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This article describes a project conducted in conjunction with the Central Statistics Office
of Ireland in response to a planned national rollout of smart electricity metering in Ireland.
We investigate how this new data source might be used for the purpose of official statistics
production. This study specifically looks at the question of determining household
composition from electricity smart meter data using both Neural Networks (a supervised
machine learning approach) and Elastic Net Logistic regression. An overview of both
classification techniques is given. Results for both approaches are presented with analysis. We
find that the smart meter data alone is limited in its capability to distinguish between
household categories but that it does provide some useful insights.
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1. Introduction

Smart Meters (SM) in the residential sector are seen as a key factor in the success of EU

targets for reduction in greenhouse gases and increases in the use of renewable energy

(European Commission 2014). An SM system has an electronic meter which sends

electricity load data to and receives price data from the service provider. The Irish

Commission for Energy Regulation (CER) initiated the National Smart Metering

Programme (NSMP) in 2007 and Customer Behaviour Trials (CBTs) took place

during 2009 and 2010 to assess the performance of SMs and their impact on consumer

behaviour. The purpose of the CBTs was to gauge customer response to price incentives.

The anonymised data gathered during the trial are available for research purposes

(CER 2012).

It is anticipated that a full rollout of SMs in Ireland will commence in 2019. Each

consumer will have an individual meter to enable each residential household better

manage its electricity usage. More recently, CER have announced the high level design

decisions for the NSMP. Figure 1 shows an overview of the proposed architecture, CER

(2014). We see that consumption and price data will be exchanged but no information

about the building, appliances, or residents will be provided.
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Smart Meter Data (SMD) opens up new opportunities for researchers, businesses, and

public sector organisations. In particular, the potential role of SMD in the production of

official statistics is of interest to national statistical institutes and is the focus of this article.

New data sources such as SMD have the potential to provide valuable information and

insights about not only energy consumption but also household consumption and possibly,

the subject of this study; household composition.

Like most countries, the Central Statistics Office of Ireland (CSO) is exploring ways

to modernise how it calculates population estimates, (Dunne 2015). The focus of this

research is an exploration of SMD to estimate household composition. Household

composition is a classification of households by size and relationship type between the

household members. It is currently established in Ireland in a costly census every five years.

This involves the distribution of census forms to every household in the state and the

subsequent collection of these forms. The cost of the 2011 Census was EUR 55 million. The

SMD gathered during the CBT trial are used to attempt to answer our following research

question:

Can household composition be estimated from analysis of SM electricity usage?

We evaluate two techniques to classify households; Neural Networks and Elastic Net

Logistic Regression. While existing CSO household composition categories cannot be

readily identified, useful insights can be gained from SMD analysis. In particular, the

models are useful in identifying households of single persons. The model performance

worsens as the number of persons in a household increases.
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The remainder of this article is structured as follows: Section 2 outlines the challenges

and opportunities for national statistics institutes in new data sources such as SMD;

Section 3 describes the classification methods and data issues. Section 4 gives results and

analysis; Sections 5 and 6 include a discussion and conclusions of the work.

2. Challenges and Opportunities for National Statistical Institutes (NSIs)

The functions of the CSO are spread across many areas with responsibility for the

collection, compilation, extraction, and dissemination for statistical purposes of

information relating to economic, social, and general activities and conditions in Ireland.

Like most NSIs, the CSO is exploring ways to modernise how it operates and are trying to

increase and improve the services they offer despite the growing costs of data collection

and processing, and ever more challenging fiscal environments. A survey of the evolving

National Data Infrastructure in Ireland is given in Dunne (2015). A strategy which focuses

on efficient public administration rather than purely the production of official statistics is

envisaged. This may be accomplished through the linking of administrative data registers

covering persons, business and property. Currently, projections of the population on an

annual basis up to 2046 are based on projection forward from the 2011 Census base under

a chosen set of assumptions governing births, deaths, and net migration. Dunne (2015)

describes some emerging opportunities for future censuses that may exploit administrative

data registers either in conjunction with or as a substitute for primary data collection.

Seyb et al. (2013) describe the strategy implemented by Statistics New Zealand to

improve and standardise processes in official statistics production. One goal in their

change programme is to maximise the use of administrative data as a source wherever

possible, with surveys filling gaps in information needs. This is a reversal of traditional

survey-based data gathering strategies. Seyb et al. (2013) describe how value can be

extracted from a specific administrative data source where the data is well formatted and

well defined. They give an example where tax data reference numbers used by Inland

Revenue agencies are already mapped to business registers, so matching and coverage

issues are easy to resolve. The data items in that instance are well defined financial

variables.

Other administrative or new data sources may not be as amenable to adaptation for NSI

purposes. The focus of our work is on SMD as a potential new data source for the CSO.

Every household uses electricity but the data derives from electricity markets and was not

intended for NSI usage. In this article we outline the first steps toward harvesting value

from SMD data.

2.1. Evaluating SMD Data for Official Statics Production

The Irish CBT SMD has been explored to identify factors influencing domestic energy

consumption. Dwelling characteristics (such as dwelling type, age, and electrical

appliances) and occupant characteristics (such as household income, age of household

members, household composition) have been used to explain energy consumption. See for

example McLoughlin et al. (2012). The reverse, using consumption to predict occupant

characteristics, has received little attention (Newing 2016). It should be noted that

dwelling and socioeconomic information about the CBT participants were used by
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McLoughlin et al. (2012). Such information was available in the CBT but will not be

available through the smart meter itself (Van Gerwen et al. 2006 and CER 2014).

2.2. The CBT Data

As noted, SMD data derives from electricity markets and the focus of the CBT trial was

consumer responsiveness to pricing structures. However, the CBT data gives an indication

of what SMD looks like, its volume and velocity and allows us to attempt to answer our

research question.

The CER used a stratified random sampling framework to invite consumers to

participate in the CBT. This ensured the sample was broadly representative of the

population in terms of household size and other socioeconomic indicators. Over 5,000

consumers were initially recruited, further details are given in Subsection 4.1. Each

consumer represents a household, that is, a number of persons sharing a single residential

unit.

An incentive of EUR 25 for completing a pre- and posttrial survey was offered. An

additional incentive for participation was the possibility of lower electricity bills during

the trial depending on the consumer’s response to the pricing schemes. The surveys were

conducted by computer assisted telephone interviewing and focused on participants’ views

on attitudes to electricity usage and expectations of the trial, the dwelling, and electrical

appliances. Questions on demographics and social relationships between household

members were limited as they were not the focus of the CBT study.

The CBT recorded a meter reading of the electricity usage of participating consumers at

half hourly intervals over the duration of the trial. Each household meter produced 269 MB

of such time series usage data during the trial. There are over 1.6 million households in

Ireland. This gives an indication of the type and volume of data associated with electricity

consumption per household that will be available after national SM rollout.

The volume of such data presents a significant challenge for NSIs such as the CSO

which does not have a history of dealing with high volume data other than its own primary

(well structured) sources. The infrastructure required to deal with such data volumes has

not been investigated in this study. This study focuses instead on a data processing pipeline

and analytics techniques to produce meaningful insights on household composition from a

SMD data stream.

3. Classification Techniques

The goal of classification in this article is to assign a household composition category to

a household based on its SM electricity usage. The parsimony principle tells us that

classification models with a small number of Explanatory Variables (EVs) are preferable.

In this article, the Dependent Variable (DV) is the household classification and the EVs are

drawn from the SMD data. Further EVs relating to participants’ dwelling type and the type

of electrical appliances used, are available in the CBT surveys. However, such information

will not be available with the SMD after rollout, only the electricity usage data will be

available. So, only EVs from the SMD data are used in this proof of concept study.

We use the CBT survey response on household composition to label the SMD. The

labelled SMD data are processed through a data reduction pipeline to yield a set of EVs
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suitable for model building. The data reduction process is described in Section 4. This

labelled data allows us to use a supervised machine learning approach. We train and test a

Neural Network to identify household composition based on SMD usage. These results are

compared with those from a statistical model, namely Elastic Net Logistic Regression.

3.1. Regression

Regression is often used as a benchmark for classification tasks. Multiple linear regression

models the linear relationship between DVs y and a set of EVs x. The general form is

y ¼ b0 þ
P

bx where the coefficients b are calculated so as to minimise some loss

function, such as the sum of squared error ky 2 bxk
2
.

A regularisation term may be added to the loss minimisation objective function

to achieve parsimony and reduce overfitting. Two popular approaches to regularisation

are Ridge regression (Hoerl and Kennard 1988) and LASSO (Tibshirani 1996). Ridge

regression adds a squared two-norm penalty term on the coefficients. It is used to reduce

the variance inflation due to correlations in the explanatory variables. Least Absolute

Shrinkage and Selection Operator (LASSO) adds a one-norm penalty term which has the

effect of shrinking coefficients, possibly all the way to zero, thus performing what can be

considered a continuous variable selection as opposed to discretely dropping variables

outright. Elastic Net harnesses both Ridge and LASSO regularisation approaches by

taking a linear combination of both norm penalties (Zou and Hastie 2005). The Elastic Net

is fit by minimising ky 2 bxk
2
þ lvakbk1 þ ð1 2 aÞkbk

2
2 b .

The kbk1 term is the LASSO penalty. The kbk
2
2 is the ridge penalty. The l parameter

is nonnegative and controls the ‘strength’ of the regularisation. A larger value of l

corresponds to greater variance reduction in the coefficient estimates but induces stronger

bias. A value of l ¼ 0 corresponds to standard least squares regression. The a parameter

takes values between 0 and 1 and controls the weight of the penalties. An a . 0.5 puts

more weight on the variable selection properties of the LASSO, while a , 0.5 puts more

weight on the correlation regularisation properties of the ridge.

Since linear regression models are linear by their nature, they are not well suited where the

relationship between the inputs and outputs is not well defined or linear as is the case for

electricity consumption and household composition. Generalised Linear Models (GLM) such

as logistic regression can be used to overcome this limitation and to attempt to improve the

model fit. GLMs extend the ideas behind linear regression. The dependant variables arise from

the exponential family and are related to the EVs by a link function f, f E y
� �� �

¼ b0 þ
P

bx.

The logit function can be used as the link function to predict categorical variables in a logistic

regression model. This allows binary and multinomial classification, where logit(x) ¼ ln x
12x

� �

is the log odds. This forces the output to be a value between 0 and 1 which can be interpreted as

a probability that the outcome belongs in a certain class.

The regression coefficients are usually estimated using maximum likelihood estimation.

Unlike linear regression with normally distributed residuals, it is not possible to find a

closed-form expression for the coefficient values that maximise the likelihood function, so

an iterative process such as Newton’s method is used instead.

The Elastic Net approach can also be used to reduce overfitting of the logistic regression

model.
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3.2. Machine Learning and Neural Networks

Standard statistical techniques are based on assumptions that the data items have been

sampled independently and from the same distribution. Machine Learning (ML) offers

several techniques for intelligent data analysis and knowledge generation through

generalisation where such assumptions may not hold (Hand 1998). Techniques include:

association rules, decision trees, inductive logic programming, support vector machines,

clustering, Bayesian networks, and (artificial) neural networks (A)NNs. NNs are discussed

in detail here, a review of the other techniques is beyond the scope of this article. NNs are

often preferred when large noisy training samples are available and the relationships may

be nonlinear. Disadvantages of NNs include their “black box” nature and the empirical

nature of the model development.

The aim of a ML model is similar to that of a regression model. It aims to model how the

set of inputs (called features in ML parlance) relate to the set of outputs. However, the

approach to creating and fitting the model differs from regression. The ML model is

learned from a training data set. In supervised learning, the outputs for the training data are

known (labelled). A ML learning algorithm adapts the model in response to the training

data to improve the fitting of the input/output relationship.

Perhaps the most important concept in ML is that of generalisation. The algorithm

should produce sensible outputs for inputs that were not encountered during learning

Marsland (2009). Overfitting occurs when a model fits only the training data, meaning that

it is not a general function approximation. It has instead begun to learn the noise associated

with that specific training data set. To ensure that overfitting does not occur, the data is

usually split 60:20:20 into training, validation and testing sets. The learned system is

evaluated on the validation data set to assess the ML model fit before being used on unseen

test data.

ML can be used to perform classification. We assign the input(s) to discrete output

categories. Testing is performed to evaluate the model in terms of the performance of its

classification when it is given new data without class labels. The actual class labels of each

input are compared with those assigned by the algorithm. Accuracy is defined as the

percentage of correct matches, that is, the number of correct (or true) household

classifications in our case divided by the total number of tests:

Accuracy ¼
Number correct classifications

Number of tests
:

The accuracy metric can be misleading when the data are dominated by a high number

of entries from a single class. This issue is explored in more detail in Subsection 3.3. A

classifier that simply predicts the dominant class will have high accuracy but could not be

regarded as a good classifier. Other commonly used error metrics are discussed in more

detail in Subsection 4.3.

NNs are ML algorithms modelled on the function and topology of the human brain. NNs

have successful applications in diverse areas from credit card fraud detection (Patidar and

Sharma 2011) to forestry management (Hickey et al. 2015) and to energy consumption

modelling (Aydinalp et al. 2002). Aydinalp et al. (2002) favoured NNs over statistical

models due to the simplicity of NN development and the accuracy of the estimate. They
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found that NNs were capable of modelling nonlinear electricity consumption relationships

outperforming statistical approaches.

In the brain, nerve cells called neurons function as simple processing devices.

Neurons can be described as simple mathematical functions. A general form for a single

neuron is y ¼ g w0 þ
P

wx
� �

where g is called the transfer function, often a sigmoid or

hyperbolic tangent function. The w are weights which are analogous to the coefficients

in a regression model and w0, known as the bias, is analogous to the regression intercept

coefficient.

Figure 2 shows a representation of a simple NN with EVs xi, a single neuron and a single

output. NNs consist of an array of neurons that form a connected network (Hopfield 1984;

Zhang and Zhang 1999). A Multi-Layer Perceptron (MLP) is a feed-forward NN

consisting of an input layer, one or more hidden layers and an output layer.

An iterative approach called the error Back-Propagation (BP) algorithm is used in a

MLP to estimate the weights during the training stage. BP consists of two passes through

the network: a forward pass and a backward pass. The weights w are fixed in the forward

pass. An input vector from the training data propagates through the entire network to

produce a set of outputs. The difference between the produced output and target value is

calculated as the error. The error is similar to the loss function in a regression model. On

the backward pass, the weights w are adjusted according to some error-correction rule

(such as a gradient descent function) to reduce the error. In this way, the NN response is

moved closer to the desired output. Termination criteria for the iterative model fitting are

used to stop the BP algorithm when improvements fall below a threshold. The NN weights

are then finalised and the NN is ready for the test phase.

The empirical approach to NN model development means there is no guarantee that the

final NN weights are the global optimal weights. They may reflect local optima. Nor is

there a guarantee that the selected topology of hidden layers is optimal.

X1

X2

X3

W3

W2

W1

WO

WO + Σ WiXi
σ(WO + ΣWiXi)

Xn

Wn

Fig. 2. Model of a simple NN.
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3.3. Data Issues

In this section we identify some of the issues that arise for NSIs interested in exploring SM

data. When dealing with large volumes of data, analysts have to decide on a data reduction

scheme which adequately represents the data. The reduced data representation conveys

most of the information while being easier to store and facilitates ease of computation. The

choices are to aggregate the data (using representative measures), use samples of the data

or to apply more advanced data reduction algorithms.

Recall that the EVs used as inputs to NN models are called features. As the number of

dimensions (or possible EVs) in the search space increases, the amount of data needed to

provide the algorithm with sufficient training examples increases rapidly. This can lead to

an explosion in the amount of training data required as well as lengthening the training time

for the NN. This issue is known as “the curse of dimensionality”. Dimension reduction

techniques can be used to address this issue, see, for example Han and Kamber (2006).

Characterisation of Time Series (TS) data such as SMD are discussed in detail in Liao

(2005) and Wang et al. (2006). The lower level half-hour granularity per meter gives a

better picture of what is happening in each household type than would be apparent by

looking at aggregated SMD daily totals. The individual consumer’s load profile may offer

a unique fingerprint to aid classification. However, it is not desirable to work directly with

raw data that are highly noisy. Instead, application dependant extracted features are used.

In addition, a choice on the length of the TS is required. In general, larger sample sizes

yield better population estimates with lower variability. However, in the case of TS data,

longer series may actually increase variability due to any underlying trend. The choice of

the TS window length is one of the many design parameters and is an open ML research

question. Varying length sequences can be empirically evaluated and/or adaptive

windowing (similar to the lag methods in ARIMA models) can be used to weight the

contribution of varying length subsequences within the TS data.

In many applications the training data is unbalanced, that is, some categories are under

or over represented. It is important to distinguish between imbalance in the training data

sets and representativeness of the population of the sample. For example, in the

classification of defective products at the end of an assembly line, the majority of products,

perhaps 90%, are good since they meet the required standard. The remainder fail and are

deemed defective. While the imbalance reflects the distribution of the items in the

population, traditional feed forward NNs have difficulty learning from unbalanced data

sets. NNs need to see an equal number of defective and good products during the training

phase to learn how to distinguish them. Otherwise the NN prioritises the class seen in the

majority of samples and treats the minority class as noise (Murphey et al. 2004). In the

production example, the NN would classify all products as good and 90% of the time

would be correct. This results in misleadingly high accuracy values for the model. Several

error metrics are used to interpret the results in conjunction with the accuracy measure. In

addition, resampling or oversampling can be used to address issues of unbalanced training

data.

Lastly, concerns about the privacy of the individual arise with SMD (Molina-Markham

2010; McKenna 2012). These include that the SM signals may be intercepted for illegal

purposes by third parties and that SMs allows surveillance of the individuals’ usage rather
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than simply tracking usage for billing purposes. The CSO adheres to the UN Fundamental

Principles of Official Statistics and seeks to balance the public interest with concerns for

privacy of the individual. The CSO was established statutorily under the Statistics Act,

1993 (Statistics Act 1993). This act includes articles on statistical confidentiality so the

CSO is well positioned to explore new data sources such as the SMD.

4. Material and Methods

In this article, consumers are classified and assigned to a household category based on their

electricity usage. NNs are selected to perform the ML household classification due to their

ability to work with high volume noisy data and learn nonlinear relationships. Elastic net

logistic regression is selected as a comparative GLM statistical approach. We reduce the

individual consumer TS streams to sets of possible features (explanatory variables) and

select the most useful subset of features. We evaluate the model performance over varying

TS window lengths and compare results from both unbalanced and balanced training

data sets.

4.1. Data Pipeline

Some information about the age of household members is available from the CBT pretrial

survey. A limiting factor of the CBT survey from the household classification perspective

is that detailed age information is given for the Head of Household only. The remaining

members of the household are classified as either under 15 years of age or 15 years of age

and older. In addition, no information is given on family unit group, for example whether

the household consists of a married or cohabiting couple or single parent with children etc.

Existing CSO household composition categories distinguish family types, for example

cohabiting couple with children or husband and wife with children. This categorisation

is useful in social analysis and understanding changing demographics but we would not

anticipate a difference in electricity usage of based on marital status. Indeed, in a sign of

changing times, the marriage equality referendum passed in Ireland in 2015, may see the

need for the development of new household categories such as husband and husband with

children.

For the purpose of this smart meter study, an alternative simple household

categorisation system was developed according to the numbers of adults and children as

shown in Table 1. These 16 household categories were chosen as they match 95% of the

existing CSO categories and represent the majority of the CBT data. An even simpler

classification based on the number of persons per household was also considered.

Table 1 shows how representative the CBT sample is of the 1.6 million households in

Ireland. The final two columns of Table 1 show the similarity of the CBT household

distribution to the percentage of households by number of persons according to the 2011

Census (CSO 2011). The minor gap is households with eight or more persons as none

participated in the CBT, this category accounts for five per cent of all households in

Ireland.

A significant work component of this study was to convert the CBT SMD data to

household classifications. Data preprocessing absorbed approximately 65% of the project

man hours. Over 150 million data points of usage are included in the SMD trial data in
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multiple CSV files. Each SMD usage file consists of three columns corresponding to

a unique household Meter ID, timestamp, and electricity consumed during 30 minute

intervals in kWh. In order to allow a valid comparison, SMD from the six month

benchmark period from July to December 2009 were considered. Price incentives were

evaluated during the later months of the CBT trial. Some work on consumer behaviour and

their responsiveness to tariff changes is described in Di Cosmo et al. (2012). Such work

could be used to estimate the likely changes in household electricity usage patterns in

response to tariff changes.

The data were prepared using the open-source package R (R Core Team 2013). Standard

workplace laptops with 8 GB RAM were used for light data preprocessing tasks. Data for

households who had not completed the survey were removed leaving 3,931 sets. Meters

with missing data were also removed. The data reduction and model building was then

carried out using R on the Stokes supercomputer with 7,680 GB of RAM at the Irish

Centre for High-End Computing.

Bousquet and Elisseeff (2002) discuss the use of sensitivity analysis to evaluate changes

in ML algorithm outcomes to changes in the training set. We were particularly interested in

assessing the impact on the model performances of the window length of time series used as

the training data. Five different time series window lengths ranging from one day to six

months were chosen so that the sensitivity of the classifiers could be empirically assessed.

Feature values for the five different time series windows were calculated on the Stokes

supercomputer in the data reduction step. The features are the EVs or inputs for the

classification models, further details are given in Subsection 4.2. The prepared data per

meter was then labelled with a household classification category. These five files

Table 1. Household category description.

Category Adults Children

Meter

count

Post-

processing

count

Num

persons

CBT

distribution

(%)

CSO

distribution

(%)

A 3 2 41 39 5 1 2

B 3 1 106 105 4 3 3

C 3 0 450 440 3 11 10

D 2 5 9 9 7 0 0

E 2 4 49 48 6 1 1

F 2 3 158 147 5 4 4

G 2 2 338 331 4 9 8

H 2 1 246 244 3 6 7

I 2 0 1,264 1,251 2 32 27

J 1 1 59 59 2 2 2

K 1 0 726 718 1 19 24

L 4 1 64 64 5 2 2

M 4 0 289 283 4 7 5

N 5 1 20 20 6 1 1

O 5 0 92 92 5 2 1

P 6 0 20 20 6 1 0

$8 0 0 $8 0 5

Total 3,931 3,870 100 100
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containing the feature values for the five different time series windows were then ready for

use in creating and testing the classification models.

4.2. Data Reduction and Feature Selection

Table 2 shows a summary of the extracted features. Some are suggested in McLoughlin

et al. (2012). Others are standard descriptive statistical measures typically used in NN time

series modelling (Wang et al. 2006). The remaining features were identified from analysis

of the diurnal usage patterns of individual household categories to spot distinctive features

which may be unique to a household category. One such example is “morning peak”. It

was noted that households with children generally had a more pronounced morning peak.

Twenty one features were calculated for each meter to summarise each household’s

unique load profile over the five time series windows. Detailed descriptions are included in

Appendix 1. The raw numeric input SMD data were standardised to between 21 and 1.

Standardising is carried out to bring all variables into proportion with one another.

Features that demonstrated multicollinearity with high inter-correlation coefficients were

removed, leaving 18 input features or explanatory variables.

Outlier analysis was performed on the summarised data to remove any outlying

households that might disrupt the performance of the classifiers, leaving 3,870 meters.

Table 2. Model inputs*Indicates a feature that was not selected.

Index Feature (EV) Short description

1 Mean* Mean energy consumption
2 Max Maximum energy consumption
3 ToU Max Time of day at which maximum consumption

occurs
4 TEC Total energy consumption
5 MDM Mean daily maximum energy consumption
6 Load factor Ratio of daily mean to daily maximum energy

consumption
7 Variance How far the energy consumption is spread out
8 SD Standard deviation from the mean
9 Range Difference between highest and lowest energy
10 Interquartile range (IQR) Measure of spread of middle half of data
11 Morning max Maximum energy use in the morning
12 Morning peak Height of the morning peak energy consumption
13 Morning range Morning maximum minus minimum before 10 am
14 Weekday area Area under the curve for weekday consumption
15 Weekday midpoint* Area under the curve for weekday consumption

divided by 2
16 Weekday centroid Time of day at weekday midpoint
17 Weekday AM slope Slope of the morning peak
18 Weekend area Area under the curve for weekend consumption
19 Weekend midpoint* Area under the curve for weekend consumption

divided by 2
20 Weekend centroid Time of day at weekend midpoint
21 Weekend AM slope Slope of the morning peak

Carroll et al.: Household Classification Using Smart Meter Data 11



Individual data within the meters was not subjected to any outlier analysis, instead this was

performed on the aggregated data for each meter. This approach ensured that potentially

useful data within individual meters was not removed but that outlying households were

removed before the data were input to the classifier. For example, increased usage on a

cold day was not deemed outlying. The local outlier factor algorithm which is a density-

based outlier detection approach was chosen for this task. It can be computationally

expensive as the approach involves the calculation of k-nearest neighbours. Breunig et al.

(2000) argue that this approach is more subtle than a simple binary outlier classification

and allows the degree of closeness within a neighbourhood to be accounted for.

4.3. Model Development

Two classifier approaches were evaluated. The first was a binomial classifier asking a

binary question; whether a particular meter belonged to a particular household category.

Classifier output greater than 0.5 was labelled as true (yes). Classifier output less than 0.5

was labelled as false (no). The advantage of a binomial approach is that only a single

output is required. It was expected that the classifier would be better able to partition the

data set. The disadvantage was that the model had to be run separately for each household

category and so involved extra data manipulation.

The second approach was a multinomial classifier asking which household category a

meter belonged to. The output produced by the classifier is a vector of values between zero

and one. These vector components are interpreted as probabilities that the meter belongs to

the household categories. The household category with the highest probability is the most

likely category to which the meter belongs. The advantage of the multinomial approach is

that only one model is required and less manipulation of the data is needed. However, as

the multinomial classifier has multiple outputs, it could potentially lead to a reduction in

accuracy. Lower accuracy was anticipated as some overlap of electricity usage between

classes was expected.

The “glmnet” package in R was used to implement the elastic net logistic regression

models (Friedman et al. 2009). For all models a was set to 0.25. This puts more weight on

the ridge penalty which averages correlated groups but still allows for some feature

selection. Ten-fold cross validation was used to set l based on the misclassification error

rate. For each Elastic Net model, 70% of the data were used as a training set, the remaining

30% was used for testing the predictive power of the models. The “caret” package in R was

used for splitting the data into training and test sets (Kuhn et al. 2014).

The R “nnet” NN package was used to build a single-hidden-layer NN by selecting the

number of units in the hidden layer, the initial random weight, and the weight decay

(Ripley and Venables 2011). The “neuralnet” package was also used as it allows a choice

of training algorithms and the number of hidden layers (Fritsch et al. 2012). Training of the

NNs was carried out by back propagation, resilient back propagation with backtracking,

resilient back propagation without backtracking and a modified globally convergent

approach. The input data for the NNs was split into three subsets in ratios 60:20:20 for

training, validation, and testing. The training data set was sampled at random without

replacement. From the remaining data set, 50% were sampled at random without

replacement to create the validation set with the remaining meters forming the test set.
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The performance and suitability of all models were assessed under the headings of

accuracy, Sum of Squared Error (SSE), Root Mean Squared Error (RMSE), Sum of Cross

Entropy (SCE), Coefficient of Variation and Pseudo R2. Confusion matrices of actual

(row) versus predicted (column) values in each class were also produced. A good classifier

exhibits a diagonally dominant matrix. Further details of the error metrics are available

in Appendix 2.

For the binomial NN models, the RMSE was computed at each iteration of the NN

development for both the training set and the validation set, and the SCE was used for the

multinomial model. The training of the network was stopped when the RMSE/SCE error

using the validation set registered two consecutive increases. A value of two was chosen as

stopping after one increase might be premature and the increase might only be a once-off

result in a general trend of decreasing error. More than two consecutive increases was

categorised as a trend of increasing error. This check found the point at which the training

algorithm had started to overfit the data.

The sensitivity of the binomial and multinomial NN models on both unbalanced data

and balanced training data and on the five TS windows described in Subsection 4.1 were

evaluated. Computational results are presented in Section 5.

4.3.1. Unbalanced Training Data

As noted in Subsection 3.3, a balanced number of training samples is preferred for ML

classification so that one category does not bias the prediction output. Table 1 highlights

the imbalance in the CBT which is a concern for training the NN. The number of sample

households consisting of two adults and no children (1,264) exceeds any other household

type in the trial. It is not a concern for the representativeness of the CBT data.

We used stratified sampling to build the training set for the Elastic Net unbalanced

models. We sampled 70% of each category instead of simply taking 70% of the entire data.

The value of l in the elastic net was chosen via ten-fold cross validation where the

validation error is the misclassification rate. Separately, the data were split 60:20:20 into

training, validation and testing sets for the NN. The models were then applied to the test

sets and a full set of error metrics was calculated.

4.3.2. Balanced Training Data

Undersampling (He and Garcia 2009) was used in order to achieve balance in the training

data. This technique, for the binomial models, is to only sample enough records from the

majority class so that it equals the number of records in the minority class. This is more

suited to situations where large data sets are being analysed as it has the advantage of

reducing the training time by effectively reducing the size of the training set. Recall the 16

different household composition categories described in Table 1. It shows that following

the preprocessing step, the number of households in each of these categories ranged from

9 to 1,251 with a total data set size of 3,870. For the household category with nine meters

this meant that the number of entries in the true class was nine and the number of entries in

the false class was 3,861. To perform undersampling on this category required sampling

nine records from the majority false class of 3,861, meaning that the size of the data set for

classification for this category was 18. This under sampling was repeated across each of

the household categories to allow classification on balanced data.
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For the multinomial model, an equal number of meters in each household category were

sampled. As the minimum sample size was nine this required sampling nine from each of

the remaining categories and training the classifier with nine instances of each category.

This is too small for ML algorithms, so it was decided to only analyse categories where the

number of records in the category was greater than 100 meters. This choice ensured that

a minimum sample size of 20 was achieved for a 60-20-20 cross validation split when

developing the NN model. Eight of the 16 categories met this selection criteria, namely B,

C, F, G, H, I, K, and M. These categories accounted for 3,519 (91%) of the CBT meters

after preprocessing and is representative of 86% of the population of 1.6 million

households in Ireland.

5. Results

Figures 3 and 4 show examples of the weekday and weekend daily usage averaged over a

six month period for household categories C and H. Category C is a household with three

adults. Category H consists of two adults and one person aged under 15. Weekdays are

shown as a solid line, weekends as dashed. These are typical of the diurnal usage pattern

showing a peak corresponding to the start of the day, some activity at lunch time and a

peak corresponding to preparation of an evening meal.

A box plot of the mean daily usage in Figure 5 highlights the increasing trend in mean

values as the number of occupants within the house increases. It was expected that an

increase in mean consumption would allow the classifiers to better distinguish between

household categories. We also see the variety in the degree of dispersion and shape of the

distribution across the household categories. The use of the local outlier factor algorithm

means that only households that are relatively extreme were removed during

preprocessing. Recall also that variance, standard deviation and IRQ are among the

extracted features in Table 2.
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Fig. 3. Sample electricity relative load curves for household category C (three adults).
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5.1. Classifier Results

The results from the Elastic Net Logistic regression model (EN) and from the Neural Net

(NN) models were quite similar, see Table 3. Results for the simpler classification scheme

(of numbers of persons) were not significantly better. In some cases it was slightly better,

in other cases, it was slightly worse. In the interests of brevity, we present the results for

our number of adults/children classification scheme (which is detailed in Table 1).

The six month TS window produced the best performance. The performance benefits in

the longer time frame varied in comparison to other time windows. The six month window
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Fig. 5. Boxplot of mean daily usage per household category.
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Fig. 4. Household category H (two adults plus one child).
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may capture some long distance interactions or seasonality. Again, in the interests of

brevity we present the results for the six month window only.

Balanced training data gives the better results for both the EN and NN binomial

approaches as shown in Table 3. The unbalanced binomial network has the highest

accuracy and lowest SSE and RMSE value. This is misleading however as the classifier

could classify everything as zero to yield an accuracy value equal to the proportion of zero

or “no” in the actual values which in this case is 93.75%. A similar situation arises with the

SSE and RMSE figures. The CV and R2 terms are the only error metrics presented which

can be used to effectively compare the models as they are dimensionless.

For comparison, we note that the corresponding balanced binomial NN using a single

work week window produced Accuracy, SSE, RMSE, CV, and R2 values of (57.017,

41.798, 0.493, 98.676, 0.513). These can be compared with the last line of Table 3 which

shows the values of the six month window. Such empirical evidence was used to guide the

selection of the design parameters during model evaluation.

Details of the performance of the balanced data binomial models are shown in Table 4.

For brevity, we present just the results of the individual classifiers, that is, asking

whether test meters belong to a particular household category. The balanced binomial EN

model has the highest R2 value of 0.55 which signifies that 55% of the variability in the

actual values is explained by the model. The best binomial NN was obtained using

balanced data with an R 2 value of 0.54. Note the high performance for single adult

household category K. This may indicate that category K is more distinctive than the other

categories. Recall that category K accounts for 25% of the population, see Table 1. Table 5

shows a sample confusion matrix when testing sample meters for membership of

household category K (single adult) using the best binomial NN. The matrix is diagonally

dominant but more households are classified as true (163) than as false (123). In this

example, the classifier is giving “false positives”.

Scatter plots such as Figure 6 are useful to visualise the partitioning ability of the

classifier. The y-axis refers to predicted probability (equivalent to the probability that

meter belongs to a particular class). The x-axis labelled as “index” refers to the ith test

object. The data are evenly distributed data between the upper and lower halves of the plot

area for both the EN and NN. Dark coloured dots represent households that are true, that is,

Table 3. Testing results – binomial, balanced versus unbalanced data.

Testing data

Classifier Accuracy SSE RMSE CV R 2

Unbalanced binomial EN1 93.79 57.01 0.19 719.52 0.08
Unbalanced binomial EN2 88.75 100.79 0.28 343.34 0.15
Balanced binomial EN2 60.52 60.05 0.48 94.16 0.55

Unbalanced binomial NN1 93.750 38.850 0.193 837.141 0.053
Unbalanced binomial NN2 88.792 67.799 0.285 349.754 0.109
Balanced binomial NN2 63.264 38.235 0.476 95.169 0.544
1Results show the mean values from the 16 individual binomial models for household categories A-P.
2Results show the mean values from the eight binomial models for household categories B, C, F, G, H, I, K, and

M, that is, the households used in the balanced data analysis. The six month time frame is used.
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test households that are in category K. Any dark dot above 0.5 is correctly classified. We

see some dark dots below the 0.5 threshold. These are test objects that are incorrectly

classified as not being in category K.

The grey dots represent test objects that are false, that is, not in category K. Again we

see that some are correctly classified (below the 0.5 line) and some are incorrectly

classified (above the 0.5 line). These plots show that the classifiers have similar prediction

accuracy for both true and false. The majority of the predictions are concentrated in the top

and bottom quarters of the NN plot area as expected from a good classifier.

We had very limited success using multinomial classifiers using balanced data. Again

the EN and NN had similar performances. The unbalanced data has the better R 2 value,

but the balanced approach has the lower SCE and CV values as shown in Table 6 for the

Table 4. Testing results – household category binomial models using balanced data.

Test data

Classifier Household category Accuracy SSE RMSE CV R2

Bal. Bin. EN B 58.73 14.19 0.47 87.94 0.58
Bal. Bin. EN C 44.70 66.56 0.50 90.14 0.55
Bal. Bin. EN F 62.92 22.17 0.50 105.77 0.47
Bal. Bin. EN G 70.35 42.03 0.46 101.62 0.53
Bal. Bin. EN H 57.14 37.86 0.51 105.07 0.47
Bal. Bin. EN I 55.94 180.27 0.49 99.05 0.51
Bal. Bin. EN K 76.1 73.37 0.41 87.17 0.64
Bal. Bin. EN M 61.76 38.89 0.48 82.13 0.61

Bal. Bin. EN Mean 60.96 59.42 0.48 94.87 0.55

Bal. Bin. NN B 50.00 10.46 0.51 102.29 0.48
Bal. Bin. NN C 63.79 39.99 0.48 95.89 0.54
Bal. Bin. NN F 70.69 13.45 0.48 96.30 0.54
Bal. Bin. NN G 64.39 30.49 0.48 96.13 0.54
Bal. Bin. NN H 54.17 25.41 0.52 102.90 0.47
Bal. Bin. NN I 57.63 119.81 0.49 98.10 0.52
Bal. Bin. NN K 79.37 41.98 0.38 76.62 0.71
Bal. Bin. NN M 66.07 24.28 0.47 93.13 0.57

Bal. Bin. NN Mean 63.26 38.24 0.48 95.17 0.54

Table 5. Sample confusion matrix, household category K,

binomial NN using balanced data.

Test
Predicted

False True Σ

A
ct

ua
l False 100 43 143

True 23 120 143

Σ 123 163 286
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six month time frame. Recall that R 2 measures how well the variability in the actual values

is captured by the model. If the model is distorted or biased towards a particular category

then the R 2 value can also be distorted by the unbalance. The CV value is not affected by

the imbalance as it only evaluates the relative closeness of the predictions to the actual

values. It is useful when comparing models which use either balanced or unbalanced data.

A sample confusion matrix for a multinomial NN is shown in Table 7. Category K can

be predicted with 75% accuracy by the NN but category B displays an accuracy of 0%. The

R2 for this model was 0.16.

5.2. Results Summary

In summary, the binomial approaches trained on the six month time series using balanced

training data achieved the best performance. They are of less practical value than a

multinomial classifier as they have to be tested against each household category and a

weighted average calculated to yield an equivalent multinomial response. There was no

significant difference between the EN and NN classifiers or simpler number of persons

classification scheme. Some household categories were easier to identify than others. The

R2 value of the balance binomial NN for single person households was 0.71 (Table 4).

6. Discussion and Conclusion

This novel study describes an approach to household classification using smart meter data.

The study presents a proof of concept for the use of ML and GLM models on new data
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Fig. 6. Scatter plot for household category K (single adult), binomial EN and NN using balanced data.

Table 6. Testing results – multinomial approach.

Testing data

Classifier Accuracy SCE SSE RMSE CV R 2

Unbal. Multi EN 39.00 751.91 781.76 0.86 698.15 0.26
Bal. Multi EN 21.55 212.92 209.92 0.92 733.64 0.16

Unbal. Multi. NN 35.27 655.05 600.43 0.88 1409.23 0.22
Bal. Multi. NN 21.25 138.86 134.73 0.92 734.10 0.16
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sources such as SMD for use in the production of official statistics and by the public sector.

The binomial approach proved more useful to gain insight to household composition. The

multinomial models have greater potential for practical applications but were less able to

distinguish between the categories.

This study focused on exploring a specific consumer behaviour trial smart meter data set

with a view to learning a little more about it in the context of official statistics. The data

were anonymised so could not be linked to other data sources but may yet provide a set of

auxiliary information to allow NSIs determine whether a house is occupied or not, provide

estimates of the number of persons living in a house. Rich data on households, giving

a good indicator of a person or the number of persons living in a household, is highly

valuable to developing small area statistics or census like statistics on small areas.

The CSO is exploring additional data sources, (Dunne 2015). A building energy rating

system has been in operation in Ireland since 2009. The CSO has access to this data but

currently only one third of households have been rated. As this system evolves, it may be a

potential administrative source that could be linked to live (unanonymised) SM data to

improve the classification performance. This project has not yet been costed, but is one of

a number of possible data sources being considered for inclusion as a piece of the jigsaw in

the developing National Data Infrastructure. While the CSO has access under the Statistics

Act to access utility data such as SMD, it needs to evaluate how accessing such data can be

socially justified and that any such access is proportionate and protects the privacy of the

individual.

The insights gained during this study highlight some of the challenges and problems

associated with classification schemes. The aim was to evaluate SMD to identify existing

CSO household composition categories. As noted in Subsection 4.1, this smart meter study

uses a simpler household categorisation system based on the numbers of adults and

Table 7. Sample confusion matrix for multinomial NN using balanced data.

Test

Predicted by household category

B C F G H I K M Σ

% 

Acc

A
ct

ua
l b

y 
ho

us
eh

ol
d 

ca
te

go
ry

B 0 0 6 6 0 6 2 0 20 0

C 0 0 4 10 1 3 1 1 20 0

F 0 0 8 6 0 4 2 0 20 40

G 0 0 5 2 1 8 4 0 20 10

H 0 0 4 4 1 7 4 0 20 5

I 1 0 1 2 0 8 8 0 20 40

K 0 0 0 0 0 5 15 0 20 75

M 0 0 10 4 0 3 3 0 20 0

1 0 38 34 3 44 39 1 160
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children sharing a dwelling unit. Some households, such as single person households

(Category K) appear to be more easily identified. However, the usage patterns for most

existing CSO household categories are not sufficiently unique to be identified by their

electricity consumption alone. There is a potential role for SMD driven models to estimate

household composition in nonresponse or hard to reach households. It is also likely the

classifiers could identify an empty (zero occupants) household. No such households were

included in the CBT.

There is significant interest in NSI communities to identify and harness new data

sources which may offer the opportunity for new insights. These sources may not be well

structured, may have corrupt or missing segments, and may require considerable

preprocessing to be manipulated into a useful format for analysis. Furthermore, the data

may come from a domain not familiar to NSI staff and will involve a significant learning

curve.

NNs and ML techniques have become more widely used for classification tasks,

offering alternatives to traditional statistical methods for organisations intent on exploring

new, possibly noisy, data sources. The NN and EN models had similar performance. There

was no distinct advantage in favour of either the machine learning or generalised linear

modelling approach. Neither approach was able to classify households with high

reliability. The confusion matrices give some insight into how households can be

misclassified based on the similarity of usage patterns. Statistical models such as ENs may

be more familiar to NSI communities in comparison to ML techniques so may be a more

suitable approach.

Finally, in response to our research question whether CSO household composition can

be estimated from analysis of SM electricity usage, we report only limited success in

identifying households in general, but suggest that future studies linking SMD to

supplementary information about the dwelling/building or other properties of the

household could be beneficial.

Appendix 1

Features

The 21 features created for development of the models are described below. l is the total

number of half hourly intervals over the particular time frame, n is the total number of

intervals in a day, m is the total number of days in the time frame and E is the electrical

demand in kWh:

1. Mean: mean consumption over the time frame l. Emean ¼
1
l

Pl
i¼1 Ei

2. Max: maximum consumption during the time frame l. Emax ¼ max Eif g
� �

where 1 # i # l

3. ToUmax: the time slot i when Max occurs, 1 # i # n. Note n ¼ l (mod 48) as we

cycle through the days in a time frame.

4. TEC: total electricity consumed over the time frame l. ETEC ¼
Pl

i¼1 Ei

5. MDM: Mean daily max is the average of the Max values for each of the m days.

EMDM ¼
1
m

Pm
j¼1 Ej where Ej ¼ maxð Eif gÞ for each m days: 1þ n m 2 1ð Þ # i # nm
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6. Load Factor: This is the average of the ratios of the daily mean to daily maximum

consumption. It is a measure of the peak of a household’s load profile. A larger load

factor indicates a household who uses electricity more evenly across the day while a

low load factor indicates small periods of large consumption. For example, the load

factor for the first day is ELF1
¼

1=nð Þ
Pn

i¼1
Ei

max ð Ei; 1#i#nf gÞ
.

7. Variance: a measure of how far the electricity readings are spread out from the

mean reading. EVAR ¼
1
l

Pl
i¼1 Ei 2 Emeanð Þ2

8. Standard Deviation: a measure of the variation or dispersion around the mean

reading, it is the square root of the variance. ESD ¼
ffiffiffiffiffiffiffiffiffiffi
EVAR

p

9. Range: the difference between the biggest and smallest electricity consumption

readings. ERange ¼ max Ei; 1 # i # lf g
� �

2 minð Ei; 1 # i # lf gÞ

10. Interquartile range (IQR): measures the difference between the third quartile and

first quartile values of the data.

11. Morning max: the mean daily maximum electricity demand prior to 10 am on

a weekday. EMornmax ¼
1
m

Pm
j¼1 Ej where Ej ¼ max Eið Þ and i is within the first

20 time slots of each day.

12. Morning peak: the morning max minus the mean value between 10 am and 12 am

on a weekday. This feature measures the size of a morning spike if one exists. It was

observed that households with children were more likely to have a defined peak in

the morning time on a weekday.

13. Morning range: the Morning max minus the minimum value before 10 am.

14. Weekday Area: The area under the curve was approximated using the trapezoid

rule.

15. Weekday Midpoint: The midpoint of the function was defined as half the total

weekday area, the value returned was the time of day where the midpoint occurred.

16. Weekday Centroid: Analogous to the geometric centroid, the centroid of a function

is the “centre of mass” of that function.

17. Weekday AM Slope: The slope of the early morning peak (up to 10 am) was taken as

the rate of increase of energy consumption over time during the early morning period.

18. –21. The procedures for features 15–17 were repeated to produce the equivalent

features derived from the weekend energy consumption. These features were

observed to differ to those during the working week, possibly due to behavioural

changes at weekends.

Appendix 2

Error Metrics

The models were assessed using the following error metrics where yi ¼ predicted value of

the ith meter, ti ¼ true value of the ith meter, N ¼ Number of meters and �t ¼ mean of the

true values.

1. Percentage of Correct Predictions (Accuracy): For the binomial model, the values

predicted by the classifier are rounded to the nearest integer. For example, a
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prediction of 0.364 is rounded to zero, which indicates false. This says the meter does

not belong to the category being tested. A predicted value of 0.759 is interpreted as

true and means that the meter is assigned to that particular category. If the predicted

category matches the true category, then the prediction is correct.

For a multinomial classifier, a “winner-takes-all” approach assigns the category with

the largest value to 1 and sets the remaining categories to 0. For example, a model

concerned with four household categories produces output (0.25, 0.48, 0.10, 0.17).

This is interpreted as (0, 1, 0, 0). This is a correct prediction if this was the true

category of the meter.

2. Sum of Squared Error (SSE): The sum of the squared differences between the actual

and predicted value. SSE ¼
PN

i¼1 ð yi 2 tiÞ
2.

3. Root Mean Squared Error (RMSE): RMSE is an extension of SSE. The SSE is

divided by the total number of meters to find the mean squared error (MSE).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
ð yi2tiÞ

2

N

r

.

4. Sum of Cross Entropy Error (SCE): The SCE is computed for each of the meters in

the data set and is summed over the entire data set to get the SCE for the data set.

RMSE was used to compute the training error in the binomial classifier while SCE is

used in the multinomial classifiers. SCE ¼ 21
PN

i¼1 ðti log 10yiÞ.

The reason for choosing SCE over RMSE for the multinomial classifier is

demonstrated in the following example: a classifier concerned with four household

categories produces (0.12, 0.57, 0.16, 0.15) and the true classification is (0, 1, 0, 0).

The RMSE is 0.25.

Now suppose the predicted output was (0.33, 0.57, 0.0, 0.1), the RMSE is then 0.28.

Although the probability of the meter being classified as the second category is the

same in both cases, the RMSE differs. Using the SCE all but one of the error terms is

zero and the SCE for both cases is 2 log(0.57) ¼ 0.24.

5. Coefficient of Variation (CV): CV evaluates the relative closeness of the predictions

to the actual values. The CV for a model describes the accuracy of the model in terms

of the relative sizes of the residuals and the actual values. A high CV represents a

large dispersion in the variables. An advantage to using this error term is that it is

unitless and therefore it can be used to compare model performance. For balanced

data, the CV value is just a multiple of the RMSE term but for unbalanced data it is

particularly useful.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
ð yi2ti Þ

2

N

q

�t
100.

6. Pseudo R 2: R 2 quantifies how much of the variability is explained by the model.

It indicates how well the data points fit some model representation of the data. Like

CV, R-squared is unitless. In this study pseudo R 2 is defined as: 1 2

PN

i¼1
ð yi2tiÞ

2

PN

i¼1
ðtiÞ

2

The values of R 2 lie between zero and one. An R 2 value of 1 represents a perfect fit

while a value of 0 represents inappropriate model fit.
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