is less than zero, all negative values are truncated to zero. To provide similar

magnitude of the variances in the heteroscedastic model the variance is scaled by the mean

of norm of means from the vectors in Z raised to g ¼ 0:75.

The heteroscedastic model is similar in form and follows from the generalization of the

linear model found in Brewer (1963). Specifically,

. yi;1 ¼ zib1 þ e i;1z
g
i;1 with E½e2

i;1� ¼ s2
1,

. yi;p ¼ zibp þ e i;pkzijj
g
2 with E½e2

i;p� ¼ s2
p for p [ {2; 3; 4}, and

. yi;5 ¼ zib5 þ e5z
g
i;2 with E½e2

i;5� ¼ s2
5.
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Each model error e i is distributed N ð0;SÞ where S is the identity matrix and g is also set

to 0.75. This value of g was described by Kott et al. (2000) to be appropriate for many

establishment surveys.

In both the homoscedastic and heteroscedastic models b is set to allow for different

levels of correlation: b1 and b5 are fixed to the vectors ð1; 0Þ and ð0; 1Þ respectfully, and bp

is set at three different levels ð0:75; 0:25Þ, ð0:5; 0:5Þ, and ð0:25; 0:75Þ respectfully for

p [ {2; 3; 4}. ACV constraints for y in both models are set at 0:04 for all variables. All

calculations for SA use f set to one for all variables, 50,000 PSU exchanges with ten

iterations of optimal allocation per exchange, and cooling schedule ðlþ 1Þ21 where l is the

current iteration. For simplicity, only soft constraints are used and are specified in each

example. Details on the objective functions used in GA and SA, as well as their associated

administrative functions are provided in Table 1.

3.1. Univariate Example

In this example, we consider a univariate approach to multivariate response using the LH

joint allocation and stratification method, as described in Baillargeon and Rivest (2009),

and compare it to the multivariate approach of SA. In this example, LH will be used as a

diagnostic measure to ensure that SA can obtain an optimal result in a simple setting,

identify performance characteristics using targeted penalty weights and no penalty

weights, identify the importance of using anticipated variance, and finally to see if SA can

further improve the results of the univariate allocation by finding an allocation that meets

the univariate CV target while simultaneously improving the CVs of nontargeted

administrative variables. Results of this example can be found in Tables 2 and 3.

Before examining the results of this comparison it is useful to consider some properties of

LH relative to SA. LH can use either design variances or anticipated variance to determine

the partitioning of the population into a fixed number of strata either with CV constraints

without a fixed sample size, or with a fixed sample size and without CV constraints. In this

example, we will be using the former case to set an initial sample size for SA.

To form the strata with fixed CV targets, LH uses an iterative algorithm. Since LH only

works on univariate administrative data, strata can be identified as a set of disjoint

intervals of the real line. Two approaches to find the boundaries of these intervals are

found in Baillargeon and Rivest (2011): a model based approach used in the original

Lavallée and Hidiroglou (1988) paper, and a random search method proposed in Kozak

(2004). Due to the excellent performance characteristics without model assumptions, the

random search method was chosen for this example.

Table 1. Objective functions used in the univariate and multivariate examples.

Method Second moment Objective function Administrative data

LH Em S2
h;1

h i

Neyman x ¼ Zb1

GA S2
h; j Bethel X ¼ Zb

SA S2
h; j Equation (3) X ¼ Zb

SA (ACV) Em S2
h; j

h i

Equation (3) X ¼ Zb
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The random search approach starts with a set of initial intervals. Given these intervals,

interval boundaries are perturbed at each iteration. This perturbation is performed by

sorting the PSUs by administrative variable values and either moving the boundary

forward or backward a random number of places in this sorted order. If the perturbed set of

strata is more-optimal than the prior set per an objective function, then the perturbed set of

strata is taken; otherwise, the perturbed set is discarded. The algorithm terminates when

there is no change in stratification.

The objective function used in LH is simply Neyman allocation with a CV constraint:

nh ¼ n

ffiffiffiffiffiffiffiffiffiffi

N2
hS2

h

q

XH

k¼1

ffiffiffiffiffiffiffiffiffiffi

N2
kS2

k

q s:t: f XjI;h
� �

# c ð10Þ

In this example, c ¼ c1 is the univariate target, S2
h ¼ S2

h;1, and f xjI;h
� �

¼ is the coefficient

of variance of the administrative data x ¼ z1b1. S2
h can be substituted with the expected

value of S2
h with an assumed model to provide an approximation to optimization with the

anticipated variance

Em S2
h

	 


¼
1

Nh 2 1 i[Uh

X

v2
i s

2 þ
i[Uh

X

ðzi;1b1 2 �z1;hb1Þ
2

0

@

1

A ð11Þ

where vi ¼ �z1 in the homoscedastic case and zi in the heteroscedastic case. All calculations

are performed using the R package stratification (see Baillargeon and Rivest 2011).

Results for SA are calculated with four possible combinations of objective functions and

penalty weighting. The two configurations of the objective function are identified in

Tables 2 and 3 as “SA” and “SA (ACV)” with objective function specification identified

in Table 1. The first configuration “SA” uses design variance in the objective function

(3) with the administrative variables X ¼ Zb. The second configuration “SA (ACV)”

uses anticipated variance in the objective function (3) using the homoscedastic or

heteroscedastic model. Targeted penalty weighting towards y1 is used to provide a

comparable result to LH, while the nontargeted weighting is used to compare the changes

in attained ACV due to targeting a specific variable.

Results in ACV for the homoscedastic and heteroscedastic models are respectively

provided in Tables 2 and 3. In both cases, LH chose six total strata and total sample size

n ¼ 23 in the homoscedastic case and n ¼ 65 in the heteroscedastic case. All results are

provided in anticipated coefficients of variation.

In addressing the goals of this example, SA (ACV) provides similar results to LH in that

both methods attain the desired target CV for the same sample size in both homoscedastic

and heteroscedastic cases. However, LH was able to reduce the ACV of y1 further below

the target of SA (ACV). The benefit of this further reduction is debatable, particularly if

there is a benefit from reducing the ACV of other characteristics of interest in a survey.

When there are other characteristics of interest, as in y2 through y5, SA (ACV) clearly

outperforms LH.

With respect to penalty weight selection, the targeted weighting clearly had an effect on

the result. This effect can be seen through the reduction of SA (ACV) and SA in the
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direction of y1. The no target weighting case shows the degree of change that occurs by

targeting a particular variable. As would be assumed, the amount of change in attained

ACVs is associated with the degree of correlation with the targeted variable. Variables

with high positive correlation with y1 have ACVs that increase the least when y1 is targeted

(e.g., y2); variables such as y5 tend to have their ACVs increase the most.

The heteroscedastic case is important, in that strata containing larger values of the

administrative variable will have higher model variance. Therefore, the impact of ignoring

the model variance is more extreme than only using the design variance. This can clearly

be seen in the results of SA compared to those of LH and SA (ACV). The later two results

that use anticipated variance tend to consistently meet targets in both cases, while SA

using just the design variance almost hits the target using the homoscedastic model, but

considerably misses the target in the heteroscedastic case.

3.2. Multivariate Example

In the multivariate example, we reuse the prior population in the univariate example but

apply the joint optimal allocation and stratification methods GA and SA. The goal of this

example is to compare the statistical efficiency of the resulting survey designs using GA

and SA, as well as revisit the topic of using ACVs in optimization.

Because GA as presented in Ballin and Barcaroli (2013) does not support targeting

ACVs, the algorithm uses X ¼ Zb as known administrative data. As in the univariate

example, the results identified as SA are also fit in the same manner; SA (ACV) uses

anticipated variance in the objective function. Results are found in Tables 4 and 5. To

illustrate the importance of specifying a design using ACVs, the stratifications attained for

GA and SA are presented both using attained CVs from the administrative data and ACVs.

It is important to note that optimization using design variances are identical in the

homogenous and heterogenous case, as they ignore the model variance. Therefore attained

CVs are only listed in Table 4.

To provide comparable results between GA and SA the optimal sample size and number

of strata from GA are used for the SA based optimizations. In this example, the optimal

sample size using GA is 193 and the total number of strata is five.

Individual PSUs are used for atomic strata for GA, and minor performance tuning was

performed. Tuning proved problematic due to the long run-time of GA, averaging two

hours and 35 minutes per run. Run-times of SA, on the other hand, averaged 25 seconds for

both the CV and ACV optimizations.

In both the homoscedastic and heteroscedastic cases, GA was less efficient than SA

when only considering CV targets, but produced more robust stratifications. This

robustness appears to be a result of attaining a local minima, instead of a feature of the GA

algorithm. As in the univariate example, SA (ACV) provided uniformly better results with

respect to attained ACV than SA and GA. GA did do reasonably well in the homoscedastic

case, meeting all CV targets. With ACV evaluation criteria, GA met one ACV target for

both the homoscedastic and heteroscedastic cases, but did not suffer from larger departures

from the target as in the case of SA.

The result for SA demonstrate the importance of using ACVs in an objective function.

In this result, there was considerable reduction in CV. However, this reduction in CV was
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done at the expense of ACV in both the homoscedastic and heteroscedastic cases, where

the attained ACV was over double the attained CV. This is an over fitting and model

misspecification problem, where assuming the control data as the response yielded a

nondesirable outcome. In practice, care should be taken to test multiple potential response

models on a potential stratification.

4. June Agricultural Survey

Application of the simulated annealing based multivariate optimal stratification and

allocation method is examined in the proposed redesign of the United States Department

of Agriculture (USDA) National Agricultural Statistics Service’s (NASS) June Agri-

cultural Survey (JAS). In this section, JAS and the proposed redesign are introduced along

with a discussion of administrative variables and implementation details. A proxy of JAS

provides a comparable design using the same administrative data and PSUs. This proxy is

then compared to the simulated annealing based stratification and allocation method in this

article, followed by a discussion of the results.

JAS is a two-stage annual area survey of the continental United States, producing

estimates of acreage devoted to various agricultural land uses and other spatially

associated estimates (Davies 2009). JAS is administered by NASS, with data collected by

The National Association of State Departments of Agriculture (NASDA) employees. The

first stage of JAS is a stratified simple random sample design with replacement, where

strata are formed by grouping PSUs based on the percentage of cultivated acres within

each PSU. When needed, specialty strata are used to target rare commodities or

demographic groups. Each PSU in the first stage is a contiguous one-to-eight square mile

region of land manually delineated along permanent geographic features such as roads.

Cultivated acreage for each PSU is calculated using NASS’s Cropland Data Layer (CDL),

a remotely-sensed administrative data set of land-cover and land-use (Boryan et al. 2011).

PSUs are sampled using systematic sampling of a spatial index, allowing for a spatially

well distributed sample. In the second stage, selected PSUs are partitioned into smaller

areas of land known as segments, serving as Secondary Sampling Units (SSU)s. Segments

are manually formed by the delineation of PSUs into approximately one-square-mile

contiguous regions of high agricultural production; larger segments can be drawn in areas

with no-to-low agricultural activity. A single segment is selected randomly from each

PSU, and all land within the selected segment is fully enumerated. Nonresponse is handled

through observation, remote sensing, or subject matter experts. Allocation in JAS is

performed by Bethel (1986) using historic data with equal cost per PSU.

To lower design costs and to allow for estimation of year-to-year change JAS is

replicated. A set of replicates are created every five years and all of these replicates are

Table 5. ACVs for simulated population using the heteroscedastic model.

Method l1 l2 l3 l4 l5 ACVð y1Þ ACVð y2Þ ACVð y3Þ ACVð y4Þ ACVð y5Þ kACVð yÞk2

GA 0.0451 0.0423 0.0397 0.0422 0.0451 0.0960
SA 0 0 0 0 0 0.0673 0.0590 0.0544 0.0584 0.0660 0.1369
SA (ACV) 0 0 0 0 0 0.0344 0.0346 0.0328 0.0344 0.0342 0.0762
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rotated into the sample one year at a time. Each replicate is collected for approximately

five years, and then rotated out of the sample.

National level target CVs are chosen by NASS to ensure quality estimates. The CV targets

are predictive in nature, as they are set for the estimates, not the administrative data. Target

CVs are considered satisfied if on-average the attained CVs are less than the target CVs.

This comparison occurs at the level of precision of the target CV. Target CVs are typically

met each year, but occasionally some targets cannot be attained for a given sample size.

Iowa State in cooperation with NASS, considered an update of the current JAS design

(Zimmer et al. 2013). In this proposed redesign, the two-stage design is replaced by a

single-stage design with optimal stratification based on areal units of one-square-mile in

size. These PSUs, known as sections, are part of a permanent area frame based on the

Public Land Survey System (PLSS). This permanent frame greatly reduces survey cost, as

the current JAS requires the labor intensive manual delineation of PSUs and SSUs.

Stratification of the proposed redesign’s area frame is based on the optimal joint allocation

and stratification algorithm described in this article. Like JAS, this design is calculated

using equal PSU costs. Spatial balance is attained by using the local pivotal method in

Grafström et al. (2012) and implemented using the BalancedSampling R package

(Grafström and Lisic 2016). Unfortunately, the current implementation of the simulated

annealing procedure only supports the Sen-Yates-Grundy variance estimates (Sen 1953),

over estimating the variance when using locally balanced sampling; instead, simple

random sampling with replacement is used as an upper bound for the variance with an

assumptions of spatial clustering (Grafström et al. 2012).

As in the current JAS design, remotely sensed CDL data is used as administrative data.

The CDL has accuracy above 90% for corn and soybeans as well as above 80% for winter

and spring wheat for all years used in this research (2008–2015). This makes the CDL a

fairly useful tool in evaluating surveys, unfortunately, linear models of section acreage are

not particularly good at predicting future land use. This is due to the agricultural practice

of crop rotations, where individual fields within a section tend to follow crop specific

sequences to maximize yield, mitigate pests, and reduce erosion. Instead of directly

modeling these crop sequences, an assumption is made that sequences observed within a

period of time are likely to re-occur within a future window of time. Using this

assumption, we use the prior four years to predict the next four years. This is similar to the

current JAS practice where a single stratification is used for multiple years.

Due to lack of correlation between nonacreage based estimators, such as number of

farms and livestock, with available administrative data, the joint optimal allocation and

stratification method is only used for acreage based estimates. To ensure that quality

constraints are met for nonacreage estimators, prior JAS response is used to calculate

historical variances. These historical variances are used to ensure that the total sample size

is of sufficient size to meet the imposed quality constraints. To check for any potential

deleterious effects caused by unforeseen relationships with the nonacreage responses and

the optimal stratification and allocation, quality constraints are checked by post stratifying

geo-referenced, but not complete, historical data by the new design.

In this article, multivariate stratification and allocation are only performed on the PSUs

of the redesign (sections). The original JAS design is proxied by a set of univariate bounds

based on cultivated acres (Table 6). A proxy is used, instead of the original JAS design,
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due to the intractability of modeling the manual segmentation of secondary segmentation

units. For the purpose of evaluation, only results for South Dakota were considered with

the acreages of interest including corn, soybeans, winter wheat, spring wheat, and

cultivated acres. South Dakota provides a reasonable use case for multivariate allocation

with a large number of crop types and large frame of close to 80,000 sections.

National level target CVs from JAS cannot be applied to a single state; therefore,

historical JAS CVs (2008–2011) for South Dakota are used as CV targets. Multiple years

of land use are used to form strata to account for year-to-year land cover variability. In this

example 2008–2011 are used to form the stratification, and 2012–2015 are used to

evaluate future land use. The CDL variables used for stratification are cultivated, corn,

soybeans, winter wheat, and spring wheat acreages. These variables were used for all

segments in the population, and optimization was applied to each variable and year

combination from 2008–2011 simultaneously treating each combination as a separate

variable. The algorithm is run for 5,000,000 iterations with five sample size optimization

steps per allocation. Initial stratification is performed by K-means to accelerate

convergence. The penalty weights w and l were set to 1 and 1,000 respectively for each

combination of year and land cover. The total run-time using this parameterization using

the proposed method is 30 minutes. In both the univariate and the multivariate cases all

80,000 segments were assigned to five strata. Allocation for the JAS strata is performed by

the multivariate allocation method described in (Bethel 1986). The total sample size from

this allocation is used for the simulated annealing based approach. The highly correlated

administrative data is used as a proxy for the true response. The resulting CVs from both

methods provided in Table 8 for the multivariate method and Table 7 for the method

approximating the current JAS.

Table 6. Approximation of JAS stratification.

Stratum Definition

11 75% or more cultivated land
20 50–74% cultivated land
30 15–49% cultivated land
40 1–14% cultivated land
50 0% cultivated land

Table 7. CVs for specified variables based on an approximate JAS stratification and allocation of South Dakota.

Cultivated Corn Soybeans Winter wheat Spring wheat

Target 0.01 0.05 0.05 0.19 0.16

2008 0.0162 0.0470 0.0524 0.1078 0.1129
2009 0.0153 0.0453 0.0510 0.1148 0.1153
2010 0.0168 0.0455 0.0484 0.1239 0.1151
2011 0.0137 0.0410 0.0483 0.1139 0.1275

2012 0.0147 0.0395 0.0477 0.1378 0.1389
2013 0.0158 0.0409 0.0500 0.1546 0.1404
2014 0.0167 0.0428 0.0481 0.1514 0.1327
2015 0.0168 0.0457 0.0488 0.1606 0.1310
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The results of this empirical example showed a general improvement in the CVs for the

multivariate method relative to the univariate method in areas where the CV targets were

difficult to attain. Considering JAS rounding rules, this improvement allows the

multivariate method to meet the target CVs of all crops both on average (2012–2015) and

per-year. The rounded CV targets in the univariate case are generally met, with the

exception of total cultivated acreage that was only met in 2012. However, the rounding

rule tends to favor the multivariate method over stating its performance relative to the

univariate method.

For both methods, the most difficult to attain target CV is total cultivated acreage, where

the multivariate method averaged a 213.78% decrease in CV relative to the univariate

method in the evaluation years (2012–2015). The univariate method has lower CVs for

other crops within the evaluation years, but most of these CVs for other crops are well

below the target CVs for both methods. Other results included indications of model

misspecification in the multivariate method through the general increase in attained CVs

for the predicted years.

5. Discussion

In this article, a method to construct optimal multivariate stratified designs for an arbitrary,

but fixed, number of self-representing strata was presented. This method admits a

combination of hard and soft constraints, where soft constraints are handled using a

penalized objective function and hard constraints are handled through traditional nonlinear

programming constraints. Optimization of the objective function is performed using

simulated annealing, by moving individual PSUs between strata. Simultaneous allocation

is provided by also considering changes in the allocation as part of the simulated annealing

algorithm. Penalized weighting in the objective function allowed for flexibility in design

specification, allowing for penalty weights to target specific commodities based on

preference or correlation with administrative variables. The use of anticipated variance in

the objective function was shown to account for uncertainty in the relationship between

administrative data and targeted estimates, and opens the door to modeling nonsampling

error. Applications to both a simulated population and the proposed redesign of JAS were

provided. Important issues with the proposed method, beyond the scope of this research,

include investigations of nonsampling error, handling poor quality administrative data,

model misspecification when using a model-assisted objective function, and improve-

ments to computational speed. Future application specific research with respect to the JAS

redesign, and potentially other spatial surveys, includes improvements to the objective

function to reflect better the variance using spatially balanced sampling methods and the

development of better prediction models for agricultural land use for individual PSUs.

In application, the proposed method was shown to be computationally tractable for

reasonably large populations and more flexible than existing methods through the use of

soft constraints and the use of anticipated variance in the objective function. The two

examples are chosen to show utility of the method in existing establishment and area

surveys. Application to more complex designs has not been considered in this research, but

the model-assisted objective function could be extended to account for subsampling and

other traits of complex designs. Application to more complicated designs requiring
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optimization of multiple samples may also be possible for paneled or split-questionnaire

designs as in Ioannidis et al. (2016).

In a univariate example, both homoscedastic and heteroscedastic populations are

investigated to describe establishment surveys with different dispersion patterns. In both

the anticipated moments-based approach, SA performed better than the existing

anticipated moments-based LH approach. Provided that the relationship between the

administrative variables and the target variables are reasonably well known, the proposed

method should provide improvements over LH in multivariate scenarios.

In the multivariate example, the proposed method greatly out-performs the genetic

algorithm approach in optimization. Improvements to the genetic algorithm-based

approach, such as the adoption of anticipated moments in the objective function and finer

tuning of parameters, may provide parity between the results. Furthermore, model

misspecification, and prospective use of related goodness-of-fit diagnostics should be

explored for both methods. However, the proposed method may be more applicable for

larger populations due to the long run-time of the genetic algorithm relative to the

proposed method.

In the JAS redesign, the proposed method met or exceeded the attained CVs of the JAS

approximation under JAS rounding rules, and in general had lower target CVs for hard-to-

attain targets, providing a strong argument for the use of multivariate designs onthis

survey. This method was also shown to be computationally feasible for population sizes of

80,000 with a run-time of thirty minutes: computation for larger populations should be

possible at the expense of longer run-times. The computational speed and stability of the

proposed method improves on existing methods through the use of online-variance

calculation with periodic recalculation of variances. The use of prior information, as in the

case of JAS may not be possible for other area surveys, nor advisable if the underlying

stochastic process changes over time.

The applicability to other area surveys is largely dependent on the variance estimation

method employed, number of PSUs, availability of administrative data, and the ability to

model individual PSUs. The current objective function only considers SRS with or without

replacement, not accounting for increases in efficiency that could be attained using more

advanced sampling methods. The application of the proposed method to a population of

280,000 PSUs has been explored by Lisic et al. (2015), but general applicability to surveys

with considerably larger populations has not been explored. Modeling individual PSUs is

not needed to apply the proposed method to a survey using administrative data based

quality constraints. However, if quality constraints are placed on the estimates either

correlation-based weights or a model should be introduced. The correlation-based weights

may be useful under linear relationships. However, their use for more complicated

relationships is uncertain. The applicability in the case of a model would depend on how

well the model describes the uncertainty in the relationship between the administrative

data and the response.

Although not explored in this research, this anticipated moment approach allows

incorporation of estimates of nonsampling errors such as assumed nonresponse in the

response variable. This feature can already be found in (Baillargeon and Rivest 2014) for

univariate optimal allocation and stratification. Correlation-based penalty weighting can

also incorporate nonsampling error within the correlation function. However, this
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approach may be limited to cases when the relationships between the administrative

variables and the survey response is fairly linear.

A similar problem addressed within the context of the JAS redesign, but not in general is

the handling of poor quality administrative variables. This can occur when only a subset of

the frame has complete records, such as using prior survey data or incomplete databases.

Provided that an accurate measure of uncertainty can be obtained for each observation, the

anticipated variance framework can provide an optimal allocation and stratification.

However, this question is beyond the scope of this research in this article.

Another interesting, but unexplored, area of research within this article is the

importance of model specification for the anticipated moment approach. In the simulated

populations, it is assumed that the model is known. In application, this is an unlikely case.

Therefore, future analysis of the effect of model misspecification, and prospective use of

related goodness-of-fit diagnostics should be explored more thoroughly.

Further acceleration of the proposed method may extend the applicability to larger

populations. Two ways to improve the computational speed of the presented method for

larger populations is through selecting PSUs near stratum boundaries with greater

probability and exchanging multiple PSUs. These PSUs are more likely to be accepted

during exchanges, allowing for faster convergence of the algorithm. The current

implementation already supports the use of static weights to increase the probability that a

particular PSU is selected. However, finding the ideal properties of these weights has not

been considered yet. For these large population sizes moving individual PSUs between

strata may result in infeasible run-time. One solution to this problem is by exchanging

clusters of PSUs or partitioning strata by identifying useful hyperplanes in the space of

administrative variables.
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