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When adjusting for unit nonresponse in a survey, it is common to assume that the
response/nonresponse mechanism is a function of variables known either for the entire sample
before unit response or at the aggregate level for the frame or population. Often, however,
some of the variables governing the response/nonresponse mechanism can only be proxied
by variables on the frame while they are measured (more) accurately on the survey itself. For
example, an address-based sampling frame may contain area-level estimates for the median
annual income and the fraction home ownership in a Census block group, while a household’s
annual income category and ownership status are reported on the survey itself for the housing
units responding to the survey. A relatively new calibration-weighting technique allows
a statistician to calibrate the sample using proxy variables while assuming the response/
nonresponse mechanism is a function of the analogous survey variables. We will demonstrate
how this can be done with data from the Residential Energy Consumption Survey National
Pilot, a nationally representative web-and-mail survey of American households sponsored by
the U.S. Energy Information Administration.
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1. Introduction

Calibration weighting is a useful tool for treating unit nonresponse in a survey. It can

implicitly estimate the probability of response given a known form of the response model.

Moreover, the resulting weights tend to more efficient than the weights produced using

maximum-likelihood methods to estimate the response model (Kim and Riddles 2012).

Deville (2000) has shown how calibration weighting can be used to treat unit (element-

level) nonresponse that can be either missing at random (MAR) or not missing at random

(NMAR). The former means that nonresponse is a function entirely of variables with either

known population totals or known values for the entire sample, while the latter allows

nonresponse to be at least partially a function of variables known only for responding

sampled elements. The calibration-weighting framework in Särndal and Lundström (2005)

also allows nonresponse to be not missing at random.

Unfortunately, there is no statistical way to determine whether or not nonrespondents

are missing at random. Molenberghs et al. (2008) show that any data set fit by a model
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assuming nonrespondents are not missing at random could also be fit by a model assuming

nonrespondents are missing at random. As a result, many have argued that techniques like

Deville’s are best suited for sensitivity analyses. National Research Council (2010; 48, 59)

discusses the limitations of what it calls the “inverse probability weighting” method for

handling not-at-random missingness.

There are some situations, however, where unit nonresponse can logically be inferred

to be not missing at random. In a survey of housing units (HUs), for example, unit

nonresponse may be a function of whether or not the HU is owned by the household

residing in it and by the annual income of that household. This information can be

collected on the survey itself (assuming no item nonresponse), but can only be proxied for

the sample as a whole. Such proxies are useful because Deville’s method requires that

there be variables on which to calibrate the respondent sample so that the weighted sum of

those variables among respondents equal a known population total or a weighted total

computed from the full sample (including nonrespondents). A potential source for proxy

variables in the United States is the American Community Survey, which makes available

estimates at the Census-block-group level of the average median annual income and the

fraction of owned HUs.

Using data from the 2015 national pilot of the (United States) Residential Energy

Consumption Survey (RECS) which was conducted by mail and web, we demonstrate how

one can compare results of calibration weighting assuming nonresponse is missing at

random using proxy variables available on the frame as response model variables with

results of calibration weighting where survey variables, more logically related to response

than their proxies, replace the proxy variables in the response model, showing in the

process how to choose which survey variables to include in the response model.

Section 2 will review the underlying theory of calibration weighting assuming (for

simplicity) a logistic response function. Section 3 will describe the RECS National Pilot

and how it is being weighted to compensate for nonresponse assuming that unit

respondents are missing at random. Section 4 compare some estimates and their estimated

standard errors using the National-Pilot method and their alternatives that assume

nonresponse is not missing at random. Section 5 offers some concluding remarks.

2. An Overview of Calibration Weighting Assuming a Logistic Response Function

To simplify matters, let us assume that there is only one type of unit nonresponse, and it

takes place at the element level, denoted by the subscript k. Moreover, there is no coverage

problems with the sampling frame nor is there any item nonresponse among element

respondents.

In this article, we follow the quasi-randomization approach in Chang and Kott (2008)

and treat unit response as an additional phase of probability sampling, where the response

probabilities need to be estimated from the data. Although Kott and Chang (2010) showed

that the methods they had proposed have good prediction-model properties, we will not

discuss those here.

Suppose the unit (element) response mechanism can be represented by an independent

logistic function that depends on a vector of values for each element. Letting rk be the

probability that element k responds, and xk the vector of (response) model variables
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governing that probability, which includes unity or the equivalent (i.e., a linear

combination of the components of xk is 1), we have

rk ¼ r xT
k g

� �
¼ 1= 1þ exp xT

k g
� �� �

; ð1Þ

for some unknown vector g.

Calibration weighting begins with the calibration equation:

X

R

dk 1þ exp xT
k g

� �� �
zk ¼ Tz ð2Þ

where R denotes the respondent sample, dk the design (initial sampling) weight of element

k, zk a vector of calibration variables, each having either a known population total or a total

that can be estimated in the full sample (including the unit nonrespondents), Tz the vector

of (estimated) totals for the components of zk. Finally, g is a consistent estimator for

g under mild conditions, determined by solving for it in calibration equation (2) using

Newton’s method (repeated linearizations).

In practice, a g exists when one can be found satisfying (2). Moreover, that g is

consistent for survey designs under which the expansion estimator for Tz in the absense of

nonresponse is consistent. The appendices in Chang and Kott (2008) lay out the theoretical

conditions for g to exist and be consistent. A more lucid account of the theory

underpinning this section can be found in Kott (2014).

The calibration weight for element k resulting from the solution of Equation (2) is

wk ¼ dka xT
k g

� �
¼ dk 1þ exp xT

k g
� �� �

:

The expression a xT
k g

� �
is called the weight-adjustment function because it converts the

design weight dk into the nonresponse-adjusted or calibration weight wk. The estimated

total of a survey variable y using calibration weights is ty ¼
P

R wkyk.

In most applications, the components of calibration vector zk are assumed to coincide

with the components of the model vector xk. This means unit nonrespondents are assumed

to be missing at random. When that is the case, the calibration equation (2) will almost

always have a solution so long as unit nonresponse is truly a logistic function of the

components of xk. When the components of zk and xk do not coincide, the calibration

equation may not have a solution, especially if a component of xk is linearly independent

of all the components of zk.

Chang and Kott (2008) generalized the notion of calibration weighting to allow more

calibration variables than model variables, but Kott and Liao (2017) maintained that a

prudent approach would be to include in zk all the components of xk for which population

totals or full-sample estimates are known. The rest they called shadow variables, which

they suggested should be proxies for the model-only variables in xk that could not

themselves be calibration variables in zk.

Some variables in the RECS National Pilot sample, such as an indicator of whether (or

not) an HU k is in an urban area, can be in both the model vector and the calibration vector,

while other variables, such as home ownership (yes or no), are model-only variables in xk.

At the same time, a reasonable proxy for each model-only variable, like the fraction of

homes owned in its Census block group, can be a shadow variable in zk.
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When the calibration equation has a solution, it is not hard to show that an

asymptotically unbiased estimator for the variance of g under mild conditions is

Vg ¼ F var
X

R

dk 1þ exp xT
k g

� �� �
zkjTz

( )

FT ; ð3Þ

where F ¼
P

R dkexp xT
k g

� �� �
zkxT

k �
21, and var{qjTz} is an estimator of the variance-

covariance matrix for q when q is viewed as an estimator for Tz. To compute it, one treats

pk ¼ 1= 1þ exp xT
k g

� �� �
as if it equaled rk in Equation (1).

An asymptotically unbiased estimator for the quasi-probability variance of ty ¼P
R wkyk (again under mild conditions) is

vy ¼ v
X

S

dk zT
k bþ a xT

k g
� �

ek

� �
( )

ð4Þ

where ek 5 yk 2 zT
k b, b ¼

P
R dja

0 xT
j g

� �
xjz

T
j

h i21P
R dja

0 xT
j g

� �
xjyj, and a xT

k g
� �

¼

1þ exp xT
k g

� �� �
when k [ R and 0 otherwise is treated as a constant within the

probability-sampling variance estimator v{.}. For the variance of my ¼
P

R wkyk=
P

R wk,

replace yk by ð yk 2 myÞ=
P

R wj.

It is easy to see that due to calibration
P

R wkyk 2
P

S dkyk ¼
P

R wkek (which also

provides a heuristic justification for Equation (4)). We thus have the following estimate for

the increase in quasi-probability variance due to nonresponse and nonresponse adjustment:

var
X

R

dk 1þ exp xT
k g

� �� �
ykj
X

S

dkyk

( )

¼
X

R

d2
k 1=p2

k

� �
ð1 2 pkÞe

2
k

¼
X

R

d2
k 1þ exp xT

k g
� �� �

exp xT
k g

� �
e2

k ; ð5Þ

The estimate assumes the probabilities of element response are independent of each other.

Again, the reader can consult Kott (2014) for proofs and details.

3. The RECS National Pilot

The RECS National Pilot was an attempt to convert what historically has been an in-

person interview survey into one conducted by web and mail. More information on it can

be found elsewhere (Berry and O’Brien 2016). For our purposes, the RECS National Pilot

(hereafter the “National Pilot”) used four randomly-assigned protocols and two randomly-

assigned incentive levels in data collection from a stratified, two-stage sample of 9,650

dwelling units drawn using an address-based sampling frame with mail invitation and up

to six mailings. The protocols were, 1, web only, 2, choice of web or mail, 3, choice of web

or mail but with an added USD 10 incentive to respond via web, and, 4, web in the first

mailing followed by a choice in subsequent mailings. The two incentive levels both

provided the sampled HU USD 5 initially. One provided an extra USD 10 upon

completion while the other provided an extra USD 20. There was a shortened mail follow-

up survey (NRFU) for nonrespondents, but that does not concern us here – except in a
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design-weight adjustment to be described shortly – nor does the poststratification

designed to capture HUs not on the address-based sampling frame.

Two issues with the enumerations of the National Pilot do have an impact on our

analysis. Not all HUs in the sampling frame were occupied, and some were occupied but

not primary residents. Only data from primary residents were to be used in making

National-Pilot estimates.

A latent-variable model (Biemer et al. 2016) has been used to estimate the probability

that a sampled HU was occupied based on frame characteristics, the disposition of the first

three mailings, and whether they responded to the survey. Those estimates have been

incorporated into the design weights (the dk in Equation (2)). Also incorporated into the

design weights are the inverse of an estimated probability of a non-vacant HU being a

primary residence. All responding primary residences had an estimated probability of 1,

and all HU determined not to be primary residences a probability of 0. The rest have been

assigned a probability of being a primary residence based on a logistic regression

conducted among partially or fully responding HUs to either the National Pilot or its

NRFU survey for which primary residence status could be determined.

Roughly 40% of eligible HUs responded to the RECS National Pilot. After investigating

a longer list of candidate variables, the logistic model used to fit a response model in the

National Pilot contains indicators for 17 geographic area (groups of states), indicators

for the four protocols, indicators for the two incentive levels, an urbanicity indicator, an

indicator of whether the HU is a single-family dwelling units from the frame, the fraction

of HUs owned in the Census block group (CBG) containing the HU, and the fraction of

HUs in its CBG with annual incomes less than USD 60,000. The latter two are estimated

from the 2010 American Community Survey.

The WTADJUST procedure in SUDAANw (Research Triangle Institute 2012) has been

used to compute the calibration weights for the National Pilot. The procedure removes the

extraneous calibration variables that would cause a singularity in matrix inversion (e.g.,

because the four protocol levels and two incentive levels cannot all define non-singular

calibration variables).

WTADJUST has also been used to choose the variables for the National Pilot’s missing-

at-random logistic response model, which assumed the components of xk in Equations (1)

and (2) were the same as those in zk. WTADJUST fits a logistic model very much like

SUDAAN’s pseudo-maximum-likelihood logistic regression procedure (RLOGIST) but

with a different estimating equation (WTADJUST solves for g in Equation (2) rather than

in
P

R dkzk ¼
P

S dk= 1þ exp 2zT
k g

� �� �� 	
zk). The logistic functional form is, in fact, only

a special case of the weight-adjustment functions fit by WTADJUST, but we restrict our

attention to that form here until the concluding section.

4. Converting Proxy Variables into Model-Only Variables

The response model fit for the National Pilot contains three model variables that logic

suggests would be more reasonably replaced by survey variables: the frame indicator for

a single-family dwelling unit, the CBG fraction of owned HUs, and the CBG fraction of

HUs with annual income less than USD 60,000.
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Using the model variables described in the previous section as the calibration variables

in fitting a missing-at-random (MAR) logistic response model, Table 1 shows the adjusted

F values and their associated p-values produced by the WTADJUST (which uses Equation

(3) to estimate variances by setting DESIGN ¼WR ADJUST ¼ NONRESPONSE and

NEST _ONE_). All the model variables are significant at the .15 level and have an F value

greater than 2.5.

Table 2 show what happens when the three survey variables discussed above replace

their proxy frame values in the model vector but not in the calibration vector. This is

denoted as NMAR1 and fitted using WTADJX. Only annual income less than USD 60,000

remains significant at the .15 level, while the F values of the other two fall below 1. This

is partly due to collinearity among them. In Table 3, NMAR2 removes whether the HU

is a single-family dwelling unit from the model vector. All the remaining variables are

significant at the .1 level. It should be noted that estimation treats mobile homes and

attached single-family units as single-family dwelling units. Removing one of both does

not meaningfully change the results however.

A fourth fit, NMAR3, containing the same model variables as NMAR2 with similar

results is not shown. It replaces the two shadow calibration variables in NMAR2, the CBG

fraction of owned HUs and the CBG fraction of HUs with annual incomes less than USD

60,000, with ordinary-least-squares (OLS) predictions of the probability of HU ownership

and the probability of having an annual income less than USD 60,000, as suggested in Kott

and Liao (2017). The regressors in those OLS predictions are the two CBG fractions and

the frame indicator of the HU being a single-family dwelling unit.

Table 4 displays a number of estimated means and (quasi-probability) standard errors

computed (with SUDAAN and NEST _ONE_ replaced by NEST STRATUM PSU to

capture stratification and clustering effects on the estimated means) first assuming

missingness is completely at random (MCAR; i.e., unit response does not depend on any

frame or survey variables and both model and calibration vectors only have an intercept),

then missing at random as in Table 1, and after that missing not at random under the NMAR

assumption and using the three NMAR methods described above. All five methods treat the

original sample as a stratified two-stage sample, with the original design’s 19 strata

collapsed into 17 variance strata to avoid variance strata containing only a single primary

sampling unit (PSU). The PSUs in the RECS National Pilot design are 2010 US Census

Public Use Microdata Areas (PUMAs, http://www.census.gov/geo/reference/puma.html).

Table 1. MAR: Model variable and calibration variables are the same.

Variable Adjusted Wald F p-value

GEOGRAPHICAL AREA 4.63 0.0000
INCENTIVE 17.63 0.0000
PROTOCOL 8.76 0.0000
URBANICITY INDICATOR 3.19 0.0741
CBG ANNUAL INCOME # $60K? 8.44 0.0037
FRACTION OWNED IN CBG 2.52 0.1128
SINGLE-FAMILY UNIT(FRAME 6.95 0.0000

CBG – Census Block Group.
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The adjustments for the vacancies and non-primary residences are treated in variance

estimation here as part of the design weights. Although this is a simplification, it is the same

simplification for all five nonresponse-adjustment methods.

The results in Table 4 are summarized in Tables 5 and 6 and extended to three domain

estimates: one for owned HUs (a model-only variable in the NMAR models), one for

detached standing HUs, and one for HUs built before 1970. The measure log(X) 2 log(Y) ¼

Log(X/Y) used in those tables is close to the percent difference between X and Y when that

difference is less than 40% (Log(X/Y) < (X 2 Y)/Y). Unlike percent differences, however,

it is a symmetric measure (i.e., Log(X/Y) ¼ 2 Log(Y/X)).

In Table 5, we see that the estimates from using the three NMAR methods always fall

within 0.5% of each other. Assuming that these models more reasonably reflect reality

than the MAR model, which in turn is more reasonable than the MCAR model, it appears

that adjusting for nonresponse using an MAR model removes more than half of the bias

relative to not adjusting at all (i.e., assuming unit nonresponse is completely at random).

The sizes of the relative biases vary, with those associated with the two model-only

variables (the fractions of HU owned and with annual income less than USD 60K) being

the largest. Observe that the relative biases tend to be smaller for a domain related, or

correlated to, the model-only variables (e.g., having a detached HU is correlated with both

ownership and HU annual income).

In Table 6, we see that the estimated standard errors are, on average, lowest when the

MAR is used, except for the domain of owned HUs. Using NMAR1 has, on average, the

highest estimated standard errors while using NMAR3 has, on average, the lowest among

the three NMAR methods but still higher estimated standard errors than when the MAR is

used. The results appear to vary by variable, however.

Table 2. NMAR1: three model-only variables and three shadow proxies.

Variable Adjusted Wald F p-value

GEOGRAPHICAL AREA 4.51 0.0000
INCENTIVE 14.43 0.0001
PROTOCOL 7.37 0.0001
URBANICITY INDICATOR 2.71 0.0996
ANNUAL INCOME # $60K? 3.30 0.0695
HU OWNED 0.28 0.5938
SINGLE-FAMILY UNIT(SURVEY 0.00 0.9548

HU – Housing Unit.

Table 3. NMAR2: NMAR1 with an insignificant model-only variable removed.

Variable Adjusted Wald F p-value

GEOGRAPHICAL AREA 4.53 0.0000
INCENTIVE 14.89 0.0001
PROTOCOL 7.98 0.0000
URBANICITY INDICATOR 2.89 0.0894
ANNUAL INCOME # 60K? 5.60 0.0179
HU OWNED 4.73 0.0297

HU – Housing Unit.
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Table 7 tries to get a cleaner picture of the impact of unit nonresponse and the

alternative methods of adjusting for it when estimating means for all occupied residences.

It computes the square root of the estimated added variance due to nonresponse adjustment

computed using Equation (5) (which could not be done in SUDAAN). This measure

ignores the impact of any correlation, whether real or random, between the sampling and

nonresponse errors. Similarly, it ignores the impact of any within PSU correlations across

HUs. The conclusions from Table 6 are amplified. The additional estimated variance from

using MAR is always less than that from using any NMAR method. The additional

estimated variance from using MAR is also less than that from doing nothing (i.e., MCAR)

at least 75% of the time (since the third quartile is negative), contrary to popular belief, a

possibility pointed out by Little and Vartivarian (2005). Similarly, the added estimated

variances drop in over 75% of the cases (in fact, all but one case) when NMAR2 replaces

NMAR1 and NMAR3 replaces NMAR2.

5. Concluding Remarks

The primary purpose of this article was to show how the theoretical and simulation results

from Kott and Liao (2017) could be applied to a real survey suffering from a relatively

large fraction of unit nonresponse (roughly 60%). In creating calibration weights to

compensate for units nonresponse to RECS National Pilot survey, element response was at

first modeled as a function of variables with known values for the entire sample, where

Table 5. Summarizing the relative percent differences of the estimated means using alternative models of

nonresponse adjustment across 26 variables.

Mean Median 3rd Q Max

All
jlog(MAR) 2 log(MCAR)j £ 100 2.56 2.15 2.96 9.48
jlog(NMAR1) 2 log(MAR)j £ 100 2.09 1.24 2.58 11.38
jlog(NMAR2) 2 log(NMAR1)j £ 100 0.04 0.02 0.04 0.26
jlog(NMAR3) 2 log(NMAR2)j £ 100 0.02 0.02 0.03 0.10

Owned housing unit
jlog(MAR) 2 log(MCAR)j £ 100 0.86 0.66 0.95 5.58
jlog(NMAR1) 2 log(MAR)j £ 100 1.42 0.73 1.17 12.80
jlog(NMAR2) 2 log(NMAR1)j £ 100 0.05 0.03 0.06 0.22
jlog(NMAR3) 2 log(NMAR2)j £ 100 0.02 0.01 0.02 0.11

Detached housing unit (excludes mobile homes)
jlog(MAR) 2 log(MCAR)j £ 100 0.72 0.47 0.80 5.13
jlog(NMAR1) 2 log(MAR)j £ 100 1.76 1.09 2.11 14.09
jlog(NMAR2) 2 log(NMAR1)j £ 100 0.04 0.02 0.04 0.24
jlog(NMAR3) 2 log(NMAR2)j £ 100 0.01 0.00 0.01 0.08

Built before 1970
jlog(MAR) 2 log(MCAR)j £ 100 2.61 2.25 3.27 8.21
jlog(NMAR1) 2 log(MAR)j £ 100 1.77 0.97 1.50 9.68
jlog(NMAR2) 2 log(NMAR1)j £ 100 0.05 0.03 0.06 0.32
jlog(NMAR3) 2 log(NMAR2)j £ 100 0.03 0.02 0.04 0.11
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some were of those obvious proxies for variables with known values only for respondents.

When those proxies were replaced by their model-only analogues in a calibration-

weighting equation, one was found no longer to be a contributor of response. Still,

following Kott and Liao (2017), this type of variables was shown to have value in creating

shadow variables for model-only values using OLS. As Kott and Liao demonstrated,

the resulting calibration-weighted estimator retains its near quasi-probability-sampling

unbiasedness despite the somewhat ad-hoc use of OLS.

With this data, there appeared to be gains in bias reduction from assuming reasonably

that nonresponse was a logistic function of survey variables rather than their frame proxies

(which were several years old when based on the ACS). With the largest bias reductions

in those survey variables added to the response model. There was, however, a marked

tendency for the standard errors to increase when NMAR modeling replaced MAR

modeling. The reader should keep in mind that the results from the RECS National Pilot

may not generalize to other surveys.

It is a simple matter to extend the methodology used here to other element response

functions. In SUDAAN, the weight adjustment function in Equation (2) can be replaced by:

a xT
k g

� �
¼ Lþ exp xT

k g
� �� �

= 1þ U 21exp xT
k g

� �� �
;

the inverse of which is a truncated logistic response model where the probabilities of

element response are bound between 1/U $ 0 and 1/L # 1. Other smooth monotonic

functions can also be used a(.), but the user may have to do his/her own programming for

that. Choosing an appropriate form for the response function and the penalty for failing to

do so is an area for future research.

Finally, the reader should be aware that there are packages in R that can implement

calibration weighting similar to the routine in SUDAAN. One such is ‘Sampling’ (Tille

and Matei 2013).
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