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Several statistical agencies have started to use multiply-imputed synthetic microdata to create
public-use data in major surveys. The purpose of doing this is to protect the confidentiality
of respondents’ identities and sensitive attributes, while allowing standard complete-data
analyses of microdata. A key challenge, faced by advocates of synthetic data, is demonstrating
that valid statistical inferences can be obtained from such synthetic data for non-confidential
questions. Large discrepancies between observed-data and synthetic-data analytic results for
such questions may arise because of uncongeniality; that is, differences in the types of inputs
available to the imputer, who has access to the actual data, and to the analyst, who has access
only to the synthetic data. Here, we discuss a simple, but possibly canonical, example of
uncongeniality when using multiple imputation to create synthetic data, which specifically
addresses the choices made by the imputer. An initial, unanticipated but not surprising,
conclusion is that non-confidential design information used to impute synthetic data should be
released with the confidential synthetic data to allow users of synthetic data to avoid possible
grossly conservative inferences.
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1. Introduction and Review of Issues

Releasing synthetic microdata rather than actual microdata is a method of statistical

disclosure control in the context of public dissemination of survey data. The goal is to limit

the risk of disclosure of survey respondents’ identities or sensitive attributes, while

simultaneously retaining enough detail in the synthetic data to preserve valid conclusions

drawn about the target population for many non-confidential population-level estimates. The

idea was first proposed by Rubin (1993) based on the theory of multiple imputation (Rubin

1987). Synthetic microdata sets are created by the imputer, often a federal agency, ideally

using samples drawn from the posterior predictive distribution of the target population under

a proper imputation model. Using (i) an acceptable imputation model that correctly captures

basic relationships among survey variables, and (ii) estimation methods based on the

principles of multiple imputation, analysts can make valid inferences about non-confidential

attributes in the target population using standard complete-data statistical methods, without

accessing the actual confidential microdata. If all observed values are replaced and no true

values are released, this process is known in the literature as creating fully synthetic data. A

partially synthetic data set consists of a mix of multiply-imputed and actual data values.
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Some basic inferential methods for the analysis of fully synthetic data were derived in

Raghunathan et al. (2003). Simulated and empirical data examples of fully synthetic data

can be found in Reiter (2002), Raghunathan et al. (2003) and Reiter (2005a). Since then,

the basic fully synthetic data framework has been adapted to meet other disclosure control

criteria. Some key developments requiring new inferential methods include inference from

partially synthetic data (Reiter 2003); releasing multiply-imputed synthetic data in two

stages (Reiter and Drechsler 2010), which allows agencies to release different numbers of

imputations for different variables (see also the related approach, called nested multiple

imputation, in Shen 2000; Harel and Schafer 2003; Rubin 2003); and sampling with

synthesis (Drechsler and Reiter 2010), which combines the disclosure control benefits of

partially synthetic data and random sampling, so that potential intruders no longer know

whether their target units are in the released data.

Prior to public release, the disclosure risk and data utility of any synthetic data set

should be assessed. Abowd and Vilhuber (2008) proposed some disclosure risk measures

for fully synthetic data based on the ideas of differential privacy from the computer

science literature. Methods to estimate risks of identification disclosure with partially

synthetic data were developed by Reiter and Mitra (2009), based on the earlier approach in

Duncan and Lambert (1989) which computes estimated probabilities of unit identification

conditional on the released data. Reiter et al. (2014) proposed a Bayesian framework to

estimate the disclosure risks in fully and partially synthetic data based on the distribution

of the original values given the released synthetic data and information on the data

generation mechanism. Data-utility measures attempt to characterize the quality of

inferences about the target population using the synthetic data, relative to those using the

actual data set. Such comparisons can be tailored to specific analyses (Karr et al. 2006), or

can be broadened to reflect global differences in distributions (Woo et al. 2009).

Reiter (2009) summarized some research challenges in multiple imputation for

disclosure limitation. One challenge is ‘confidence in synthetic data’, which requires

demonstrating to the public that useful statistical conclusions can be drawn about the

target population using synthetic data. This task is difficult because the imputer and any

analyst comprise distinct entities, and it is generally impossible for the imputer to foresee

and incorporate in its imputation models all estimands of importance to all future analysts.

Meng (1994, 539) defined imputation input to include the imputer’s model assumptions;

purpose of imputation; available information and data from the data collection phase, as

well as any other potentially related resources (e.g., past similar surveys). Imputation input

is summarized by an imputation model. Analysis input is more vague but includes the

analyst’s purpose of investigation; data made available for analysis; information about the

imputation model that is made available by the imputer; and the analyst’s computational

skills. Analysis input is summarized by an analysis procedure. Meng (1994, 539) coined

the term uncongeniality of the analysis procedure with the imputation model when using

multiple imputation to fill in missing data, expressed as follows:

‘Uncongeniality essentially means that the analysis procedure does not correspond to

the imputation model. The uncongeniality arises when the analyst and the imputer have

access to different amounts of information and have different assessments.’
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In other words, imputers and analysts have access to, and use, different types of inputs,

and this uncongeniality can lead to large discrepancies between observed-data analytic

results and synthetic-data analytic results. A common example occurs when a simple

imputation model does not capture some relationships of the observed data that are

important to the analyst. Uncongeniality is a challenging theoretical topic, with, at present,

only limited analytic results available. Furthermore, we cannot directly apply the technical

work on congeniality in Meng (1994) to synthetic data imputation and analysis, because

with synthetic data, at least part of the observed data set used for creating imputations is

confidential and is not available to analysts.

The aim of this article is to provide advice to the imputer regarding what information

and advice should be communicated to analysts for valid and efficient inference. If

analysts can ignore complex sampling designs and methods of imputation when analysing

synthetic data, that is, if they can assume that the multiply-imputed synthetic data come

from simple random samples, then the analysis burden is reduced. The utility of including

survey design information in synthetic data sets has been discussed briefly in Reiter

(2002), Drechsler et al. (2008), and Reiter and Drechsler (2010). We present a simple

simulation experiment to advance the discussion.

In Section 2 we review the creation of fully synthetic data. Section 3 describes the analysis

of fully synthetic data from Raghunathan et al. (2003). We describe our simulation experiment

in Section 4, and Section 5 discusses its results. Section 6 provides concluding remarks.

2. Creation of Fully Synthetic Data

Suppose the data collector, conducts a survey to collect detailed information from a

sample of n units from a target population of N ..n units. The original sampling

mechanism (denoted Iinc, inc for “included”) that generates the data uses r background

covariates (e.g., stratum indicators), which are known to the data collector for all N units in

the population and comprise the (N £ r) population matrix X. For the n units included in

the survey, information is collected on p variables of interest, whose values are unknown

prior to the survey; the values of these survey variables in the population comprise the

(N £ p) matrix Y. For simplicity, assume all survey variables in Y are confidential, but

none of the variables in X are confidential.

Let Yinc be the (n £ p) matrix representing the portion of Y corresponding to the

sampled (that is, included in the sample) units; Yinc is observed by the data collector. Let

Yexc be the ((N 2 n) £ p) matrix representing the portion of Y corresponding to not-

sampled (that is, excluded from the sample) units. Similarly let X inc be the values of X

corresponding to the included units, and let X exc be the values of X corresponding to the

excluded units. Define Z ¼ {X,Yinc} to be the set of known and observed (to the data

collector) microdata (that is, data at the unit level), which includes the values of the survey

design variables, X, for all units in the population.

If there were no confidentiality concerns, the data collector would release Z. Even if

Z were released, some users would discard, and hence not use, X exc if it is viewed as too

much of a burden to store and to attempt to use this information. The task for multiply-

imputed synthetic microdata is to create m . 1 synthetic microdata sets (denoted

Zð1Þsyn; : : : ; Z
ðmÞ
syn) for release instead of Z, where each Zðl Þsynðl ¼ 1; : : : ;mÞ consists of X and
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synthetic (i.e., imputed) values for nsyn units in the excluded part of the population, that is,

nsyn rows of Yexc. Multiply-imputed data sets are created using the following steps:

. Step 1: Draw m values of the excluded values Yexc from their joint posterior

predictive distribution g(YexcjZ), say Yðl Þexc, l ¼ 1, : : : , m, which is conditional on all

information in the population known to the data collector. At the conclusion of Step

1, we obtain m versions of the complete-data population, X;Yðl Þpop

� �
(l ¼ 1, : : : , m).

. Step 2: Draw nsyn units (rows) from each Yðl Þpop using sampling mechanism Isyn,

thereby producing Zðl Þsyn ¼ X;Yðl Þsyn

n o
for release, where Yðl Þsyn is the (nsyn £ p) matrix

of synthetic survey values of Y; because N ..n, and we assume N ..nsyn, for

simplicity we assume no actual observed values are included in any Yðl Þsyn. Let

Z
~

syn ¼ Zðl Þsyn; l ¼ 1; 2; : : : m
n o

be the set of m synthetic microdata sets.

Step 2 can be computationally merged into Step 1 by only imputing synthetic values for

units drawn by Isyn. Various methods can be used to generate approximate draws of Yexc

from their joint posterior predictive distribution: joint modelling (Schafer 1997);

sequential regression multivariate imputation (SRMI) (Van Buuren and Oudshoorn 2000;

Raghunathan et al. 2001), also known as multiple imputation by chained equations

(MICE); as well as other related approaches (e.g., Rubin 2003; Li et al. 2014). Note that

some of these methods (such as MICE) do not necessarily converge to the target joint

posterior predictive distribution. This topic of convergence of such methods has been an

active area of statistical research, but is beyond our topic here.

3. Analysis of Synthetic Data Sets

Let Q be the target population quantity of interest, that is, the estimand, and for simplicity

of exposition, let Q be a scalar function of X and Y, Q ¼ Q(X,Y). Suppose that, given the

original data set Z ¼ {X,Yinc}, the analyst would use a point estimate qinc of Q, and an

associated measure of sampling variance, vinc, and further suppose that using these, the

analyst’s inference in large samples would be valid; that is, qinc ^ 1:96
ffiffiffiffiffiffiffi
vinc
p

would be a

valid 95% confidence interval in the standard Neyman (1934) sense of including Q at least

95% of the time in repeated samples drawn using Iinc; both qinc and vinc are generally

functions of Yinc and X ¼ ðXinc;XexcÞ.

In place of Z, the collection of synthetic data sets Z
~

syn generated by the imputer

is released to analysts. Let
�
qðl Þsyn; v

ðl Þ
syn

�
be the values of the statistics qinc and vinc computed

from synthetic data set Zðl Þsyn (l ¼ 1; : : : ;m). The analyst needs rules to combine the results

from the analysis of the m synthetic data sets to draw inference about the target population

quantity Q. These rules are passed on to data analysts so that they can obtain valid

inferences in the standard frequentist sense.

Raghunathan et al. (2003) derived approximations to the first and second moments of

the posterior distribution of Q, assuming that both Iinc and Isyn are simple random

sampling mechanisms, and that the data are analyzed using standard estimators. Reiter

(2002) showed in a simulation study that valid inferences can be obtained for fully

synthetic data under sampling designs more complex than simple random sampling, but

still assuming that Iinc and Isyn are the same sampling mechanism. Raghunathan et al.

(2003) conjectured that Isyn and Iinc can be different sampling plans because each
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synthetic data set being released is created from the imputed complete-data population�
X;Yðl Þpop

�
, but this conclusion requires careful consideration, as we will see here.

For combining the m answers from the m synthetic data sets, the following three

quantities are used for inference about Q, assuming for the moment that both Iinc and Isyn

are simple random sampling:

�qm ¼
Xm

l¼1

qðl Þsyn

m
; ð1Þ

bm ¼
Xm

l¼1

qðl Þsyn 2 �qm

� �2

ðm 2 1Þ
; ð2Þ

and

�vm ¼
Xm

l¼1

vðl Þsyn

m
: ð3Þ

The analyst uses �qm as the point estimate of Q. The sampling variance of �qm is

estimated by

V̂syn ¼ 1þ
1

m

� �
bm 2 �vm: ð4Þ

Raghunathan et al. (2003) denoted the variance estimator in (4) as T̂m, whereas we have

changed the notation to V̂syn to avoid confusion with the standard sampling variance

estimator when using multiple imputation for missing data in Yinc: T̂m ¼ 1þ 1
m

� �
bm þ �vm

(Rubin 1987); V̂syn is not a sum (total) of two components, but rather, the mean within

variance �vm is subtracted in (4) because there is sampling variability when creating the

synthetic data that is included in the estimated between-imputation sampling variance

estimator bm. As with all method-of-moments estimators, (4) is not perfect; for example,

it is not constrained to be in the parameter space; for instance, the estimated sampling

variance, V̂syn, may be negative. When V̂syn is negative, alternative variance estimates (see,

for example, Reiter 2002; Drechsler and Reiter 2010) have been proposed that are always

positive. When V̂syn . 0, inferences for scalar Q can be based on a t-distribution with

degrees of freedom

df syn ¼ ðm 2 1Þ 1 2
1

rm

� �2

¼ ðm 2 1Þ 1 2
m

mþ 1

�vm

bm

� �2

; ð5Þ

where rm ¼
1þ1

mð Þbm

�vm
, so that a nominal 100ð1 2 aÞ% asymptotic confidence interval

estimate for Q is

�qm ^ tdf syn;a=2

ffiffiffiffiffiffiffiffi
V̂syn

q
: ð6Þ

The t-reference distribution was presented by Raghunathan and Rubin (2000) at the

International Society for Bayesian Analysis conference–May 2000. For large m, inference

can be based on a standard normal distribution.

Extensions for multivariate Q are presented in Reiter (2005b).
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4. Simple Simulation Experiment

In our simple simulation experiment, each unit, indexed by i ¼ 1, : : : , N ¼ 1,000,000, in

the target population, belongs to one of two strata, each of size 500,000, indicated by

Xi ¼ 1 or Xi ¼ 2, known to the data collector for all 1,000,000 units. The estimand, Q, is

the population mean of a univariate outcome variable Y. Population values for Y are

generated by (YijXi ¼ 1) , N(m1 ¼ 100, s1 ¼ 1), and (YijXi ¼ 2) , N(m2 ¼ 10, s2 ¼ 1),

where the simulation results are affinely invariant, that is, the identical statistical

conclusions would be obtained for any two-strata population with normal distributions

whose means are 90 standard deviations apart. The true population value of Q is clearly 55.

The sample drawn by Iinc has n ¼ 5,000 units, and thus the matrices Xinc and Yinc have

5,000 rows.

We conducted a 24 factorial experiment to investigate the implications of using different

methods at each of the four stages: data collection, imputation, sampling of the synthetic

data, and analysis of the synthetic data. The factors in the experiment are listed in Table 1.

The first factor (A) is the Actual sampling plan, either simple random sampling (SRS)

with 5,000 units or stratified random sampling using X (StRS) with 2,500 units in each

stratum. We assume that factor A is beyond the control of the creator of synthetic data.

The second factor (I) is the Imputation method, either (a) conditional on X – which is

the proper imputation model under StRS because X is used by StRS, or (b) not conditional

on X – which is an ad-hoc imputation model because it does not condition on all

information about the population that is known to the imputer and is improper under StRS.

Since Rubin (1978), the advice has been that any variable used in the actual sampling plan

must be included in the multiple imputation model for valid inferences to result.

The third factor (S) is the Synthetic-data sampling plan, Isyn, either SRS (with 5,000

units) or StRS (with 2,500 units in each stratum); the number of such data sets is fixed at

m ¼ 200. We assume that both factors I and S are under the control of the imputer of the

synthetic data.

Finally, the fourth factor (E) is the analysis (Estimation) procedure used by the analyst:

the simple random sampling estimator, dSRSSRS, or the stratified random sampling estimator,
dStRSStRS, and their associated standard sampling variance estimators. The dSRSSRS procedure

completely ignores X, even if it is released. The dStRSStRS requires knowledge of the exact

proportions of units in the two strata in the population. The dStRSStRS estimator is used to

improve efficiency and this estimator is the appropriate estimator if the synthetic-data

sampling plan is StRS, and it is the poststratification estimator if the synthetic-data

sampling plan is SRS. Another idea is to estimate the sampling rates for each stratum from

Table 1. Simulation factors.

Factor Description Levels

A Actual sampling plan {SRS, StRS} each with n ¼ 5,000
I Imputation model {Ad-hoc – not conditional on X,

Proper – conditional on X}
S Synthetic sampling plan {SRS, StRS}

E Estimation procedure dSRSSRS, dStRSStRS
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all the released synthetic samples. Because it is not clear how to use such information for

the two tasks of point estimation and for sampling variance estimation, such methods were

not studied here, but are considered methods worthy of future research. We ignored the

finite population correction factors in the analysis.

As already stated, Factor A, the actual sampling plan, is under the control of the original

data collector, and so is generally beyond the control of the creator of the synthetic data.

The next two factors (I, the imputation model, and S, the synthetic sampling plan) are

under the control of the imputer. However, the imputer cannot control what the analyst

will do (that is, factor E, the estimation procedure), although the imputer can convey

recommendations for the choice of E. The objective of the simulation study is to address

what settings for the factors I and S should the imputer use, and do these influence advice

for factor E, and how does this advice depend on factors A, I, and S.

For each combination of the 8 (¼2 £ 2 £ 2) factor levels A, I, and S, a complete data

set is created, and for it, m ¼ 200 synthetic data sets are created and analysed as if each

were a complete data set for each of the two estimation methods of factor E; analysis

Equations (1) – (4) are then applied to obtain a point estimate and sampling variance

estimate for Q, and thus an interval estimate for Q. This process is replicated 1,000 times at

each combination of factors A, I, and S to obtain 1,000 point and 1,000 interval estimates

of Q for each estimation procedure. The proportion of the 1,000 interval estimates that

contain the true value Q is the “coverage rate” for that procedure in that A £ I £ S cell.

We also calculate the “average interval width” of the 1,000 interval estimates for that

procedure, for each of the 2 £ 2 £ 2 combinations of factors A, I, and S. Simulations were

conducted using the R software and computing environment.

5. Simulation Experiment – Results

Table 2 reports the coverage rates for observed data collected by SRS, for each

combination of factor levels of the imputation model (I), the synthetic data sampling

mechanism (S) and the estimation procedure for the synthetic data (E). Table 3 reports the

corresponding average interval width values. Tables 4 and 5 are structured analogously,

but for actual data collected by StRS.

Table 2 shows that when the actual sampling plan is SRS and the ad-hoc imputation

model is used, valid coverage rates are obtained for both analysis procedures and both

synthetic data sampling plans. That is, when neither the actual sampling plan nor the

Table 2. Coverage rates for actual data collected by SRS – (factor A, level 1).

Synthetic data
sampling plan (S)

Estimation
procedure (E)

Imputation model (I) dSRSSRS dStRSStRS

Ad-hoc – not conditional on X SRS 94.8 94.9
StRS 95.4 95.4

Proper – conditional on X SRS 100 95.2
StRS 100 95.1

Loong and Rubin: Multiply-Imputed Synthetic Data: Advice 1011



imputation model uses X, valid confidence intervals are obtained whether the analyst uses

X, or completely ignores X in the analysis; the extremely conservative coverage when

using proper imputation and dSRSSRS estimation is worrisome, however. If proper imputation

is used, with an actual SRS, then when the synthetic sampling plan is either SRS or StRS,

accurate coverage is obtained using the dStRSStRS estimation procedure. Table 3 shows that the

shortest interval widths are obtained when using proper imputation with either the SRS or

StRS synthetic-data sampling plan, but only if dStRSStRS estimation is used. That is, for valid

and accurate results, the imputer should use proper imputation and tell the analyst to use

the dStRSStRS estimation procedure. The imputer can choose either the SRS or StRS synthetic

sampling plan.

When the actual sampling plan is StRS and the imputation model is improper (not

conditional on X, a method that has been recommended to be avoided for multiple

imputation since its inception in the late 1970s), the results in Table 4 show that gross

over-coverage will result, no matter what the analyst does (factor E) and no matter what

the synthetic data sampling plan is (factor S). The imputer must use proper imputation for

accurate coverage as recommended for decades, and the analyst must use the dStRSStRS

estimation procedure. Table 5 shows that to produce tight intervals, dStRSStRS should be used

for estimation when the imputation model is proper. Again we observe that the imputer can

choose either the SRS or StRS synthetic sampling plan.

To emphasize that the user should use the dStRSStRS estimation procedure, users should be

told that X was used in the imputation model. Our results are compatible with the results in

Reiter et al. (2006), which studied the importance of using the sampling design in multiple

imputation for missing data using simulation studies, and concluded that the safest course

of action is to include design variables in the specification of imputation models to avoid

biased estimates. Our results also confirm previous discussions in Reiter (2002), Drechsler

Table 3. Average interval widths for actual data collected by SRS – (factor A, level 1).

Synthetic data
sampling plan (S)

Estimation procedure (E)

Imputation model (I) dSRSSRS dStRSStRS

Ad-hoc – not conditional on X SRS 2.558 2.564
StRS 2.543 2.543

Proper – conditional on X SRS 6.476 0.057
StRS 2.495 0.057

Table 4. Coverage rates for actual data collected by StRS – (factor A, level 2).

Synthetic data
sampling plan (S)

Estimation
procedure (E)

Imputation model (I) dSRSSRS dStRSStRS

Ad-hoc – not conditional on X SRS 100 100
StRS 100 100

Proper – conditional on X SRS 100 95.3
StRS 100 95.5
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et al. (2008), and Reiter and Drechsler (2010), on the utility of including survey design

information in synthetic data sets, which agrees with the old advice from Rubin (1978).

We extended our simulation study to vary the variance between the two strata, to

include more than two strata with varying sample sizes, and we also conducted the

simulation for multivariate Y. These additional simulation results are in the Appendix. For

all these extensions, the numerical results for the coverage rate are similar to those in

Tables 2 and 4. The magnitude of the average interval width values do differ from those in

Tables 3 and 5, but the settings of factors for which accurate interval widths are obtained

do not change. Thus, we maintain the same advice to the imputer: use proper imputation,

and recommend to analysts that they use estimation procedures that include the covariates

used in the imputation model. This advice holds no matter which actual sampling plan was

used or what synthetic sampling plan was used.

Xie and Meng (2014) proposed a general theoretical framework for multiple imputation

allowing for uncongeniality. Xie and Meng (2014) used a general estimating-equation

decomposition theorem to present multiple imputation inference as an integration of the

knowledge of the imputer and the analyst. Three parties are involved in their framework: God

(G), the Imputer (I), and the Analyst (A). In our simulation study, “God’s model” is described

by factor A (the actual sampling plan), the imputer’s model is formed by factor I (the

imputation method) and factor S (the synthetic sampling plan), and the analyst’s estimation

model is specified by factor E. They considered different scenarios for the relationship

between G (God’s model), I (the imputer’s model) and A (the analyst’s estimation model).

Although the theoretical findings in Xie and Meng (2014) formally concern Rubin’s standard

combining rules for multiple imputation (Rubin 1987), and not the combining rules for

synthetic data multiple imputation (Raghunathan et al. 2003), it may still be helpful to

consider our simulation results in light of their work. We look forward to seeing future work

that applies the perspective of Xie and Meng (2014) to the problem of synthetic data.

6. Conclusion

We have discussed a simple, possibly canonical, example of uncongeniality for synthetic

data sets created by multiple imputation. Our simulation experiment identified important

factors that affect coverage rates and average interval widths with choices at each of the

four stages: data collection, imputation, sampling for creation of the synthetic data, and

analysis of the synthetic data. A proper imputation method is critical for valid and efficient

inference; that is, the imputation method must condition on covariates for accurate

Table 5. Average interval widths for actual data collected by StRS – (factor A, level 2).

Synthetic data
sampling plan (S)

Estimation
procedure (E)

Imputation model (I) dSRSSRS dStRSStRS

Ad-hoc – not conditional on X SRS 2.558 2.559
StRS 2.559 2.559

Proper – conditional on X SRS 6.640 0.057
StRS 2.496 0.057
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inferences to result. Furthermore, the imputer should inform the analyst that this

information was used in the imputation, and must recommend to analysts to use this

covariate information in their estimation procedures in order to achieve valid and efficient

interval estimates. This advice holds whether the acutal sampling plan used this covariate

information or not, and whether the synthetic sampling plan used this information or not.

Given that our conclusions are drawn from a simple simulation experiment, how broadly

this simple conclusion holds should be explored in further work.

Appendix

A1. Simulation Results – Different Variance Between the Two Strata

For the simulation results in Tables 6–9, ðYijXi ¼ 1Þ , Nðm1 ¼ 100;s1 ¼ 5Þ, and

ðYijXi ¼ 2Þ , Nðm2 ¼ 10;s2 ¼ 1Þ.

Table 6. Coverage rates for actual data collected by SRS – (factor A, level 1).

Synthetic data
sampling plan (S)

Analysis
procedure (E)

Imputation model (I) dSRSSRS dStRSStRS

Ad-hoc – not conditional on X SRS 95.5 95.5
StRS 94.4 94.4

Proper – conditional on X SRS 100 95.8
StRS 100 95.6

Table 7. Coverage rates for actual data collected by StRS – (factor A, level 2).

Synthetic data
sampling plan (S)

Analysis
procedure (E)

Imputation model (I) dSRSSRS dStRSStRS

Ad-hoc – not conditional on X SRS 100 100
StRS 100 100

Proper – conditional on X SRS 100 94.7
StRS 100 94.5

Table 8. Average interval widths for actual data collected by SRS – (factor A, level 1).

Synthetic data
sampling plan (S)

Analysis
procedure (E)

Imputation model (I) dSRSSRS dStRSStRS

Ad-hoc – not conditional on X SRS 2.574 2.574
StRS 2.574 2.574

Proper – conditional on X SRS 6.724 0.204
StRS 2.503 0.204
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A2. Simulation Results – Ten Strata with Varying Sample Sizes and Different Means,

Constant Variance

For the simulation results in Tables 10–13, Nj ¼ j £ 10 j, mj ¼ j £ 10, nj ¼ 0.01Nj and

sj ¼ 1 ( j ¼ 1, : : : ,10).

Table 9. Average interval widths for actual data collected by StRS – (factor A, level 2).

Synthetic data
sampling plan (S)

Analysis
procedure (E)

Imputation model (I) dSRSSRS dStRSStRS

Ad-hoc – not conditional on X SRS 2.575 2.575
StRS 2.572 2.572

Proper – conditional on X SRS 6.851 0.204
StRS 2.504 0.204

Table 10. Coverage rates for actual data collected by SRS – (factor A, level 1).

Synthetic data
sampling plan (S)

Analysis
procedure (E)

Imputation model (I) dSRSSRS dStRSStRS

Ad-hoc – not conditional on X SRS 94.7 94.7
StRS 95.8 94.4

Proper – conditional on X SRS 100 93.8
StRS 100 94.4

Table 11. Coverage rates for actual data collected by StRS – (factor A, level 2).

Synthetic data
sampling plan (S)

Analysis
procedure (E)

Imputation model (I) dSRSSRS dStRSStRS

Ad-hoc – not conditional on X SRS 100 100
StRS 100 100

Proper – conditional on X SRS 100 95.9
StRS 100 95.4

Table 12. Average interval widths for actual data collected by SRS – (factor A, level 1).

Synthetic data
sampling plan (S)

Analysis
procedure (E)

Imputation model (I) dSRSSRS dStRSStRS

Ad-hoc – not conditional on X SRS 0.584 0.584
StRS 0.629 0.594

Proper – conditional on X SRS 1.505 0.024
StRS 0.564 0.024
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A3. Simulation Results – Multivariate Y

For the simulation results in Tables 14 – 17, ðYijXi ¼ 1Þ , MVNðm1 ¼

ð100; 200; 300Þ;S1Þ and YijXi ¼ 2 , MVNðm2 ¼ ð10; 20; 30Þ;S2Þ, where

S1 ¼ S2 ¼

1 0:5 0:5

0:5 1 0:5

0:5 0:5 1

0
BB@

1
CCA.

Table 13. Average interval widths for actual data collected by StRS – (factor A, level 2).

Synthetic data
sampling plan (S)

Analysis
procedure (E)

Imputation model (I) dSRSSRS dStRSStRS

Ad-hoc – not conditional on X SRS 0.587 0.586
StRS 0.631 0.592

Proper – conditional on X SRS 1.515 0.027
StRS 0.567 0.027

Table 14. Coverage rates for actual data collected by SRS – (factor A, level 1).

Synthetic data
sampling plan (S)

Analysis
procedure (E)

Imputation model (I) dSRSSRS dStRSStRS

Ad-hoc – not conditional on X SRS 94.6 94.6
StRS 95.1 95.1

Proper – conditional on X SRS 100 94.8
StRS 100 94.9

Table 15. Coverage rates for actual data collected by StRS – (factor A, level 2).

Synthetic data
sampling plan (S)

Analysis
procedure (E)

Imputation model (I) dSRSSRS dStRSStRS

Ad-hoc – not conditional on X SRS 100 100
StRS 100 100

Proper – conditional on X SRS 100 94.6
StRS 100 95.4
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