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Weighting methods are commonly used in situations of unit nonresponse with linked register
data. However, several arguments in terms of valid inference and practical usability can be
made against the use of weighting methods in these situations. Imputation methods such as
sample and mass imputation may be suitable alternatives, as they lead to valid inference in
situations of item nonresponse and have some practical advantages. In a simulation study,
sample and mass imputation were compared to traditional weighting when dealing with unit
nonresponse in linked register data. Methods were compared on their bias and coverage in
different scenarios. Both, sample and mass imputation, had better coverage than traditional
weighting in all scenarios.

Imputation methods can therefore be recommended over weighting as they also have
practical advantages, such as that estimates outside the observed data distribution can be
created and that many auxiliary variables can be taken into account. The use of sample or
mass imputation depends on the specific data structure.
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1. Introduction

Missing data form a ubiquitous source of problems in survey research. A common research

scenario occurs when respondents that are sampled from the population cannot be

contacted, or when they are reluctant to conform to the survey. If no analysable

information about the respondent is collected, we deem it unit nonresponse. In such a

scenario, we can distinguish between two missing data problems. The first problem is that,

when sampling from the population, not all units from the population are recorded (which

is the usual process of sampling producing missing data by design). The second problem is

that the sample is found to be incomplete. The severity of these problems is related to the

probability each data point has of being missing.

The mechanism that governs these probabilities is called the missing data mechanism

(Rubin 1976). To describe these mechanisms, we assume to have a data set consisting of

an incomplete target variable Y and a fully observed covariate X. The incomplete target

variable Y has two parts: an observed part Yobs and a missing part Ymis. An indicator

variable R can be defined that scores a 0 when Y is missing and a 1 when Y is observed.
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If the data are Missing Completely At Random (MCAR, Rubin 1976), the response

probability for the respondents and nonrespondents is equal. This can be formally

defined as:

PðR ¼ 0jYobs; Ymis;XÞ ¼ PðR ¼ 0Þ ð1Þ

“An example of MCAR is a weighing scale that ran out of batteries. Some of the data will

be missing simply because of bad luck” (Van Buuren 2012, 7). If the data are Missing At

Random (MAR, Rubin 1976), the distribution of the missing values is related to other

observed values, formally defined:

PðR ¼ 0jYobs; Ymis;XÞ ¼ PðR ¼ 0jYobs;X Þ ð2Þ

“For example, when placed on a soft surface, a weighing scale may produce more missing

values than when placed on a hard surface. Such data are thus not MCAR. If, however, we

know surface type and if we can assume MCAR within the type of surface, then the data

are MAR” (Van Buuren 2012, 7). If the distribution of the missing values relates to

unobserved values, it is called Missing Not At Random (MNAR, Rubin 1976), formally

defined:

PðR ¼ 0jYobs; Ymis;X Þ ¼ PðR ¼ 0jYobs; Ymis;X Þ ð3Þ

“For example, the weighing scale mechanism may wear out over time, producing more

missing data as time progresses, but we fail to note this. If the heavier objects are measured

later in time, then we obtain a distribution of the measurements that will be distorted” (Van

Buuren 2012, 7).

Sometimes register data is available with information about the characteristics of the

respondents and the nonrespondents that can be linked to the survey data (Bethlehem et al.

2011, 211). If there is a relationship between the selection mechanism and the survey

variables, the estimators will systematically over- or under-represent the population

characteristics. Such deviations can be corrected by weighting the observed data to

conform to the known population parameters. If done properly, both distinct missing data

problems can in theory be solved. However, there are several arguments against the use of

weighting techniques to handle nonresponse. We list them in no particular order:

1. Weighting ignores the uncertainty about the missing data. This may result in too little

variation about the estimates (Bethlehem et al. 2011, 184).

2. Weighting methods cannot create estimates that lie outside the observed data

distribution. Although some researchers might view this as an advantage of

weighting and would worry when a method could yield estimates outside the

observed data distribution, an example given by Rubin illustrates when this could be

problematic: “Consider dealing with censored data by weighting – data beyond or

approaching the censoring point have zero or very small probabilities of being

observed, and so either cannot be dealt with by weighting or imply a few obser-

vations with dominant weights. Weighting by inverse probabilities cannot create

estimates outside the convex hull of the observed data, and estimates involving

weights near the boundary have extremely large variance” (Rubin 1996, 486).
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3. Uncertainty about the weights is ignored when weights are estimated from the data

and thereby treated as fixed, given that the data conform to sampling variance. When

taking additional measures, such as combining jackknife procedures with calibration,

or by using design based analysis, weights can be treated as random.

4. Weighting has difficulties with handling large numbers of auxiliary variables, which

are potentially needed to make the nonresponse ignorable (Rubin 1987, 155).

Additional measures should then be taken, such as dimension reduction or propensity

score estimation.

5. Weighting can have difficulties with creating sensible weights when more auxiliary

information is incorporated. As a result, it is possible that the score on a target

variable of an individual is used to represent a large group in the population. An

illustrative example from the United States of America 2016 presidential elections

show how one man heavily influenced the outcome of a poll due to extreme weights

being given to his demographic category (Cohn 2016).

6. Some weighting methods cannot handle continuous variables.

7. Weighting cannot handle partial response. It is an all or nothing approach and may

thereby discard valuable information (Van Buuren 2012, 22).

Because of arguments 1 and 3, we expect weighting to create too little variance and

therefore to yield invalid inference (with confidence validity as defined by Rubin (1996)).

We expect multiple imputation (MI) to be a good alternative method to correct for unit

nonresponse, since it takes sampling variability as well as uncertainty due to missing

values into account (Rubin 1987, 76). Furthermore, with MI there is no limit to the use of

auxiliary information: continuous variables or the number of variables are less likely to

pose problems, as the likelihood of the observed data given the unobserved data is taken

into account. In cases of large numbers of variables or nonlinear associations, principal

component analysis can be used (Howard 2012). In addition, item and unit non-response

can be handled simultaneously with MI.

The goal of this article is to investigate whether MI is a suitable alternative for

weighting when correcting for unit nonresponse. In this article, we distinguish between

sample and mass imputation. With sample imputation, both item and unit nonresponse

(occuring both in the sample) can be imputed. If the sample is a simple random sample

without replacement (SRSWOR) auxiliary information is only needed for the sample.

However, sometimes registers with information about the whole population can be linked

on a unit level to sample data sets. This is for example the case at Statistics Netherlands

where complete population registers were used in the 2011 Dutch census (Schulte

Nordholt et al. 2014). If this is the case, the nonsampled units can be imputed as well

(besides the item and unit nonresponse within the sample). Mass imputation can then be

applied with SRSWOR or complex samples.

Our definition of mass imputation should not be confused with the approach of Zhou

et al. (2016), who generate a synthetic data set based on known population totals. A benefit

of mass imputation is that every source of (linked) auxiliary information can be used for

imputation. This means that a MNAR missing mechanism can become MAR, leading to

more efficient estimation of (population) parameters.
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We investigate the performance of weighting and both sample and mass imputation. As

a reference, we also investigate complete case analysis (CCA), where no correction for

unit nonresponse is made. With performance, summarized as ‘valid inference’ in the title,

we mean obtaining unbiased parameter estimates and unbiased variance estimates.

2. Methodology

In this article, we distinguish between multiple auxiliary variables X and a single target

variable y, which we assume to be normally distributed with mean m and variance s2. If

we would take a SRSWOR, the estimate of the sample mean of a target variable y is:

m̂ ¼
1

n

Xn

i¼1

yi; ð4Þ

where yi is the observation on the i th sampled unit with i ¼ 1, : : : , n, where n is the sample

size. The estimate of the variance of the mean is:

VARðm̂Þ ¼
1

n 2 1

Xn

i¼1

ð yi 2 m̂Þ2
1

n
1 2

n

N

� �
; ð5Þ

where N is the size of the (finite) population. This is how m and VAR(m) are estimated

when the sample is completely observed. We will now discuss different methods to

estimate these parameters in case of unit nonresponse.

2.1. Complete Case Analysis

When CCA is applied, nonrespondents are completely removed from the sample. m and

VAR(m) are estimated with the same equations used for a completely observed sample, as

in Equations 4 and 5. However, with unit nonresponse, not all values in y are observed, and

only the observed values in y are used to estimate m and VAR(m) of the target variables:

m̂ ¼
1

nobs

Xnobs

i¼1

yobsi
; ð6Þ

VARðm̂Þ ¼
1

nobs 2 1

Xnobs

i¼1

ð yobsi
2 m̂obsÞ

2 1

nobs

1 2
nobs

N

� �
: ð7Þ

2.2. Weighting

The weighted mean of a target variable is defined as

m̂ ¼

Xnobs

i¼1
wiyobsiXnobs

i¼1
wi

ð8Þ

where wi is the weight corresponding to the i th observation (Biemer and Christ 2008, 318)

and m is a vector quantity (and is so throughout the remainder of the article). The weights,

wi, can be estimated with different methods, such as poststratification, linear weighting,
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multiplicative weighting and propensity weighting. A full description of how to apply

the different methods can be found in Chapter 8 of Bethlehem et al. (2011). De Waal

et al. (2011, 237–244) show that under certain conditions, linear weighting and mass

imputation yield the same estimate. Therefore, it would be interesting to use this method to

estimate the weights, and investigate whether these methods also yield the same inference.

For this reason, we use linear weighting to estimate wi.

Linear weighting is a calibration method, and is thoroughly discussed by, among others,

Deville and Särndal (1992) and Särndal et al. (1992). When estimating weights, it is

important to note first that these weights (wi) consist of two parts:

wi ¼ didi; ð9Þ

where di are the sampling design weights. For a SRSWOR, N and n are fixed numbers, di is

constant and does not need to be estimated:

di ¼ N=n: ð10Þ

di is the adjustment factor. Our goal is to find a di which makes wi as close as possible to di,

while respecting the calibration equation

Xnobs

i¼1

wiXi ¼ tX; ð11Þ

where X represents the auxiliary variables and tX are the population totals of X.

Minimizing the function

Xnobs

i¼1

ðwi 2 diÞ
2=di ð12Þ

leads to what is also known as linear weighting, which is a special case of calibration. We

derive new weights here that modify as little as possible to the original sampling design

weights di by minimizing the conditional value of the distance, given the realized observed

sample nobs. This leads to the calibrated weight

wi ¼ dið1þ X 0ilÞ ð13Þ

where l is a vector of Lagrange multipliers determined from Equation 12:

l ¼ T21
nobs
ðtX 2 t̂XpÞ: ð14Þ

The inverse of Tnobs
is

T21
nobs
¼

X
diXiX

0
i

� �21

ð15Þ

and t̂Xp is the Horvitz-Thompson (Horvitz and Thompson 1952) estimator for X:

t̂Xp ¼
Xnobs

i¼1

diXi ð16Þ

(Deville and Särndal 1992). The variance of a weighted mean can be approximated with

methods such as Taylor linearization or Jacknife resampling (Stapleton 2008, 355). We
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use Taylor linearization and we assume for convenience that there is a vector of constants

g, such that g 0Xi ¼ 1 for all i. In that case,
Pnobs

i¼1 wi ¼ N. Then, the variance of a weighted

mean can be approximated by:

VARðm̂Þ ¼
1

N 2

Xnobs

i¼1

Xnobs

h¼1;h–i

pih 2 piph

pih

di

ei

pi

� �
dh

eh

ph

� �
ð17Þ

where pi and ph are the first order and pih the corresponding second order inclusion

probabilities of observations i and h, and ei (and eh) are defined as:

ei ¼ yi 2 X 0iT
21
nobs

Xnobs

l¼1

Xlyldl ð18Þ

(Särndal et al. 1992, 225–236).

2.3. Sample Imputation

With MI, each missing datapoint is imputed m $ 2 times, resulting in m completed data

sets. At least two imputations are needed to reflect the uncertainty about the imputations,

although performing more imputations is often advisable. The m data sets can then be

analyzed by standard procedures and the analyses combined into a single inference. A

clear introduction to multiple imputation and different methods to impute the missing

datapoints is given in Van Buuren (2012, Chapter 2).

With sample imputation, we only impute the nonrespondents in the sample. Because the

imputation theory aims at inference about the population, sampling uncertainty is taken

into account and we can use the standard rules for pooling.

The pooled estimate of m is obtained by

�m ¼
1

m

Xm

j¼1

m̂j ; ð19Þ

where m is the number of imputations with j ¼ 1, : : : , m and m̂j is the m̂ of the j th imputed

sample. VARðm̂Þ consists of multiple components (we therefore name it VARðm̂Þtotal) and

is estimated

VARðm̂Þtotal ¼ VARðm̂Þwithin þ VARðm̂Þbetween þ
VARðm̂Þbetween

m
; ð20Þ

where VARðm̂Þwithin is the within imputation variance and VARðm̂Þbetween is the between

imputation variance. VARðm̂Þwithin is calculated by

VARðm̂Þwithin ¼
1

m

Xm

j¼1

VARðm̂Þwithinj
ð21Þ

and VARðm̂Þbetween is calculated by

VARðm̂Þbetween ¼
1

m 2 1

Xm

j¼1

ðm̂j 2 �mÞðm̂j 2 �mÞ0: ð22Þ
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2.4. Mass Imputation

With mass imputation, the estimate of m is also obtained by Equation 19, although m̂j now

corresponds to the j th imputed version of the population instead of the the j th imputed

sample.

Because we impute the population, there is no variance due to sampling. Therefore,

VARðm̂Þwithin ¼ 0 and we can adjust Equation 20 to

VARðm̂Þtotal ¼ VARðm̂Þbetween þ
VARðm̂Þbetween

m
: ð23Þ

For a thorough description of making multiply imputed inference when sampling variance

is not of interest see Vink and Van Buuren (2014).

3. Simulation Approach

To empirically evaluate the performance of the different analysis methods, we conducted

a simulation study using R (R Core Team 2015, version 3.2.2). The properties we

manipulate in the simulation design can be summarized as follows:

. The correlation between the auxiliary variables and the target variables: 0.30; 0.50.

. The amount of missingness: 25%; 50%.

. The missingness mechanism: MCAR; left-tailed MAR.

. The analysis method: CCA; lineair weighting (calibration); Bayesian normal linear

imputation of the sample; Bayesian normal linear imputation of the population.

We now discuss the properties of the simulation design in more detail.

3.1. The Correlation Structure

We start by creating a large but finite population of 100,000 units with two auxiliary (X1

and X2) and two target variables (Y1 and Y2). The population data is multivariate normally

distributed with m and S:

X1

X2

Y1

Y2

0

BBBBB@

1

CCCCCA
¼ MVNðm;SÞ;

where m is:

m ¼

X1

X2

Y1

Y2

3

2

0

170

0

BBBBB@

1

CCCCCA
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and S is either:

X1 X2 Y1 Y2

S ¼

X1

X2

Y1

Y2

1:00 0:08 1:34 1:90

0:08 0:25 0:67 0:95

1:34 0:67 20:00 4:24

1:90 0:95 4:24 40:00

0
BBBBB@

1
CCCCCA

when the correlations between the target variables and the auxiliary variables are 0.30, and

X1 X2 Y1 Y2

S ¼

X1

X2

Y1

Y2

1:00 0:08 2:24 3:16

0:08 0:25 1:12 1:58

2:24 1:12 20:00 4:24

3:16 1:58 4:24 40:00

0

BBBBB@

1

CCCCCA

when the correlations between the target variables and the auxiliary variables are 0.50. The

target variables X1 and X2 are transformed into categorical variables with respectively six

and four categories, because auxiliary register information is in practice often categorical.

3.2. The Amount of Missingness and the Missingness Mechanism

From the population of size 100,000, a random sample of size 5,000 is drawn. In each

sample, either 25% or 50% missingness is induced in the Y1 and Y2 variables.

The missingness in the target variables follow MCAR or left-tailed MAR mechanisms

conform the procedure described by Van Buuren (2012, 63). With a left-tailed MAR

mechanism, the probability of having missing values in the target variables is larger for

smaller values on the auxiliary variables. For example, consider the number of employees

of a company to be the auxiliary variable on which the missingness depends and working

conditions of the company as target variables. In this situation, it is likely that more missing

values are found at the companies with fewer employees. The first reason for this is that

smaller companies are often less well organized. However, researchers are also probably

more interested in larger companies, and are more likely to re-contact these in cases of

nonresponse. If you sort companies on an axis with number of employees, you find more

missing values on the left side of this axis, where the smaller companies are found.

3.3. The Analysis Method

We estimate m̂ and VARðm̂Þ of the target variables by making use of CCA, weighting,

sample imputation and mass imputation. There are slight differences between the

simulation setup within the different methods. For CCA, 96.25% or 97.50% of the 100,000

population values could be deleted directly from the target variables using MAR or MCAR

to come to a sample of 5,000 with 25% or 50% missing values. The estimates of the

incomplete sample can be compared directly to the population values.
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For weighting, we first select randomly 5,000 cases from the population. Next, we

create unit missingness following one of the missingness mechanisms. We weight the

respondents to the total sample using the population totals. Weights are calculated using

the survey package (Lumley 2014, version 3.30-3) in R (R Core Team 2015, version 3.2.2)

with the calibrate() function. We evaluate the performance of weighting by

comparing the results of the weighted sample to the population values. The design weights

are di ¼ N/n ¼ 100,000/5,000 ¼ 20. The adjustment factors di can be found in Table 1,

which can be used to compute the weights wi ¼ didi.

We are aware that some of the correction weights are considered large and that weighted

estimates may be inefficient in such scenarios. An option would be to trim the weights to

predefined boundaries. However, by not trimming the weights, we are able to investigate the

performance of the method itself and its default options to other methods and their default options.

For sample imputation, we also 5,000 cases from the population and create unit

missingness in the sample. Next, we multiply impute the sample and compare the results

of the imputed sample to the population results.

For mass imputation, we can directly delete 96.25% or 97.50% of the values of the

target variables and multiply impute the population. The results of the imputed population

are compared to the original population results. Both sample and mass imputations are

executed with mice (Van Buuren and Groothuis-Oudshoorn 2011) in R (R Core Team

2015) using Bayesian normal linear imputation (mice.impute.norm()) as the

imputation method with five imputations and five iterations for the algorithm to converge.

3.4. Performance Measures

We estimate m̂ and VARðm̂Þ by using the previously discussed methods and replicate this

procedure 1,000 times. In each replication, we investigate these estimates by looking at

two performance measures. First, we look at the bias of m̂ of the two target variables. This

bias is equal to the difference between the average estimate over all replications and the

population value. Next, we look at the coverage of the 95% confidence interval. This is

equal to the proportion of times that the population value falls within the 95% confidence

interval constructed around the m̂’s of the two target variables over all replications.

3.5. Expectations

When CCA is applied and the missingness is MCAR, the probability of being missing is

equal for every unit in the sample. Therefore, we do not expect biased estimates of m̂.

Table 1. Smallest and largest adjustment factor per simulated condition.

MCAR MARleft

cor. % mis min max min max

25 1.2305 1.4511 0.9682 4.2467
0.3 50 1.7472 2.3080 0.9419 13.8479

25 1.2298 1.4513 0.9646 4.2426
0.5 50 1.7454 2.3128 0.9273 13.4502
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However, with MAR, the probability of being missing is not equal for every unit, and

we do expect bias. Since parameter uncertainty and uncertainty about the missing values

is not taken into account when estimating the variance of the mean, we also expect

undercoverage with MAR.

When weighting is applied, we expect unbiased estimates of m̂ under both MCAR and

MAR. The variance estimate takes the weights and parameter uncertainty into account, but

not the uncertainty about the missing values. Therefore, we expect an estimate of the

variance of the mean that is a bit too small, resulting in undercoverage under MAR.

For sample imputation we expect unbiased estimates and adequate coverage under both

MCAR and MAR.

For mass imputation, we also expect unbiased estimates and adequate coverage under

both MCAR and MAR.

4. Results

The simulation results are depicted in Table 2. Note that the results for CCA in terms of

coverage and confidence interval width with correlation 0.30 and 0.50 look identical under

MCAR. Small differences in the results were found, but these occur after the fourth decimal.

4.1. The Missingness Mechanism

The methods that aim to correct for the nonresponse show equivalent bias and coverage

patterns under MCAR and left-tailed MAR missingness mechanisms. Naturally, the loss of

observed information results in larger confidence interval widths under left tailed MAR

missingness than under MCAR missingness mechanisms. CCA is unable to handle the

estimation under left-tailed MAR missingness and yields large bias, zero coverage and

confidence intervals that are, as expected, equally wide to those under MCAR.

4.2. The Correlation Structure

Larger correlations are often beneficial when solving incomplete data problems because

the correlations give strong direction to the estimation procedure. This is clearly visible in

all methods that aim to solve the missingness problem as confidence intervals tend to

become smaller when the correlation between the target variables and the linked register

data increases. Interestingly, the coverage rates for weighting are negatively impacted

under large correlations. In this specific situation the bias remains roughly the same as

under low-correlation simulations, while the confidence interval widths decrease. As a

result, the simulations for weighting demonstrate lower coverage of the population mean.

4.3. The Amount of Missingness

In general, it can be said that when amounts of missingness become larger, incomplete

data problems become more difficult. More specifically, the probability that you deal with

a MNAR mechanism increases. None of the methods seem negatively impacted by the

increased amount of missingness, when compared to the results under less missingness.

However, the confidence intervals naturally tend to become wider as there is less

information about the observed data.
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4.4. Overall Efficiency

We investigate efficiency of the methods in the sense that we investigate which methods

have the smallest confidence interval widths under which conditions. When investigating

the results, we see that CCA is an efficient method yielding valid inference under MCAR.

There is no need for handling the nonresponse as the nonresponse is perfectly ignorable:

the set of observed values can simply be analyzed to obtain unbiased estimates about the

population. Even though the missingness is MCAR, treating the missingness can increase

the statistical power of the analyses at hand. This is demonstrated by weighting and

imputing the sample as the confidence intervals under these approaches are generally more

narrow than under CCA. Mass imputation, on the other hand, does not show this result.

This can simply be explained by the severity of the problem that is considered with mass

imputation in our simulation setup. After all, under mass imputation we aim to solve at

least a 96.25% missingness problem.

Even though mass imputation may yield less sharp inference than sample imputation

and weighting, the inference is valid and exhibits correct variance properties under all

simulation conditions. The same can be said of sample imputation, but with much sharper

inference. The estimates obtained under weighting are unbiased, the intervals are among

the smallest, but the coverage rates are somewhat low. Especially when larger correlations

occur in the data, one could question the validity of inference obtained by weighting.

Furthermore, it is surprising that these low coverage rates occur under both MCAR

and MAR, indicating that the variance of a weighted mean estimated using Taylor

linearization indeed ignores uncertainty about the missing data and possibly about the

weights as well.

5. Discussion

We have demonstrated that weighting and imputation are practically equivalent when

unbiased estimation is of interest. However, the inference obtained under weighting may

be questionable in situations where multiple imputation approaches exhibit correct

variance properties and well-covered population estimates. In general it holds that

inferring about the population by imputing the sample yields efficient, unbiased

estimates in all simulated conditions, which is in line with conclusions drawn by

Peytchev (2012).

A main characteristic of our simulation approach is that it deals with a SRSWOR. With

more complex sampling approaches, it would not be sufficient to only impute the sample,

since the complex sampling structure is then ignored. Although we did not investigate this,

we do expect that mass imputation will lead to unbiased and efficient estimates when a

more complex sample is drawn because the design of the complex sample is always based

on observed information, so the missingness mechanism describing the sample to the

population is always MAR. However, this is not included in this simulation study, and

additional research should be done.

Furthermore, in this simulation we assume quite an ideal situation, where the sample is

perfectly linked to a completely observed population register. Of course, this is not often

the case in practice. In addition to the traditional Total Survey Error framework introduced
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by Groves et al. (2009), Zhang (2012) introduced a two-phase life cycle of integrated

statistical micro data, which also discusses the errors that might be encountered when

multiple data sets are combined, such as identification or comparability error.

Furthermore, we also assume that our population register is perfectly observed. This is

in practice also not often the case, although this is commonly assumed by many

researchers. Recently, imputation methods have been developed to take misclassification

in combined data sets into account, for example by assuming that a certain proportion

of the data is misclassified (Manrique-Vallier and Reiter 2016) or by estimating the

number of misclassified units by using information from multiple sources (Boeschoten

et al. 2016).

It is clear that weighting does not include all sources of uncertainty. This limits the

validity of the inference obtained under weighting. Theoretically, these sources of

uncertainty could be added to the estimations that are obtained from weighted data sets.

However, we have demonstrated that the imputation approaches take the sources of

variations about the observed and missing data properly into account. Adjusting the

weighted estimation to allow for valid inference under unit nonresponse would therefore

be redundant as it is a complicated step to solve a problem that can be straightforwardly

solved by another approach.

In addition, weighting cannot handle partial response (Van Buuren 2012, 22).

Analyzing multivariate response data with partial responses will be particularly

problematic when weighting is applied, and multiple imputation is a very suitable

alternative in this setting.

It is known that complete case analysis yields valid inference under MCAR mechanisms

and that its performance may be severely impaired under MAR missingness. The results of

complete case analysis in simulations can be very informative, as it can act as a point of

reference for the performance of other methods. At the same time, the validity of the

simulation scheme can be assessed, because we know the theoretical properties under

which complete case analysis can be applied. Failure to meet these expectations indicates

a faulty simulation scheme. This is not the case.

The simulation study conducted in this article illustrated that multiple imputation

methods lead to valid inference in situations of unit nonresponse and have practical

advantages over weighting. Whether sample or mass imputation methods should be used

depends on the specific data structure.
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