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One objective of adaptive data collection is to secure a better balanced survey response.
Methods exist for this purpose, including balancing with respect to selected auxiliary
variables. Such variables are also used at the estimation stage for (calibrated) nonresponse
weighting adjustment.

Earlier research has shown that the use of auxiliary information at the estimation stage can
reduce bias, perhaps considerably, but without eliminating it. The question is: would it have
contributed further to bias reduction if, prior to estimation, that information had also been
used in data collection, to secure a more balanced set of respondents? If the answer is yes,
there is clear incentive, from the point of view of better accuracy in the estimates, to practice
adaptive survey design, otherwise perhaps not.

A key question is how the regression relationship between the survey variable and the
auxiliary vector presents itself in the sample as opposed to the response. Strength in the
relationship is helpful but is not the only consideration. The dilemma with nonresponse is one
of inconsistent regression: a regression model appropriate for the sample often fails for the
responding subset, because nonresponse is selective, non-random.

In this article, we examine how nonresponse bias in survey estimates depends on regression
inconsistency, both seen as functions of response imbalance. As a measure of bias we use the
deviation of the calibration adjusted estimator from the unbiased estimate under full response.
We study how the deviation and the regression inconsistency depend on the imbalance. We
observe in empirical work that both can be reduced, to a degree, by efforts to reduce
imbalance by an adaptive data collection.

Key words: Accuracy; adaptive data collection; auxiliary variables; balanced response;
responsive design.

1. Introduction

1.1. Responsive Design

Responsive design for household and other surveys is a concept due to Groves and Heeringa

(2006) aiming at active control of survey errors and costs, mainly in the planning and data

collection phases. A number of contributions to the literature have followed in this vein.

In view of the high survey nonresponse in many surveys today, responsive or adaptive

data collection has been promoted as a possibility to obtain, in a cost efficient way, a final
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set of respondents with improved chances for accurate – less biased – survey estimates.

Techniques have been suggested and examined: case prioritization, stopping rules,

balancing, and so on. The terms representativeness and balance are now often used in

discussing quality of the set of responding units.

Representativeness and other indicators are discussed in Schouten et al. (2009) and

Schouten et al. (2011). One measure is known as the R-indicator.

Related to “representativeness” is “balance”. One may describe their relationship by

saying that representativeness is a property of a realized response set, whereas balancing is

an activity during data collection that tries to deliver in the end a well representative

response.

With a long history in statistics, balance has been used in somewhat different meanings,

and well before its application to survey nonresponse. Balancing with respect to chosen

auxiliary variables rests on an idea of equality, or closeness, of means in a smaller set of

units with corresponding means in a larger set that contains the smaller one. Examples are

Deville and Tillé (2004), for balancing a probability sample with the cube method, and

Legg and Yu (2010), for sample set restriction procedures.

In a context of survey nonresponse, balancing the data collection aims at equality or

near-equality of auxiliary variable means for the set of respondents with corresponding

means for the selected probability sample, or for the population. To this end, a measure of

imbalance is continuously monitored, and methods exist to reduce it in a data collection

extending over a period of time, days or weeks, during which contact attempts, some of

them unfruitful, are made with the units in the selected probability sample. The imbalance

statistic was used in this manner in Lundquist and Särndal (2013), Särndal and Lundquist

(2014). In practice, the imbalance can be reduced, but not eliminated.

Reduced imbalance, for a given auxiliary vector x, may well be obtained in data

collection, but for what good? Will it contribute significantly to improved accuracy in

the estimates for the survey variables y? Even if not used in data collection, the auxiliary

vector x would serve to compute calibrated adjustment weights at the estimation stage. Is

there then an added advantage in using also that vector in data collection to get better

balance? If yes, there is combined usage of the auxiliary variables: They are re-utilized

at the estimation stage, which is perfectly legitimate, even recommendable. The issue

here is the one we refer to as single usage versus combined usage of the auxiliary vector,

that is, use at the estimation stage only as opposed to use of the vector first in data

collection to get reduced imbalance, then again at the estimation stage for calibrated

weighting.

Whether or not better balanced response will improve the accuracy of survey estimates

is primarily a question of statistical inference. It poses a challenge to the field of adaptive

or responsive survey design. Is such design worth it, from the point of view of improved

accuracy and reduced nonresponse bias?

1.2. Auxiliary Variables, Their Role in Data Collection and in Estimation

Statistical agencies in some countries can count on a vast supply of auxiliary variables to

choose from, known for the full probability sample or for the population, but such richness

does not entirely resolve the nonresponse bias problem.
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It is commonly understood that the selected auxiliary variables should (a) well explain

the survey variables y, or at least the most important among those, and/or (b) well explain

the response, that is, the 0/1 indicator of nonresponse/response. Those are guidelines for a

“post data collection activity”.

Thus, a vast literature treats the nonresponse problem essentially as one of statistical

inference with a fixed unchanging set of respondents: Try to get the best estimation –

notably least possible nonresponse bias – with the realized response, the one that a

terminated data collection happened to give. The auxiliary variables play a central role, but

improving the data collection phase is not an issue. These attempts often involve a use of

estimated response probabilities for a response that may be assumed non-ignorable. Recent

reviews and discussions of the field of weighting adjustment for nonresponse are Brick

(2013), Matei and Ranalli (2015), Haziza and Lesage (2016), and Tourangeau et al. (2017).

A merit of the responsive design movement is that it has put the data collection in focus.

The data collection is undeniably an integral part of the inference process, particularly

important in times of high survey nonresponse. Several recent articles seek evidence,

theoretical and empirical, on possible favorable effects of a response that is made to be

more representative or better balanced, for example, Schouten et al. (2016), Schouten et al.

(2013), Lundquist and Särndal (2013), Särndal et al. (2016). These articles point to some,

although not strongly pronounced, favorable effect of balancing. Articles that treat

questions of a related nature are Vartivarian and Little (2002) and Little and Vartivarian

(2005).

The selection of auxiliary variables, when there are many to choose from, is discussed,

for example, in Schouten (2015). It is an important issue, because even “picking many”

auxiliary variables gives at best a partial correction for nonresponse bias. A random pick

from a large set of available auxiliary variables may even be justified, or not markedly

worse, than a more directed choice.

An adaptive data collection operates on a designated auxiliary vector x with values

known for the sample. Särndal and Lundquist (2014) found that the estimator formed by

calibration on a well-motivated x-vector will deviate less (from the unbiased, full response

estimator) if the response has been tailored to have low imbalance (as measured by an

appropriate statistic for that concept). We tend to describe the improvement as

“undeniable, but modest rather than strong”.

We can thus expect balancing to give a certain reduction of nonresponse bias. Although

important, it is an incomplete cure. Adaptive survey design can be attractive for reasons

that are practical more so than theoretical, controlling survey cost for example. But in a

statistical inference perspective, a certain disappointment may be felt by some with the

progress to date. Why does balancing not reduce the bias much more decisively, to near

zero levels? Some of the reasons why this does not happen are indicated in the following.

1.3. Regression Inconsistency

In the estimation phase, calibrated weights are computed on the chosen calibration vector

x and applied to the units in the responding subset r from the probability sample s. The

resulting estimator will still have remaining bias. The deviation of the calibration adjusted

estimator from the unbiased estimator under full response is a focal point in this article.
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The size of this deviation is intimately connected to the nature and the quality of the

regression relationship between the study variable y and the auxiliary vector x. If an

assumed regression relationship between x and y would hold perfectly, the deviation is

zero. This ideal is never met in the real world. Considerable deviation and bias may remain

after calibrated weight adjustment.

The nature of the relationship between x and y must thus be questioned. The assumed

model, linear or nonlinear, for the relationship may be incorrect, that is, the mathematical

form of the model may not be right. Furthermore, the explanatory x-variables posted in the

model may not be powerful enough.

Although important, these features are often only a minor part of the bias problem. More

serious is that the model fitted on the response – which is what we have to work with –

does not correctly portray the relationship existing in the sample that nonresponse

prevented us from fully observing. A regression model holding for the sample cannot be

estimated correctly on the response realized from the sample, because nonresponse is

selective, informative.

Hence bias is often more a selection problem – non-randomness, or non-ignorability, of

the nonresponse – than one of misspecified form of the model or one of omitted predictor

variables.

Bias due to survey nonresponse is therefore connected with the selection problem in

regression theory. The rich literature following the seminal article by Heckman (1979)

proposes methods to diminish or reduce the problem of biased estimation of regression

relationship. Many articles deal with extensions of “Heckman methodology”; a review is,

for example, Vella (1998). To apply these methods would again amount to a “post data

collection activity”.

In the survey statistics literature, non-ignorable nonresponse has also been extensively

studied. Frequently, a model assumed for the sample is not well estimated by the response.

The estimated model parameters are wrong; consequently, so are the predictions of the

missing y-values. The regression estimated on the response is inconsistent. In this article,

we identify a measure of regression inconsistency. Alternatively it might be called “lack-

of-fit measure”, but “inconsistency” seems more appropriate, since the root of the problem

is selection bias rather than omitted predictor variables.

We are then able to write the deviation of the calibration adjusted estimate as a sum of a

regression inconsistency term and a residual that is zero under perfect balance, that is,

when x-vector means in the response set and in the full sample fully agree.

From earlier work we know that the deviation of the calibration estimator from

unbiasedness is reduced to some extent by a reduced response imbalance. Here we ask:

will reduced imbalance also help to overcome or reduce the regression inconsistency?

Hence, we study the deviation and the part of it that is due to regression inconsistency,

viewing both as functions of the degree of response imbalance.

The contents are arranged as follows: Section 2 introduces the notation. Section 3 deals

with estimation for a survey variable observed for only the responding subset. The

auxiliary vector and its relation to survey variable y are then in focus. The calibration

estimator is reviewed. Its deviation from the unbiased estimate (requiring full response) is

decomposed into a regression inconsistency term and a residual. Section 4 discusses

response imbalance and response propensity, and their effect on the regression
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inconsistency. The relation between imbalance and regression inconsistency is analyzed.

Section 5 gives the background for the empirical work. Several hypotheses are stated for

empirical testing. This work relies on data from Statistics Sweden’s Living Conditions

Survey and its Labour Force Survey; these are described. For these two surveys, Section 6

presents empirical analysis of the deviation and the regression inconsistency. Section 7

dwells on the variance properties of the deviation in probability sampling from a finite

population. A variance estimator is derived. Section 8 asks: Is the nonresponse bias

important enough to worry about? Significance testing of the deviation is carried out. A

discussion concludes the article in Section 9.

It should be noted that the empirical work in this article is carried out with “pseudo

y-variables”, known for the full probability sample, rather than with “real y-variables”,

which are available under nonresponse only for the responding subset. By the issues raised

in this article, we wish to communicate an awareness of the effects of nonresponse on

quantities of vital interest in a survey. The techniques that we outline can be helpful for

methodological evaluation of nonresponse and its effects on important surveys in a

national statistical institute.

2. Notation

We consider a finite population U ¼ {1; 2; : : : ; k; : : : ;N}; let s be a probability sample

from U, drawn so that unit k has the known inclusion probabilitypk and the sampling weight

dk ¼ 1/pk. The response set r, where r , s, is the set of units for which the value yk of the

survey variable y (continuous or categorical) is observed. The target of estimation is the total

Y ¼
X

U

yk ¼ N �yU :

For example,
P

A yk, in displayed equations
X

A

yk, is used for
P

k[A yk or
X

k[A

yk. Summation

over a set of units k [ A # U is written compactly as
P

A . For example,
P

A yk is used

for
P

k[A yk or
k[A

P
yk.

The (design weighted) response rate in the sample s is

P ¼
X

r

dk

.X

s

dk: ð1Þ

In an equal probability sampling design, where dk is constant, then P ¼ m/n, the ratio of the

respective sizes of r and s. The data collection is viewed as a dynamic process; interventions

may take place; the rate P is evolving during the period which may last several weeks.

Access to auxiliary variables is indispensable (a) for a monitored data collection, (b) for

bias adjustment at the estimation stage. Denote by x an auxiliary vector with value xk

known for k [ s or k [ U. For some variables x in the vector x, the values xk come from

available (population) registers. The role of paradata should be emphasized, namely, when

xk, known for the sample units alone, may reflect some aspect of how the data collection is

done – the interviewing for example – for the given sample s, or some property readily

observed for the sample units but only for those. The x-variables in this article are

primarily categorical, as is often the case in statistical agencies.
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Means (sample mean, response mean) of y and of x are important in the following; they are:

�ys ¼
X

s

dkyk

.X

s

dk; �yr ¼
X

r

dkyk

.X

r

dk;

�xs ¼
X

s

dkxk

.X

s

dk; �xr ¼
X

r

dkxk

.X

r

dk:

ð2Þ

Of these, �ys is conceptually defined but not computable in practice; yk is missing for k [ s 2 r.

We assume that x satisfies an “x-vector condition”, invoked in several of the derivations: One

can identify a vector m such that

m0xk ¼ 1 for all k: ð3Þ

It brings mathematical convenience at no significant loss of generality. For example, when

xk ¼ ð0; : : : ; 1; : : : ; 0Þ
0 is a group vector, one where the single “1” points out membership

in one of a number of exclusive and exhaustive categories, then m ¼ ð1; : : : ; 1; : : : ; 1Þ0

satisfies the requirement. But more often x is not a group vector, as in the simple example when

x, with dimension four, codes three exhaustive categories of “education”, and “gender” is

coded as a univariate 0/1 variable, then m ¼ ð1; 1; 1; 0Þ0 satisfies the requirement.

3. Estimation for a Survey Variable Observed for Only the Responding Subset

3.1. Estimator by Calibration, or Alternatively by Regression/Prediction

To estimate the total Y ¼
P

U yk ¼ N �yU we make use of the values xk, known for k [ s,

on a chosen auxiliary vector x. This gives the calibration estimator

ŶCAL ¼ ð1=PÞ
X

r

dkgkyk;

where

gk ¼ �x 0sS
21
r xk; Sr ¼

X

r

dkxkx0k

.X

r

dk ð4Þ

and �xs is given in (2). The name reflects the calibration property of the weights dkgk with

respect to the vector x,

ð1=PÞ
X

r

dkgkxk ¼
X

s

dkxk:

The Horvitz-Thompson estimator on the right hand side of the equation is unbiased for the

population x-total
P

U xk. Therefore the calibration feature of the weights dkgk tends to

reduce the bias that would affect less attractive alternatives, such as the naive expansion of

the respondent y-mean,

ŶEXP ¼ ð1=PÞ
X

r

dkyk ¼ N̂ �yr

with N̂ ¼
P

s dk. The calibration argument makes no explicit reference to a capacity of x

to “explain” y; in a purely technical sense, x is just a vector that one has decided to

calibrate weights on.
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But in an alternative derivation of ŶCAL, the regression/prediction approach, the

relationship between x and y is central: We fit the regression of the survey variable y on the

auxiliary x for the response r. This “response fit” is feasible because yk is available for

k [ r. It yields a regression vector br and predictions ŷk extrapolated to the whole sample

s because xk is available for k [ s:

br ¼
X

r

dkxkx 0k

 !21X

r

dkxkyk; ŷk ¼ x 0kbr; k [ s ð5Þ

Then we have
P

s dkŷk ¼ N̂ �x0s br ¼ ŶCAL. Yet another construction with the same end

result is “observations yk for the response r, predictions ŷk ¼ x 0kbr for the nonresponse

s 2 r ”:
X

r

dkyk þ
X

s2r

dkŷk ¼
X

s

dkŷk ¼ N̂ �x 0sbr ¼ ŶCAL:

This follows from the x-vector condition (3).

A critical analyst may note, quite appropriately, that a weakness of the regression/

prediction approach is that a regression fitted on the response may not well represent a

regression holding in the sample. This is a central issue for this article.

In theoretical study, although not in practice, we can confront the biased estimators ŶCAL

and ŶEXP with the unbiased Horvitz-Thompson estimator of Y, requiring full response and

given by

ŶFUL ¼
X

s

dkyk ¼ N̂ �ys:

We refer to those estimator types as CAL, EXP and FUL. Our main interest is in the

difference between CAL and FUL. Can calibration on x “fill the gap”?

3.2. Deviation of the Calibration Estimator from the Unbiased Estimator Requiring

Full Response

The linear regression fit of y on x is not feasible for the sample s, because that would

require yk for all of s. Conceptually, this “sample fit” is, however, important, with

coefficient vector and residuals given by

bs ¼
X

s

dkxkx 0k

 !21X

s

dkxkyk; ek ¼ yk 2 x 0kbs; k [ s: ð6Þ

Although the CAL estimator gains strength from the calibrated weighting, it is not

unbiased, but ordinarily less biased, often much less so, than the naive EXP estimator. The

bias is reflected in the CAL estimator’s deviation from the unbiased FUL. The (scaled)

deviation is ðŶCAL 2 ŶFULÞ=N̂ ¼ Dr with

Dr ¼ �x 0sbr 2 �ys ¼ ðbr 2 bsÞ
0 �xs: ð7Þ

Note that �ys ¼ �x 0sbs by (3). We seek to find out more about size and other properties of Dr

when the response is managed, in data collection for the given sample, to make it better
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balanced. That is, s is fixed, r is manipulated. We call Dr simply “the deviation”, short for

“the deviation (normed by N̂) of the CAL estimator, built on a specified calibration vector

x, from the unbiased FUL estimator”. As the expression for Dr tells, the deviation is caused

by the difference between two linear regressions, more specifically the vector difference

br 2 bs. The deviation Dr is unknown in practice, can practically never be assumed

negligible, and can be large.

3.3. Regression Inconsistency as an Important Part of the Deviation

The sample mean of the sample fit residuals ek ¼ yk 2 x 0kbs given in (6) is zero:

�es ¼
X

s

dkek

.X

s

dk ¼ �ys 2 �x 0sbs ¼ 0:

The response mean of those same residuals is non-zero:

�er ¼
X

r

dkek

.X

r

dk ¼ �yr 2 �x0rbs – 0: ð8Þ

That the residual mean �er is non-zero is an expression of the selective, non-random nature

of the response r. It also expresses that the regression model for the sample does not hold

for the response. The sample regression (6) is inconsistent for the response, and �er serves

to measure this.

Noting that �yr ¼ �x0rbr, a consequence of (3), we can write the regression inconsis-

tency as

�er ¼
X

r

dkek

.X

r

dk ¼ ðbr 2 bsÞ
0 �xr; ð9Þ

and the deviation Dr in (7) as the sum of inconsistency and a residual,

Dr ¼ �er þ ur ð10Þ

where ur ¼ 2ð�xr 2 �xsÞ
0ðbr 2 bsÞ.

One reason for calling ur “residual” is that ur ¼ 0 if the response is balanced to

have �xr ¼ �xs; otherwise, ur is likely to be a minor, although non-negligible, part of the

deviation Dr.

None of Dr, �er and ur is computable in a real survey, because all require yk for the entire

sample s. We can study the three terms and their relative importance, theoretically and

empirically, by choosing y to be a variable with values known for the whole sample, a

“pseudo y-variable”. Such studies can be carried out in statistical agencies as an important

way to get insight into the effect of nonresponse on their most important surveys. Here we

use data from two Statistics Sweden surveys that employ a number of register variables

known for the sample s. We choose some of those to be x-variables (that is, auxiliary)

and designate a couple of them to play the role of y-variables (that is, they are pseudo

y-variables).

The linear regressions (5) and (6) suggest implicitly that y is a continuous rather than a

categorical variable; in the latter case, nonlinear regression, logistic or other, would be

favoured as “more realistic modeling”. However, important formulas in this Section 3 and
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later, which contain quantities such as �x 0sbs ¼ �ys, �x 0rbr ¼ �yr, �x 0sbr and �x 0rbs, continue to

be well defined and computable also when yk is dichotomous 0/1. The empirical Sections 6

to 8 use these formulas both for continuous and categorical yk.

One should note that trust in an assumed model (linear or nonlinear regression) for the

relationship between y and x risks to be misleading. If m is the simple linear model stating

that Emð1kjxkÞ ¼ 0 for k [ s, where 1k ¼ yk 2 x 0kb for some b, then Emðbrjr; sÞ ¼

EmðbsjsÞ ¼ b and therefore EmðDrjr; sÞ ¼ Emð�erjr; sÞ ¼ 0. But expecting Dr and �er to be

zero is misleading, because zero expected residual 1k is unrealistic for the nonresponse; the

model with a b common to the response and the sample fails under selective nonresponse.

Non-linear modeling attempts would have the same weakness.

The adaptive data collection objective to make �xr close to �xs is attractive, but it is not

evident that this would reduce the difference br 2 bs present both in the deviation Dr and

the inconsistency �er. We set out to find out more about this question.

4. Response Imbalance, Response Propensity, and Their Effect on the

Regression Inconsistency

4.1. The Response Imbalance Statistic

Response sets r differ in regard to their representativeness, or balance, with respect to a

specified vector x. The response r has perfect balance if �xr ¼ �xs. When �xr – �xs, the

response r is imbalanced, more or less. Both means are computable, and so is their

difference �xr 2 �xs. We measure the imbalance of r given s, with respect to x, by the scalar

quantity

IMB ¼ P2Qs; Qs ¼ ð�xr 2 �xsÞ
0S

21
s ð�xr 2 �xsÞ; Ss ¼

X

s

dkxkx0k

.X

s

dk: ð11Þ

The weighting matrix Ss is computable and assumed non-singular. One can show that

0 # IMB # Pð1 2 PÞ whatever r, s and x. The imbalance IMB addresses simultaneously

all the auxiliary x-variables in x. This is in contrast to a nonresponse analysis often done in

practice one x-variable at a time. But IMB does not involve any of the perhaps numerous

survey variables y. Reducing IMB to zero does not eliminate bias for any one y-variable,

but may reduce bias for a majority of the y-variables.

Adaptive data collection can grant a degree of closeness of �xr to �xs, a relatively low

IMB. One approach is the threshold method used for the empirical work in later sections,

see Särndal and Lundquist (2014). To achieve perfect balance, �xr ¼ �xs, is unlikely in

practice.

How does an effort to reduce IMB to some degree in data collection affect the quantities

Dr, �er and ur in (10) and the relation between them? Is the deviation Dr and the regression

inconsistency �er significantly reduced by adaptive data collection? We shall examine these

questions. The part of the CAL estimator deviation Dr attributable to regression

inconsistency is �er=Dr ¼ 1 2 ður=DrÞ. We shall examine this ratio, which depends on the

survey variable y, on the choice of variables for the auxiliary vector x and on the degree of

imbalance IMB.
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4.2. Imbalance Interpreted Through Response Propensity

The response imbalance IMB is tied to response propensity in the following way: For

k [ s; define

Ik ¼ ik=P; f k ¼ �x0rS
21
s xk ð12Þ

where ik ¼ 1 for responding unit (k [ r) and ik ¼ 0 for nonresponding unit (k [ s 2 r),

Ss is given in (11), and P in (1). Their relationship is that fk is the predicted value of Ik,

which is a response indicator normed to have mean 1 over s. That is, f k ¼ Îk, the predicted

value for unit k from the linear regression of Ik on xk over s. (See proof in Appendix 1, part

(a).) Despite certain resemblance, fk must not be confused with the weight factor gk in the

CAL estimator (4).

The quantity Pfk is a measure of response propensity for unit k characterized by the

auxiliary value xk. The mean of the propensities Pfk is the sample response rate: P�fs ¼ P.

The relationship with imbalance lies in the sample variance: P2S2
fs ¼ IMB given in (11).

(To see this, use that �fs ¼
P

s dk fk=
P

s dk ¼ 1; S2
fs ¼

P
s dkð fk 2 �fsÞ

2=
P

s dk ¼ Qs, as

shown in Appendix 1, part b.) The connection between IMB and the variance of the

propensities motivates methods to produce a final response r with low IMB: In the

threshold method explained later, the values Pfk are computed and examined at given

points in the data collection period; by appropriate interventions, their variance – and

therefore IMB – is reduced.

4.3. Regression Inconsistency Analyzed in Terms of Imbalance

We examine now the effect, if any, of a reduced imbalance IMB on the regression

inconsistency (9), which we write as �er ¼ T1 2 T2, where

T1 ¼
X

s

dkðIk 2 1Þyk

.X

s

dk ¼ �yr 2 �ys;

T2 ¼
X

s

dkð fk 2 1Þyk

.X

s

dk ¼ ð�xr 2 �xsÞ
0bs:

with Ik and fk defined in (12).

In the ideal case of full response, r ¼ s, we would have T1 ¼ T2 ¼ �er ¼ Dr ¼ 0. Under

nonresponse, but still a perfectly balanced response, so that �xr ¼ �xs, then T2 ¼ 0 but

T1 – 0 so Dr ¼ �er ¼ �yr 2 �ys – 0. In practice, we will not achieve perfect balance but can

work in that direction.

An adaptive data collection that brings a response with very low imbalance will likely

reduce T2 considerably and possibly T1 to some extent, resulting in a reduction, possibly

modest, of the deviation Dr and of the regression inconsistency �er ¼ T1 2 T2. This is

illustrated in the empirical work in later sections.

The term T1 ¼ �yr 2 �ys is stated in the y-variable alone. Seemingly it has nothing to do

with the auxiliary vector x, but this is not quite true. The x-vector is instrumental in

bringing an ultimate response r with, preferably, a low imbalance IMB, and �yr may come

closer to �ys.
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The correlation between Ik and fk is positive and given by

corrðI; f Þ ¼
SI f s

SI sSf s

¼
IMB

Pð1 2 PÞ

� �1=2

; ð13Þ

where SI s and Sf s are the respective standard deviations of Ik and fk, and SI f s is their

covariance, all three over s. (The proof of (13) is given in Appendix 1, part (b).)

For a chosen vector x, we have methods to reduce IMB and corr(I, f ) during data

collection. The objective is not high but low corr(I, f ), because it would mean that the

response coded by Ik is nearly unrelated to the auxiliary vector. This is advantageous,

although short of the ideal where Ik would be unrelated to the y-variable itself: That would

eliminate the nonresponse bias. But the objective takes a step in the right direction.

One of the techniques in adaptive data collection is prioritization, namely of units

observed to have distinctly low response propensity, at some point in the data collection

period. This motivates spending extra effort on getting response from precisely those units,

that is, to boost their low response propensity Pfk towards an average response propensity,

thereby reducing the propensity variance P2S2
fs ¼ IMB and the correlation corr(I, f ).

Even without any attempt in data collection to balance the response, the correlation is

modest in most surveys, typically corr(I, f ) , 0.3. It can be considerably reduced by a

reduced imbalance, as Table 1 in Section 6 illustrates. To get corr(I, f ) ¼ 0 is tantamount

to “random response with respect to the auxiliary vector x” (although not with respect to

the survey variable y itself ).

4.4. Insensitivity to the Study Variable

The deviation Dr and the regression inconsistency �er, given in (10), depend on the survey

variable y. So does the ratio �er=Dr, but it is expected to be quite insensitive to y. To see this,

express Dr, �er and ur as weighted y-means over the sample s: For k [ s, let

Gk ¼ Ikgk 2 1; Fk ¼ Ik 2 fk; ð14Þ

where Ik, fk and gk are given in (12) and (4). Then

Dr ¼
X

s

dkGkyk

.X

s

dk; �er ¼
X

s

dkFkyk

.X

s

dk;

ur ¼
X

s

dkðGk 2 FkÞyk

.X

s

dk

ð15Þ

These three equations hold also with yk replaced by ek ¼ yk 2 x 0kbs becauseP
s dkGkx 0k ¼ 0 0,

P
s dkFkx 0k ¼ 0 0. The correlation between Fk and Gk is high positive.

A derivation (see Appendix 1, part (c)) shows that

corrðF;GÞ ¼
SFGs

SFsSGs

¼
1 2 P

{ð1 2 P 2 PQsÞð1 2 Pþ QrÞ}
1=2

ð16Þ

where SFs and SGs are the respective standard deviations of Fk and Gk, and SFGs their

covariance, all three over s, Qs is given in (11), and Qr is the “dual quadratic form”,

Qr ¼ ð�xr 2 �xsÞ
0S

21
r ð�xr 2 �xsÞ ð17Þ
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with weighting matrix Sr given in (4). The correlation (16) is high positive – greater than

0.95 for the data sets we worked with – because for a nonresponse 1 2 P of 30% or more,

the term 1 2 P dominates PQs $ 0 and Qr $ 0. Typically, Qs and Qr are less than 0.10, Qr

usually the somewhat larger. Now let us approximate the ratio �er=Dr as

�er

Dr

¼

X
s
dkFkekX

s
dkGkek

<

X
s
dkF̂kekX

s
dkGkek

where Fk is replaced by its predicted value, F̂k, from the linear regression fitted over s of Fk

on Gk, quite accurate in view of the high correlation (16). The slope coefficient (see

Appendix 1, part (c)) is bFG ¼ SFGs=S2
Gs ¼ ð1 2 PÞ=ð1 2 Pþ Qr), slightly less than 1 and

independent of the y-variable. The intercept is zero because Fk and Gk have mean zero over

s. The predicted values for k [ s are F̂k ¼ bFGGk. Then, independently of the y-variable,

�er=Dr < bFG ¼ ð1 2 PÞ=ð1 2 Pþ QrÞ # 1 ð18Þ

Although (18) is an approximation with non-negligible error, it suggests a ratio �er=Dr

somewhat less than one and little sensitive to the y-variable. We illustrate this empirically

in Section 6. If we compare two x-vectors, for fixed r and s, then (18) suggests that the one

with the larger Qr will give the smaller ratio �er=Dr. Larger Qr and smaller ratio �er=Dr

ordinarily happen when a given vector x is extended by adding more x-variables to it.

5. Background of the Empirical Work

5.1. Hypotheses to Be Tested

The results in Sections 3 and 4 generate several hypotheses for empirical testing. The

objective is to examine how a decreased imbalance IMB may impact on quantities such as

Dr, �er and ur. As a part of this we can contrast the single usage of the auxiliary vector (only

at the estimation stage, for calibrated weighting) with the combined usage (where that

same vector serves first in data collection to get reduced imbalance, then re-used at the

estimation stage for calibrated weighting). Here we get some insight into the question: Are

efforts in adaptive data collection to reduce imbalance worth it, from an improved

accuracy standpoint? The data used for this empirical work come from two important

Statistics Sweden surveys.

When IMB is made to decrease, we expect to see these effects (where “decrease” and

“smaller than” should be understood as “in absolute value”, since Dr, �er and ur can have

either sign):

(1) All of Dr, �er and ur will go decreasing;

(2) The most pronounced decrease will occur in the residual term ur known to be zero

when IMB is zero;

(3) Both the regression inconsistency �er and the deviation Dr are likely to decrease to

some extent, but remain distinctly non-zero even if IMB is reduced to near zero;

(4) The part of the deviation due to inconsistency, �er=Dr, is expected to remain high,

somewhat less than one, for all levels of IMB, to approach 1 when IMB approaches

zero, and to be rather insensitive to the survey variable y;
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(5) Although �er=Dr , 1 does not necessarily hold, it is likely in a majority of

cases.

Point (3) says that efforts to reduce IMB to low levels is an incomplete cure for

nonresponse bias and for regression inconsistency. There may be positive effect, but not

complete remedy.

5.2. Preparing the Data Sets for the Empirical Work

We use data from two important Statistics Sweden surveys, the Living Conditions Survey

in its 2009 edition, and the Labour Force Survey in its 2012 edition. Facts about these

surveys are given in Appendix 2.

From the first of these sources, we prepared the data set called LCS2009 of size 8,220. It

is a subset of the entire 2009 Living Conditions Survey sample.

From the monthly Labour Force Surveys in 2012, we prepared the data set called

LFS2012 of size 32,265. It is composed of parts of the data from the twelve monthly

surveys in 2012. Essentially, we combined the twelve wave-one samples to arrive at

LCS2012; see Appendix 2 for further detail.

Both LCS2009 and LFS2012 contain a number of variables for every unit, some used as

x-variables and two used as pseudo y-variables. For the exercise here, we treat both data

sets as simple random samples, so the sampling weight dk is constant in the formulas used.

For both LCS2009 and LFS2012, we specified five alternative response sets

representing different levels of imbalance IMB. The first of these, denoted rAct, is the

actual response recorded in the survey data collection. The other four are experimental

response sets, generated with the threshold method, described in Subsection 5.3 and in

more detail in Särndal and Lundquist (2014). This permits us to see the effect of imbalance

on quantities of interest defined in the preceding theory sections.

For the computations, an x-vector is specified for each of the two data sets. The x-vector

serves to obtain the four generated response sets, through the threshold method described

below. For those four response sets, the same x-vector also serves to compute quantities

relevant for the estimation stage, the deviation Dr, the regression inconsistency �er and

others. This is the combined usage of the x-vector referred to in Subsection 5.1, namely,

both in data collection and in estimation. In contrast to this, with the actual response set,

this x-vector is used in estimation but not in data collection; it is the single usage of the

vector.

In LCS2009, the first response set, denoted rAct, is composed of those 67.9% of the

8,220 persons who actually responded in the 2009 data collection. The x-vector is

specified as

x ¼ xdm14 ¼ ððEduc £ Owner £ OriginÞ;Phone; Age; Civil; GenderÞ ð19Þ

The vector xdm14 consists entirely of categorical variables, chosen from the rich supply

of potential x-variables. The same vector xdm14 was used to compute quantities of interest

such as IMB, Dr, �er and ur.

In xdm14, Educ, Owner and Origin are binary (valued 1 or 0) and crossed, accounting for

23 ¼ 8 vector positions, Phone, Civil, and Gender are binary; Age occupies three vector

positions for four exhaustive categories. This gives xdm14 the dimension

Särndal and Lundquist: Inconsistent Regression and Nonresponse Bias 721



23 þ 1 þ 3 þ 1 þ 1 ¼ 14 and 256 possible values, representing that many character-

istics of the 8,220 sample units. Educ is 1 for person with high education, 0 otherwise;

Owner is 1 for a person who owns his place of residence, 0 otherwise; Origin is 1 for

a person born in Sweden, 0 otherwise; Phone is 1 for a person with phone number

accessible at the start of the data collection, 0 otherwise; Civil is 1 for married or

widower, 0 otherwise; Gender is 1 for male, 0 otherwise. Age, with four exhaustive

age brackets, 24 and under, 25–64, 65–74, 75 and over is coded as (1,0,0), (0,1,0), (0,0,1),

or (0,0,0).

The four experimental response sets, rA65, rA60, rA55 and rA50, were generated from

rAct by the threshold method, so as to have successively lower imbalance IMB. The

notation refers to the different thresholds applied in the method, 65%, 60%, 55%, and

50%. The intervention points were attempts 3, 6 and 9 of the ordinary data collection,

the end of the ordinary data collection, and attempt 4 of the follow-up. Two pseudo

y-variables are specified in LCS2009: Income, available from the Swedish tax register,

and Employed (binary; 1 for employed person, 0 otherwise). The coefficient of

determination (R-square) for Income regressed on xdm14 is R 2 ¼ 0.28, thus not

exceptionally high.

In LFS2012, the first response set, rAct, is composed of those 70.6% of the 32,265

persons who had actually responded in the LFS survey. The x-vector was chosen as

x ¼ xdm16 ¼ ððAge £ Educ £ OwnerÞ; Origin; Urban; Civil; GenderÞ ð20Þ

The vector xdm16 has dimension (3 £ 2 £ 2) þ 1 þ 1 þ 1 þ 1 ¼ 16; the vector codes

192 different characteristics of the 32,265 persons. Here Age is defined by three exhaustive

brackets, 34 and under, 35–64, 65 and over, rather than four as in LCS2009. This is

because the upper age limit of the LFS target population is 74, whereas LCS has no age

limit. Urban is 1 for big city dweller, 0 otherwise. The other variables in xdm16 are as in

xdm14 defined above for LCS2009. The pseudo y-variables are Income and Employed, as

earlier defined. The coefficient of determination (R-square) for Income regressed on xdm16

is R 2 ¼ 0.27.

The four experimental response sets, rA68, rA65, rA63 or rA60 were generated from rAct by

the threshold method to have successively lower imbalance IMB. The notation refers to the

thresholds used, 68%, 65%, 63%, and 60%. We used eight intervention points: Call

attempts 3, 5, 7, 9, 12, 15, 18, and 22. The two pseudo y-variables specified in LFS2012 are

Income and Employed (binary; 1 for employed person, 0 otherwise). To facilitate

comparison, these y-variables are the same as for LCS2009.

It should be emphasized that the choice of x-vector, (19) and (20) respectively, was not

made to meet any criterion of theoretical optimality, if one exists. The vectors simply

represent reasonable choices of auxiliary variables for the two surveys; they are well

adapted to the computations in this article; most of the variables are used by Statistics

Sweden methodologists in weight calibration for the two surveys. Other choices of

x-vector could certainly be entertained.

The steps of the threshold method are outlined in the following Subsection 5.3. The

reader more interested in empirical results may proceed to Section 6.
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5.3. The Steps of the Threshold Method

Briefly, the steps in the threshold method are as follows: The method operates on the

WinDATI file of “events data”, that is, the series of all call attempts stored for every unit in

the sample. WinDATI is Statistics Sweden’s telephone data collection system. Specified

at the outset are (i) the intervention points, say just after attempts 3, 6, 9, : : :; (ii) the

threshold value, say 60% and (iii) the monitoring vector, that is, the x-vector for

computing the response propensity Pfk, with P and fk given in (1) and (12). (In this article,

the same vector x serves also at the estimation stage for calibrated weights computation.)

At each intervention point, Pfk is computed for k [ s based on the specified vector x. Units

with Pfk greater than the specified threshold are set aside; it is pretended that these high

propensity units are not subject to any further call attempts, thus we drop them from the

actual response rAct and pretend that the call attempts continue with the remaining lower

propensity units. Specifically, at the first intervention point, Pfk is computed (on the

response set present at that moment) for all sample units k [ s; those with Pfk greater than

the threshold are set aside at that point; call attempts continue with the rest. At the second

intervention point, Pfk is recomputed (but on the somewhat larger response set then at

hand) for all k [ s, including the units set aside at the first point. (Those latter units may

have their propensity somewhat changed, but they remain aside.) Among the units still in

contention, those with new propensity Pfk greater than the same fixed threshold are set

aside, and so on at the remaining points. Thus at every intervention point, some more units

leave the actual response rAct. (In this experiment we must drop units from the actual

response; we are not in a position to add any new incoming respondents.) Units remaining

at the last intervention point are pursued until the very end of the data collection period.

A feature of this construction is that the variability of the propensities becomes more and

more reduced, and since IMB is the variance of the propensities, the resulting final

response gets to have lowered imbalance IMB. The effect of the chosen threshold is that

lower threshold accentuates the decrease in IMB.

6. Descriptive Analysis for the Living Conditions Survey and the Labour

Force Survey

Tables 1, 2, and 3 present results computed with formulas in Sections 3 and 4 on the data

sets LCS2009 and LFS2012, each considered as a simple random sample s, of size

n ¼ 8,220 for the first, n ¼ 32,265 for the second; all design weights dk are equal. The

Table 1. Imbalance IMB (multiplied by 102) and corr ¼ corr(I, f ) between response indicator and response

propensity, computed on LCS2009 and on LFS2012, for five response sets.

LCS2009, vector x dm14 LFS2012, vector x dm16

Resp.set Rate P IMB corr Resp.set Rate P IMB corr

rAct 0.679 1.878 0.294 rAct 0.706 0.788 0.195
rA65 0.633 1.120 0.220 rA68 0.674 0.251 0.107
rA60 0.606 0.890 0.193 rA65 0.659 0.158 0.084
rA55 0.569 0.648 0.163 rA63 0.648 0.128 0.075
rA50 0.533 0.426 0.131 rA60 0.625 0.061 0.051
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rows refer to the five response sets r. For LCS2009 they are rAct (actual), and rA65, rA60, rA55

and rA50 (generated), for LFS2012 they are rAct (actual) and rA68, rA65, rA63 and rA60

(generated). The actual response, r ¼ rAct, is 67.9% of the sample s for LCS2009,

compared with 70.6% for LFS2012. The generated sets grow successively smaller, because

the threshold method, as applied here, proceeds by dropping high propensity units from the

actual response. Hence, a drop in the response rate, P ¼ m/n, where m is the size of r.

The x-vector for computing Tables 1 to 3 is xdm14 given in (19) for LCS2009, xdm16

given in (20) for LFS2012. We cannot fully compare LCS2009 with LFS2012, because the

x-vectors are not identical and the designs are different.

In Table 1, the imbalance IMB and the correlation corr(I, f ) are computed by (11) and

(13), respectively. The results confirm the anticipation that the sequence of five response

sets (the five rows) will bring a drop in IMB and in corr(I, f ). But there is a pronounced

difference between LCS2009 with LFS2012. For the former, IMB is still fairly high in the

bottom line, whereas for the latter, it is very low. This may hint at a data collection in some

ways better adapted, or more accomplished, in the Labour Force Survey than in the Living

Conditions Survey, but there is no concrete evidence to this effect; in any case, the

x-vectors are not fully identical.

Table 2 presents results for the LCS2009 data set, viewed as a sample s of size 8,220, for

the two pseudo y-variables, Income (continuous) and Employed (categorical, 1 or 0). Of

principal interest is to track the development of the deviation Dr, the regression

inconsistency �er, and the ratio �er=Dr as the imbalance IMB is reduced over the five

response sets.

Table 2. Analysis, LCS2009 data set, vector xdm14, five response sets (actual, and four generated): IMB

(multiplied by 102); deviation Dr, regression inconsistency �er, residual ur (all three multiplied by 1023 for

Income, by 102 for Employed), and ratio �er=Dr .

Income Employed

Resp.set IMB Dr �er ur �er=Dr Dr �er ur �er=Dr

rAct 1.878 7.46 5.00 2.46 0.670 2.08 1.47 0.61 0.707
rA65 1.120 7.51 5.46 2.05 0.727 2.01 1.47 0.54 0.729
rA60 0.890 6.99 5.10 1.89 0.730 1.92 1.40 0.52 0.732
rA55 0.648 6.16 4.38 1.78 0.711 1.97 1.51 0.46 0.768
rA50 0.426 5.20 3.75 1.45 0.721 1.75 1.33 0.42 0.761

Table 3. Analysis, LFS2012 data set, vector xdm16, five response sets (actual, and four generated): IMB

(multiplied by 102); deviation Dr, regression inconsistency �er, residual ur (all three multiplied by 1023 for

Income, by 102 for Employed), and ratio �er=Dr.

Income Employed

Resp.set IMB Dr �er ur �er=Dr Dr �er ur �er=Dr

rAct 0.788 3.73 3.02 0.71 0.810 1.30 1.14 0.16 0.878
rA68 0.251 2.82 2.34 0.48 0.829 1.19 1.07 0.12 0.899
rA65 0.158 2.37 1.95 0.43 0.821 1.09 0.98 0.11 0.901
rA63 0.128 1.98 1.62 0.36 0.818 1.01 0.93 0.09 0.915
rA60 0.061 1.58 1.35 0.22 0.858 0.89 0.83 0.06 0.935
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As IMB drops over the series of five response sets (the rows), there is a drop (with one

minor dent for Employed ) in the deviation Dr and in the regression inconsistency �er. While

the reduction in IMB is important, the reduction in Dr and in �er is modest by comparison.

To illustrate, IMB is reduced by a factor (highest to lowest) of 1.878/0.426 ¼ 4.40. The

corresponding reduction of the deviation Dr is 7.46/5.20 ¼ 1.43 (for Income) and

2.08/1.75 ¼ 1.19 (for Employed). Income gains relatively more from balancing than

Employed, but for both, the large reduction in IMB is accompanied by rather modest

improvement in accuracy (modestly lower Dr). This is not entirely surprising, considering

the conclusion from theory in Subsection 4.3 that Dr will not approach zero even if IMB

comes close to zero. Modest expectations for better accuracy are indicated, rather than

hopes for greatly improved accuracy.

The reduction is similar for the regression inconsistency �er: The reduction factor is

5.00/3.75 ¼ 1.33 (for Income) and 1.47/1.33 ¼ 1.11 (for Employed ). The residual term

ur has a higher reduction factor.

The regression inconsistency portion of the deviation, the ratio �er=Dr, shows a mild

increase over the five decreasing levels of IMB. As pointed out in Subsection 4.3, in the

limit �er=Dr would be 1, namely, if IMB were reduced to zero.

As anticipated in Subsection 4.4 and in hypothesis (4) of Subsection 5.1, the ratio �er=Dr

should be little sensitive to the y-variable. Looking row by row at Table 2, we find this

essentially confirmed. The near equality of the ratio for two variables of such different

characteristics as Income (continuous) and Employed (dichotomous 0/1) is remarkable.

Table 3 presents a corresponding analysis of the LFS2012 data set, treated as a sample s

of size 32,265, and with constant dk, for the two pseudo y-variables, Income (continuous)

and Employed (categorical, 1 or 0). The rows refer to the five response sets, rAct (actual),

and rA68, rA65, rA63 or rA60 (generated).

Some patterns seen in Table 2 for LCS2009 are confirmed in Table 3 for LFS2012. We

note the following:

For the actual response rAct, IMB, Dr and �er are much lower in LFS2012 (Table 3) than

in LCS2009 (Table 2), possibly a sign of a data collection in some sense “better” in the

LFS (although the x-vectors are not quite identical). The drop in IMB over the five

response sets is accompanied by a consistent drop in both Dr and �er.

The reduction factor (highest divided by lowest) for the deviation Dr is

3.73/1.58 ¼ 2.36 (for Income) and 1.30/0.89 ¼ 1.46 (for Employed ). The ratio �er=Dr

shows a mild increase toward the limit value of 1, although with some irregularity for both

Income and Employed.

Row by row inspection of Table 3 shows that the supposition (hypothesis (4)) that the

ratio �er=Dr would be nearly the same for the two y-variables is less well confirmed than for

LCS2009; here, �er=Dr is about 10% higher for Employed than for Income.

7. Estimating the Variance of the Deviation

The topic in this section is the sampling variability of the CAL estimator deviation Dr.

We first derive a variance estimator for Dr, under probability sampling from a finite

population.
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We test the performance of this variance estimator – its approximate unbiasedness – by

empirical work in which we treat the data sets LCS2009 and LFS2012 as populations of

respective sizes N ¼ 8,220 and N ¼ 32,265. The notation U will refer to either of these

two data sets. We draw repeated samples s from each of them and observe the properties of

the variance estimator for Dr.

We choose to treat “response or not” on the part of a unit k [ U as a fixed property of

the unit: A value ik ¼ 1 or 0 is specified in the data file U for every k, to specify whether

or not k responds and delivers the study variable value yk. Hence, ik is a fixed, non-random

value, and a set of responding units, r(U), is “pre-specified” in U. A probability sample s

from U will have an implied response set r ¼ rðsÞ ¼ s > rðUÞ ¼ {k : k [ s and ik ¼ 1}.

This formulation of “intrinsic response” in the population is advantageous for our

empirical work.

Comment: One should be aware that this setup is different from probabilistic response,

as when, given s, k is modeled to respond with (unknown) probability

uk ¼ Pr ðik ¼ 1jsÞ ¼ Pr ðk [ rjk [ sÞ. In that formulation, ik has a random structure

specified by model assumptions.

To develop a variance estimator we write the expression for Dr in (15) slightly

differently as

Dr ¼
1X
s
dk

X

s

dkGkek; ð21Þ

where Gk is given in (14), ek is the sample regression residual in (6), and the propertyP
s dkGkx 0k ¼ 0 0 has been used. Formula (21) presents Dr as the sample mean of the

quantities Gkek. In particular, when s is a simple random sample of size n drawn from N,

then dk is constant, and

Dr ¼
1

n

X

s

Gkek ¼ Ges ð22Þ

Basic knowledge about simple random sampling theory suggests the variance estimator

_
VsrsðDrÞ ¼

1

n
2

1

N

� �X
s
ðGkek 2 GesÞ

2

n 2 1

ð23Þ

It would be an unbiased estimator of variance if Gkek were fixed non-random quantities.

This does not hold here, because Gk and ek are functions of s, which is a random set. Still,

we can expect (23) to give satisfactory performance as a variance estimator for Dr in not-

so-small simple random samples s. This is confirmed by our simulation results that follow.

One should note that the variance estimator (23) is limited to pseudo y-variables, with

values yk known for all sample units k [ s. The reason is that the residuals ek require yk for

all sample units, which does not hold under nonresponse for ordinary survey variables.

The simulation was carried out by drawing repeated simple random samples from

LCS2009 and from LFS2012, both viewed as populations. We drew 10,000 repeated

samples from each of these. The samples from LCS2009 are of size n ¼ 5,000, those from

LFS2012 also of size n ¼ 5,000.
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The x-vector is given as before by (19) for LCS2009 and by (20) for LFS2012. The two

pseudo y-variables are Income and Employed, as in Section 6.

For each population, we specify five intrinsic response sets, namely, those specified in

Section 6. This implies for LCS2009 that for a sample s drawn from U, we get five

alternative response sets, rAðsÞ ¼ s > rAðUÞ, with rA(U) ¼ rAct (actual), rA65, rA60, rA55 or

rA50 (generated). Similarly for LFS2012, the alternative response sets obtained for a sample

s are rAðsÞ ¼ s > rAðUÞ, with rA(U) ¼ rAct (actual), rA68, rA65, rA63 or rA60 (generated).

It follows that the response rA(s) in a realized random sample s is also a random set. For

example, for LCS2009 with rA(U) ¼ rAct, the responding proportion of a sample s (the

response rate) varies with a mean over the 10,000 repetitions very nearly equal to 0.679,

which is the relative size of the actual response set rAct (see Table 1).

Similarly, quantities such as IMB, Qs, Qr, Dr, �er, ur and �er=Dr vary over the 10,000

repeated samples. For some of these, we computed mean, variance and standard deviation

over the 10,000 samples. We expect that those means agree closely with the corresponding

“population parameters” in Tables 2 and 3. This was confirmed, so we do not show

simulation means and focus instead on the variance.

Simulation results are presented for LCS2009 in Table 4 and for LFS2012 in Table 5,

where var is the variance of Dr given by (22) over the 10,000 repetitions (the simulation

variance) and estvar is the simulation mean of the variance estimator, that is, the mean

over the 10,000 repetitions of
_
VsrsðDrÞ given by (23).

The results in Tables 4 and 5 prompt a couple of comments. We note that var and estvar

agree closely in the two tables, a sign that (23) is a satisfactory variance estimator for Dr.

Table 4. Simulation results, 10,000 simple random samples of size 5,000 from the LCS2009 data base, vector

xdm14: Simulation variance (var), simulation mean of variance estimate (estvar), both multiplied by 1026 for

Income, by 106 for Employed.

Income Employed

Resp.set var estvar var estvar

rAct 1.06 1.02 7.40 7.30
rA65 1.28 1.23 8.24 8.14
rA60 1.43 1.38 8.89 8.76
rA55 1.67 1.65 9.67 9.61
rA50 1.93 1.90 10.80 10.65

Table 5. Simulation results, 10,000 simple random samples of size 5,000 from the LFS2012 data base; vector

xdm16: Simulation variance (var), simulation mean of variance estimate (estvar), both multiplied by 1026 for

Income, by 106 for Employed.

Income Employed

Resp.set var estvar var estvar

rAct 2.83 2.76 14.07 14.43
rA68 3.26 3.17 14.95 15.35
rA65 3.43 3.34 15.47 15.95
rA63 3.56 3.46 16.14 16.65
rA60 3.83 3.73 17.55 18.02
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The simulation variance var increases when the imbalance IMB is reduced. For Income,

it is essentially doubled in going from rAct to rA50 in Table 4. The tendency may not be

surprising, but we did not anticipate it. A trade-off occurs, in that the mean (Tables 2 and

3) of the deviation Dr (that is, the bias) is reduced, which is a gain, while the variance

(Tables 4 and 5) is increased, which is a disadvantage. But it can be claimed that the gain

more than outweighs the disadvantage.

8. Is the Nonresponse Bias Important?

The question “is the nonresponse bias important” is relevant because it could be

maintained that it may be trivially small, not significantly different from zero, and that in

any case it is a result of random influences. Its significance or not depends on the degree of

response imbalance. In this section, we subject the CAL estimator deviation Dr to testing,

to see if it is significantly large, at different levels of IMB.

For this purpose we confront the deviation Dr with an appropriate standard deviation.

Written in the form (22), Dr ¼ Ges is the sample mean of Gk ek over s. For this exercise, let

us consider s as a simple random sample of size n from the Swedish population in scope for

the survey, with a size N of the order of 7 £ 106. Table 6 (for LCS2009) and Table 7 (for

LFS2012) show results from this analysis. In those tables, data on IMB and Dr are taken

from Tables 2 to 5, as the case may be, and score ¼ Ges=SGe ¼ Dr=SGe, where S2
Ge ¼_

VsrsðDrÞ is given by formula (23) with n ¼ 8,220 for LCS2009, n ¼ 32,265 for LFS2012,

and 1/N negligible.

If we take “2 or greater” as an indication of a significant difference from zero, we note in

Tables 6 and 7 that all score values but one are well above the critical value of 2. For all

Table 6. Significance analysis; LCS2009 data, vector xdm14, five response sets; score ¼ Dr=SGe; IMB and

deviationDr obtained from Table 2; standard deviation SGe is multiplied by 1023 for Income, by 102 for Employed.

Income Employed

Resp.set IMB SGe score SGe score

rAct 1.878 1.257 5.94 0.336 6.20
rA65 1.120 1.381 5.44 0.355 5.66
rA60 0.890 1.461 4.78 0.368 5.21
rA55 0.648 1.598 3.85 0.386 5.10
rA50 0.426 1.713 3.03 0.406 4.30

Table 7. Significance analysis; LFS2012 data, vector xdm16, five response sets; score ¼ Dr=SGe; IMB and

deviationDr obtained from Table 3; standard deviation SGe is multiplied by 1023 for Income, by 102 for Employed.

Income Employed

Resp.set IMB SGe score SGe score

rAct 0.788 0.711 5.25 0.162 7.99
rA68 0.251 0.761 3.70 0.167 7.12
rA65 0.158 0.780 3.04 0.171 6.37
rA63 0.128 0.795 2.49 0.174 5.80
rA60 0.061 0.826 1.91 0.181 4.89
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rows and in both surveys, score is greater for Employed than for Income; the difference is

more pronounced for LFS2012.

The most prominent feature of the two tables, holding an attractive promise for adaptive

data collection, is the fact that score has a consistently decreasing pattern over the five

response sets. Although the standard deviation SGe increases with lower imbalance – see

Tables 4 and 5 – this is more than compensated for by the decrease in the deviation

Dr ¼ Ges. This holds for both surveys, LCS2009 and LFS2012, and for both y-variables,

Income and Employed. It suggests that efforts to decrease IMB in data collection can

reduce the CAL estimator’s deviation – the bias – towards insignificant levels.

9. Concluding Discussion

In this article we have emphasized the link between the accuracy of a nonresponse

adjusted estimator and the validity – or lack of it – of the regression fit behind the

estimator. Both issues depend on the degree to which an adaptive data collection can

succeed in reducing the response imbalance. A key question is: How important for

accuracy is an adaptive data collection?

In practice, an auxiliary vector x is chosen, by selection from a supply of available

auxiliary variables. The regression between survey variable y and x would, if “true”, lend

unquestionable support to the nonresponse adjusted estimator. But invariably that model

does not hold for the responding set. The main problem is the selection effect, a non-

random response, rather than one of not enough, or omitted, predictor variables. The

estimation becomes biased due to regression inconsistency.

The inaccuracy (or bias) is measured here by the deviation, denoted Dr, of the

nonresponse adjusted estimator (the calibration estimator) from the unbiased estimate

possible under full response. The article focuses on the deviation Dr. We are able to

express it as a sum of two terms, the regression inconsistency denoted ēr, and a residual.

The former is the dominating term: The regression inconsistency is a major factor in

inaccuracy or bias in estimates.

The deviation Dr and the regression inconsistency �er (both given in Section 3) depend

on the degree of response imbalance realized in data collection. Imbalance is measured

here by the statistic IMB, defined in Subsection 4.1 with respect to an auxiliary vector x

known for the sample. The IMB statistic is a tool for the data collection: Methods exist to

reduce it, with promise of more accurate estimation.

The empirical part of this article used data sets from two important Statistics Sweden

surveys, the Living Conditions Survey and the Labour Force survey. These are examples

only to illustrate a technique which can be reproduced for other surveys in other national

statistical institutes.

We find that both Dr and �er decrease when IMB is made to decrease. This is

encouraging. But they do not decrease to zero with IMB. Both remain at distinctly non-

zero levels even if IMB is brought to near-zero. The message is that modest expectations

for better accuracy are in order, rather than hopes for a great payoff, when imbalance is

reduced through an adaptive data collection.

This is understandable; the data collection is confined to operate on a designated

auxiliary vector x, known for response and for nonresponse, rather than on the survey
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variable y itself. That would naturally be more effective, but is untenable because y-values

are missing for the nonresponse. Whatever the choice of x, it can never be a “full

substitute” for the y-variable.

We studied the ratio �er=Dr, the proportion of the estimator’s deviation attributable to

regression inconsistency, as a function of IMB. This ratio tends to one as IMB tends to

zero. The ratio is quite insensitive to the survey variable y. In studies not reported here, we

have noted that the ratio is, however, quite sensitive to the choice of x-vector: It tends to be

lower if a more extensive x-vector is postulated.

We carried out a simulation study, involving repeated simple random sampling from the

two data bases. The mean of the deviation Dr decreases as a result of reduced IMB, a

positive message; the variance increases to some degree.

An estimator of variance for Dr was developed. We used it to test the deviation Dr, to see

if it is small enough to be insignificant when IMB is made to be low in data collection. We

found encouraging signs that this may be the case.

One may argue that the deviation Dr and the regression inconsistency �er are studied here

under rather idealized conditions: To compute them requires the survey variable values yk

for the full sample s. We can do this in an experimental setting, as here, where y is a

register variable, called “pseudo y-variable”, but not in a real survey context where

y-values are missing for the nonresponding part. Nevertheless, important insights for

practice can be gained by our kind of analysis.

Appendices

Appendix 1: Proofs

The proofs (a), (b), and (c) that follow make use of the x-vector condition (3). Quantities

defined in Sections 3 and 4 are used, including Ik and fk given in (12).

(a) Proof that fk is a predicted value from the linear regression fitted over s of Ik on xk. The

linear fit gives the slope vector bIs ¼
P

s dkxkx0k
� �21

=
P

s dkxkIk ¼ S
21
s �xr. The

predicted value Îk of Ik from this regression fit is thus Îk ¼ b 0Isxk ¼ �x0rS
21
s xk ¼ f k.

(b) Proof of the correlation coefficient (13). We need expressions for the variances S2
Is and

S2
f s, and the covariance SI f s. First, S2

Is ¼
P

s dkðIk 2 �IsÞ
2=
P

s dk ¼ ð1=PÞ2 1, using

that �Is ¼
P

s dkIk=
P

s dk ¼ 1. Next, to find S2
fs ¼

P
s dkð f k 2 �fsÞ

2=
P

s dk, use (3) to

find �fs ¼
P

s dkf k=
P

s dk ¼ 1 and
P

s dkf 2
k=
P

s dk ¼ 1þ Qs with Qs given in (11).

We get S2
fs ¼ 1þ Qs 2 12 ¼ Qs.

For the covariance, we note that �fr ¼
P

r dkf k=
P

r dk ¼ �x0r S
21
s �xr ¼ 1þ Qs,

which leads to

SI f s ¼
X

s

dkðIk 2 �IsÞð f k 2 �fsÞ
.X

s

dk ¼ �fr 2 �Is
�fs ¼ ð1þ QsÞ2 1 £ 1 ¼ Qs:

Now IMB ¼ P2Qs by (11), so corrðI; f Þ ¼ SI f s=ðSI sSf sÞ ¼ ðIMB=Pð1 2 PÞÞ1=2.

(c) Derivation of the correlation coefficient (16): We need first and second moments of

the weight factors Fk and Gk given in (14). Both means are zero over s:P
s dkFk=

P
s dk ¼ 0,

P
s dkGk=

P
s dk ¼ 0. To illustrate, the second of these is
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verified with a use of (3):

X

s

dkGk

.X

s

dk ¼ ð1=PÞ
X

r

dkgk

.X

s

dk 2 1

¼ �x 0sS
21
r

X

r

dkxkðx
0
kmÞ
.X

r

dk 2 1 ¼ �x 0sm 2 1 ¼ 0:

The two variances and the covariance are obtained by similar algebraic manipulations as

S2
Fs ¼

X

s

dkF2
k

.X

s

dk ¼ ð1 2 P 2 PQsÞ=P;

S2
Gs ¼

X

s

dkG2
k

.X

s

dk ¼ ð1 2 Pþ QrÞ=P;

SFGs ¼
X

s

dkFkGk

.X

s

dk ¼ ð1 2 PÞ=P:

To exemplify with the first of these, use that Qs ¼ �x 0r S
21
s �xr 2 1 by (3), to obtain

S2
Fs ¼

X

s

dkF2
k

.X

s

dk ¼ ð1=PÞ2 2�x0r S
21
s �xr þ �x 0r S

21
s

X

s

dkxkx0k

.X

s

dk

 !
S

21
s �xr

¼ ð1=PÞ2 ð1þ QsÞ

The expression (16) for the correlation coefficient SFGs=ðSFsSGsÞ then follows.

Appendix 2: Description of the LCS2009 and LFS2012 Data Bases, the Auxiliary

Variables and the Survey Variables

The empirical sections 5 to 8 use data from two Statistics Sweden surveys: The Living

Conditions Survey (LCS) in 2009 and the Labor Force Survey (LFS) in 2012. From these

we created the two data bases referred to as LCS2009 and LFS2012, each consisting of a

subset of the probability sample drawn for those surveys. A difference in target populations

is that LCS targets persons aged 16 and above; LFS targets ages 16 to 74. We can treat

both data bases as simple random samples of individuals from the Swedish Register of

Total Population. The purpose is to have data sets on which to illustrate theoretical findings.

The results are not claimed to be generalizable to the surveys themselves.

Both surveys use a single data collection mode: Telephone. All attempts by interviewers

to establish contact with a sampled person – the call attempts – are registered by Statistics

Sweden’s WinDATI-system. For every sampled person, the system stores a series of

“events”. These include not only successful contacts but also call without reply, busy line,

contact with household member other than the sampled person, and appointment booking

for a later contact. Every registered event is considered a call attempt. There are more than

30 for some units. If contact and data delivery occurs, the data collection effort is complete

for that sample unit. By tradition, an objective in both surveys has been to reach a response
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rate as high as possible when the field work must necessarily stop. Given that objective, the

two surveys use somewhat different data collection strategies.

A number of auxiliary variables are available and recorded for all units in the two data

bases. Most of those were obtained by matching Swedish registers using the unique

personal identifier key. They allow different x-vectors to be constructed and used in

computing the imbalance IMB, the calibration estimator ŶCAL, the deviation Dr and other

quantities of importance in Sections 3 to 4. One x-vector was used for each of LCS2009

and LFS2012. These are given in (19) and (20). For both, the weighting matrices Ss and Sr

are invertible. For the computations, we also need survey variables y. For both LCS2009

and LFS2012, we designate two register variables, available for all sample units, to be

y-variables; these “pseudo y-variables” are Income (continuous, obtained from the

Swedish tax register), and Employed (binary; 1 for employed person, 0 otherwise).

Also recorded in the data bases are five alternative response sets. That is, every unit k in

the data base has an attached value equal to either 1 (for response) or 0 (for nonresponse).

Each response outcome can be seen as a vector, of dimension equal to the size of the data

base, of values 1 or 0 designating whether or not k is a respondent.

The first response set is the response actually recorded for the units in the data base

when the data collection was carried out in 2009 and 2012, respectively. The other four are

experimental response sets, constructed with the threshold method as described in

Subsection 5.3 and in Särndal and Lundquist (2014). As a result, each of LCS2009 and

LFS2012 contains five alternative response sets representing diminishing levels of

imbalance IMB, to meet the objective in the article to study how imbalance influences

quantities of interest. The threshold methods is applied somewhat differently in the two

cases. Reasons are different sample sizes and different intensity in the field work. The

thresholds used are different.

LCS2009. The LCS sample consists of individuals aged 16 years and older. The

ordinary field work lasted five weeks; a follow-up that concluded the data collection

brought the response rate to an ultimate 67.4%. The survey is annual and is published on a

yearly basis. The data set counting 8,220 individuals that we use here as the LCS2009 data

base can be considered a simple random subsample from the entire LCS sample.

We used five alternative response sets, the actual one and four experimental ones. The

latter were constructed with the threshold method described in Subsection 5.3, using

the vector x ¼ xdm14 given in (19) to compute the response propensities. We used the

thresholds 65%, 60%, 55% and 50%. The intervention points were attempts 3, 6 and 9 of

the ordinary data collection, the end of the ordinary data collection, and attempt 4 of the

follow-up. Together with the actual response, this gives five alternative response sets r,

denoted rAct, rA65, rA60, rA55 and rA50.

LFS2012. The Swedish Labour Force Survey is a monthly panel survey that targets

persons aged 16 to 74. It uses a rotating panel such that a selected person is in the sample

on eight occasions (every third month for 2 years). Two different samples are drawn:

“ordinary” and “extended”. The former is selected using a simple stratification, while the

latter uses a more complex stratification aimed at more satisfactory covering of people

deemed “outside the labour market”. The LFS-interview time is relatively short. The

survey is published on a monthly basis, requiring a shorter field work period than in the

LCS. For more information about the LFS see http://www.scb.se/en_/.
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To compose the data base LFS2012, we used part of the data from the 12 monthly LFS

surveys in 2012: The first waves of the “ordinary” parts are combined. That is, we treat the

12 wave-one samples as one survey. The monthly first-wave size is approximately 2,650

persons. For the whole year this adds up to a size of 32,265 for our LFS2012 data base. The

sample in each month is actually a stratified one, but not much different from a simple

random sample, so we treat LCS2012 as such.

Five alternative response sets are used, rAct, rA68, rA65, rA63 or rA60. The first is the actual

response as recorded for the units in LFS2012, with a response rate of 70.6%. The other

four are generated from the actual LFS2012 response set rAct by the threshold method and

with the use of the recorded call attempt data.

To compute the response propensities for the threshold method, we used the monitoring

vector x ¼ xdm16 given in (20). We used the thresholds 68%, 65%, 63% and 60%, and

eight intervention points: Call attempts 3, 5, 7, 9, 12, 15, 18 and 22. At each intervention

point units (or more correctly groups of units) with a response propensity higher than the

threshold are set aside, as described in Subsection 5.3. This gives five experimental

response sets r: rAct, rA68, rA65, rA63 and rA60.
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