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Adaptive survey designs (ASDs) optimize design features, given 1) the interactions between
the design features and characteristics of sampling units and 2) a set of constraints, such as a
budget and a minimum number of respondents. Estimation of the interactions is subject to
both random and systematic error. In this article, we propose and evaluate four viewpoints to
assess robustness of ASDs to inaccuracy of design parameter estimates: the effect of both
imprecision and bias on both ASD structure and ASD performance. We additionally propose
three distance measures to compare the structure of ASDs. The methodology is illustrated
using a simple simulation study and a more complex but realistic case study on the Dutch
Travel Survey. The proposed methodology can be applied to other ASD optimization
problems. In our simulation study and case study, the ASD was fairly robust to imprecision,
but not to realistic dynamics in the design parameters. To deal with the sensitivity of ASDs to
changing design parameters, we recommend to learn and update the design parameters.

Key words: Mixed-mode survey; mode effect; optimization problem; sensitivity analysis;
Travel Survey.

1. Introduction

Adaptive survey designs (ASDs) are based on the presumption that population units vary

in their reaction to survey questionnaires. This variation in response and answering

behavior leads to a suboptimal allocation of limited resources in a uniform, one-size-fits-

all survey design. Adaptive survey designs attempt to optimize resource allocation by

adapting design features to characteristics of the units that are known at the outset of the

survey or that are observed during data collection (Wagner 2008; Schouten et al. 2013a;

Chesnut 2013; Särndal and Lundquist 2013; Tourangeau et al. 2017). An optimal

allocation can also further reduce nonresponse bias on survey target variables than

calibration alone (Schouten et al. 2016).

In order to be able to adapt, a range of relevant characteristics needs to be known, a set

of design features needs to be at hand, and the interactions between these two need to be

observed in earlier waves of the same, or a similar, survey, or in earlier phases of data
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collection. Obviously, these may be strong requirements, so that it must be assumed that

such design parameters are subject to imprecision and bias; estimated interactions may be

noisy due to relatively small sample sizes and may be too optimistic or pessimistic. In this

article, we investigate the robustness of optimal adaptive survey designs to imprecision

and bias in design parameters.

An ASD requires estimates of key design parameters such as contact and participation

propensities, and survey costs per sampling unit (Wagner 2013; Peytchev et al. 2010).

These estimates are subject to estimation error and temporal changes, which may lead to

imprecision and bias. Inaccurate design parameter estimates will affect the optimal

choices, that is, the structure of an ASD, or the performance of an ASD when inaccuracy of

design parameters is not accounted for. A change in the optimal strategy allocation to

sampling units, that is, the structure of the ASD, may lead to practical and logistical

problems when running the survey. A lower performance of the ASD may lead to lower

response rates and representativeness, a budget overrun, and/or insufficient precision in

survey estimates. One option to account for such change in structure and performance is to

define data collection phases and postpone decisions on the exact implementation of

strategies to the beginning of each phase (Groves and Heeringa 2006; Laflamme and

Karaganis 2010). Another option is to explicitly account for uncertainty in the

optimization itself (Bruin et al. 2016). In this article, we first explore and assess robustness

of an ASD against imprecise and biased design parameters.

We address three questions: 1) How can we sensibly measure change in structure and

performance of an ASD? 2) How robust are the structure and performance of an ASD to

random error, that is, imprecision, in parameters? 3) How robust are the structure and

performance of an ASD to bias in parameters? Inaccuracy of design parameters affects all

survey designs, but since ASDs require estimates at a more detailed level, they may be

more sensitive than non-adaptive, uniform designs. Nonetheless, the research questions

are important also for non-adaptive (uniform) designs.

We set the investigation in the context of multi-mode surveys, because we see the

survey mode as one of the most powerful and influential design features. We follow

Calinescu et al. (2013), Calinescu and Schouten (2015), and Perryck (2015) in that we

formulate mathematical optimization problems and consider the combined effect of mode-

specific selection biases and mode-specific measurement biases (Schouten et al. 2013b). In

this setting, survey design parameters are, thus, not restricted to response propensities and

cost parameters, but they also include measurement differences. However, the proposed

methodology and the strategy adopted to evaluate robustness is general and may be

applied to any range of survey design features.

We motivate the answers to the research questions using a simple simulation study and

a more complex but realistic application to the Dutch Travel Survey in the years

2010–2013. The Travel Survey showed a strong decline over these years in two of the

three survey modes, web and telephone, and, hence, design parameter estimates in any

given year are biased in subsequent years. The Travel Survey case study is an example of a

static ASD (Bethlehem et al. 2011, 396), that is, the stratification of the population is based

solely on data that are available at the start of data collection. The case study could be

extended in a relatively straightforward way to dynamic designs, which include paradata
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to stratify the population during data collection. An example of a dynamic ASD is given in

the simulation study.

The outline of the article is as follows. In Section 2, we set the framework for ASD

optimization and discuss strategies and measures for the evaluation of robustness. In

Section 3, we illustrate the methodology with a simple simulation study. In Section 4, we

present the case study linked to the Dutch Travel Survey. We end with a discussion

in Section 5.

2. Framework for Exploring Robustness of Adaptive Survey Designs

In this section, we formulate ASD and set basic notation (2.1), discuss approaches to

assessing robustness of ASDs to inaccuracy of design parameter estimates (2.2), and

define three measures for comparing the structure of ASDs (2.3).

2.1. Setting and Notation

We formulate ASD as a mathematical optimization problem and we largely follow the

notation of Calinescu and Schouten (2015). ASDs can also be formulated more loosely,

without a strict notation, but to explore robustness a framework will be convenient.

In constrained optimization, an optimization parameter needs to be found so that an

objective function is either minimized or maximized, given one or more constraints. In

an ASD, the optimization parameter is the probability ps;g of allocating strategy

s [ {1; 2; : : : ; S}, say the choice of survey mode or the amount of an incentive, to group

g [ {1; 2; : : : ;G}, say an age class or a neighborhood characteristic as observed by an

interviewer. To avoid confusion with strategy s, we use the term group rather than stratum

or subpopulation. The objective function f ð ps;gÞ can be a cost or error function that is

minimized, or a quality function that is maximized. In the latter case, an obvious constraint

function hð ps;gÞ is a cost function that may not exceed a budget.

How to stratify the population into G groups is not at all straightforward and depends

on the focus on survey outcome variables, the quality and cost criteria in the ASD, and,

obviously, on the availability of auxiliary variables from administrative data and paradata.

In surveys with a wide range of outcome variables or in panels, the traditional focus is

on the explanation of nonresponse: variables are selected in the ASD that explain

nonresponse (see Schouten and Shlomo 2015 for a discussion and example). In surveys

with a few outcome variables, the resulting set of auxiliary variables may be subsampled

on the basis of their association to the outcome variables; groups are only formed when

they are homogeneous both in nonresponse and in outcomes (e.g., Särndal and Lundquist

2013). ASDs do not need to be limited to a focus on nonresponse. First attempts to extend

ASD to moderate measurement error have been made (e.g., Calinescu and Schouten 2016).

Any ASD optimization problem also has one or more dual problems, that is, by switching

the roles of objective function and constraints; the most obvious being cost minimization

given constraints on quality. Hence, ASD groups may also be formed based on their

homogeneity in terms of costs and survey outcome variables.

The stratification into population groups need not be limited to auxiliary variables

available at the outset of data collection. Paradata variables, for example interviewer

observations on the dwelling or neighborhood, break-off in a mode, for contact history,
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may be used to form subgroups. Once they become available, the strategy allocation is

further refined.

A data collection strategy s is the whole of design choices that are considered.

Typically, the strategies in an ASD differ in certain design features, for example the

application of a nonresponse follow-up or an incentive boost, but not in others, for

example the contact strategy or the content of the questionnaire. A group may receive a

specific strategy or a randomized mix of the selected strategies. Ideally, the strategies are

chosen such that they counteract nonresponse and/or measurement error of the targeted

population groups.

In order to determine the optimal design, we need input information about strategy- and

group-specific design parameters. What effect does strategy s have on the response

propensity and answering behavior of units in group g, and at what cost? Such strategy-

and group-specific design parameters need to be estimated in order to evaluate the

objective function f ð ps;gÞ and constraint functions hð ps;gÞ. These estimates may be

inaccurate. In the next subsection, we discuss causes for inaccuracy and approaches to

assess robustness of ASDs to inaccuracy.

2.2. Inaccuracy of Design Parameters and Assessment of Robustness

We see three causes for inaccuracy of estimates of design parameters. First, the estimates

may be imprecise, because they are estimated on a sample. Second, the estimates may be

biased because they were based on a different survey, or on the same survey in an

experimental setting. Third, the estimates may be unbiased at the time they were made, but

in time the true values have changed. The inaccuracy may affect both the structure of the

optimal strategy allocation and the performance of the ASD. The impact on structure is

undesirable from an operational perspective, and the impact on performance is undesirable

from a quality and cost perspective. We sketch four approaches to assess robustness.

Before we proceed, we make two remarks.

We consider the robustness of adaptive designs. However, an assessment of robustness

is equally sensible and valuable for a non-adaptive design. Also the parameters of non-

adaptive designs may be inaccurate and deviations of expected quality and/or costs occur

frequently. The main difference is that adaptive designs require parameter estimates at a

more detailed level, that is, the population groups. Hence, parameter estimates are more

susceptible to inaccuracy of adaptive designs than in non-adaptive designs.

Second, estimation of design parameters need not be done using a single experiment or

parallel run, but may be part of a more flexible design in which some of the data collection

resources are allocated to learn and update. Such continuous learning would be most

natural in a Bayesian context, in which historic survey data and expert knowledge are

employed to set prior distributions for design parameters. Resources would then be

allocated to promising strategies with weakly informative priors. In reinforcement and

machine learning, this is called the exploration-exploitation tradeoff (Sutton and Barto

2012). ASD optimization would, however, have to be reconsidered (Bruin et al. 2016),

which is beyond the scope of this article.

We see four different, but complementary, approaches to evaluate robustness in a non-

Bayesian setting; two of them focus on imprecision and the other two on bias in design
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parameters. The impact of imprecision can be assessed in two ways. First, by resampling

the survey data and optimizing the ASD for each resample, we may evaluate the variability

in the structure of the strategy allocation. Second, we may optimize the ASD for the

original sample and evaluate the variability in its performance when applied to resamples

of the survey data in terms of quality and costs, for example how often is the budget

overrun or are response rates below the specified threshold.

The impact of bias can also be assessed in two ways by considering different waves of

the same survey. First, we can optimize the ASD in both waves and compare the structure

of the strategy allocation between waves. Second, we can simulate and assess the

performance of an ASD optimized in one wave of the survey in a new wave. The optimal

strategy allocation probabilities are applied to the new wave of the survey and quality and

costs are compared.

Obviously, the simultaneous impact of imprecision and bias can also be assessed, but is

harder to interpret and to convert to counter measures. In the next subsection, we make

clear what we mean by assessing the structure of the strategy allocation, which is very

important when implementing ASD in practice.

2.3. Measures for Comparing the Structure of Adaptive Survey Designs

Since an ASD can consist of many (G £ S) allocation probabilities, we introduce three

distance measures, labeled d1 to d3, to compare the structure of two designs, say design A

and B. All three measures are bounded between 0 and 1, where 0 means that the designs

are the same and 1 that they are maximally different.

The first measure is the relative difference in sample size between design A and design B:

d1ðA;BÞ ¼
jnðAÞ2 nðBÞj

nðAÞ þ nðBÞ
; ð1Þ

where n(d) is the sample size for design d.

For the second and third measure, we partition the probability ps,g of allocating strategy

s to group g into the probability of sampling a population unit in group g,
P

s ps;g ¼

1 2 pø;g and the conditional allocation probability given being sampled, ~ps;g ¼
ps;g

12pø;g
. The

second measure is thus the Euclidean distance in group sampling probabilities between

design A and design B:

d2ðA;BÞ ¼
N

nðAÞ þ nðBÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sgwgð pø;gðBÞ2 pø;gðAÞÞ

2

q
ð2Þ

where pø;gðdÞ is the probability that a population unit in group g is not sampled in design d,

wg the weight or relative frequency of group g in the population wg ¼
Ng

N

� �
and N the

population size. For simplicity we assume that N and wg are the same in both designs. We

use sampling probability and inclusion probability interchangeably
P

s ps;g

� �
.

The third measure is the Euclidean distance in conditional allocation probabilities

between design 1 and design 2:

d3ðA;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2G

XG

g¼1

XS

s¼1
ð~ps;gðAÞ2 ~ps;gðBÞÞ

2

r

ð3Þ
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where ~ps;gðdÞ ¼
ps;gðdÞ

12pø;gðdÞ
is the allocation probability conditional on being sampled in

design d. The scaling factor 1
2

is added to bound d3 by 1.

In Sections 3 and 4, we demonstrate the utility of the three measures.

3. Simulation Study

We present a simplified example to demonstrate sensitivity analyses and the utility of the

design structure measures d1 to d3. Assume a survey with two data collection phases,

where the second phase is expensive and optional, for example a first phase using a web

questionnaire followed by a second phase using face-to-face interviewing. At the onset of

the survey, one relevant auxiliary variable, say age, is available for all sampling units.

During the first phase one paradata observation is made, say a binary indicator for a web

break-off. We divide the sample into four groups based on the two variables, say {#25

years, .25 years} £ {no break-off, break-off}, and seek to optimize the follow-up

probability per group. For simplicity, we assume that the groups have an equal population

size. Tables 1 and 2 give fictive estimates of the design parameters response propensity

and costs per sampling unit for each of the four groups in the two phases and in two

consecutive years, say t and t þ 1.

For year t, standard deviations are given in Tables 1 and 2 to mimic the uncertainty in

the estimated values. The response propensities are drawn from a Beta (a,b) distribution.

The two shape parameters are chosen such that the expectation and the square root of the

variance match the values in Table 1. The costs per sampling unit are drawn from a normal

distribution N(m,s 2), where m and s are given in Table 2. The response propensities and

costs per sampling unit in year t þ 1 are used to mimic bias through time change.

Now we have set the simulation framework, we specify the optimization problem. We

maximize the response rate, subject to constraints on the total costs and the number of

respondents in the two age groups. The budget is set at 38 per responding unit and 750

respondents are required per age group. The budget is too low to allocate all Phase 1

nonrespondents to Phase 2. A budget of 40 per responding unit would be needed to do a

full follow-up.

In order to further simplify the analyses, we consider only follow-up probabilities that

are multiples of 0.1, that is, in the set {0; 0:1; 0:2; : : : ; 1}. Given that we consider four

groups and eleven follow-up probabilities, there are 114 ¼ 14,641 possible designs. This

relatively small number of candidate designs allows us to do a brute force optimization,

that is, evaluate all candidate designs and select the best design.

Table 1. Fictive group response propensities for two phases in two consecutive years t and t þ 1. For the first

year, standard deviations are given in parentheses.

Year t Year t þ 1

Group Baseline Paradata Phase 1 Phase 2 Phase 1 Phase 2

1 #25 No break-off 0.20 (0.02) 0.40 (0.04) 0.18 0.40
2 Break-off 0 0.70 (0.04) 0 0.70
3 .25 No break-off 0.40 (0.02) 0.50 (0.04) 0.35 0.50
4 Break-off 0 0.80 (0.04) 0 0.80

Journal of Official Statistics692



We perform four analyses:

1. The effect of imprecise estimates of design parameters on

a. ASD structure

b. ASD performance

2. The effect of biased estimates of design parameters on

a. ASD structure

b. ASD performance

The effect of imprecise estimates of the design parameters (1) is analyzed by sampling

1,000 replications from the Beta and normal distributions of the response propensity and

costs. The effect on ASD structure (1a) is analyzed by optimizing each replication and

comparing the 1,000 ASDs using the distance measures. The effect on ASD performance

(1b) is analyzed by solving the optimization problem once using the point estimates of the

design parameters, and evaluating the response rate, costs and number of respondents per

group of the resulting ASD when applied to each of the 1,000 sets of design parameters.

The effect of bias in design parameter estimates (2) is analyzed by using propensities

and costs from two years. The effect on ASD structure (2a) is analyzed by optimizing each

year and comparing the two ASDs using the distance measures. The effect on ASD

performance (2b) is analyzed by solving the optimization problem in one year, and

evaluating the response rate, costs and number of respondents per group of the resulting

ASD when applied to the next year.

1a) Effect of Imprecise Input on ASD Structure

The optimal sample size (d1) and sample allocation probabilities (d2) vary relatively little

from one sample to the other (Figure 1); both measures exhibit large peaks close to zero.

In contrast, the strategy allocation structure (d3) shows a lot of variation and the median

distance is 0.35. In the example, the optimal sampling design does not vary a lot, but

optimal Phase 2 follow-up probabilities vary considerably between replications.

1b) Effect of Imprecise Input on ASD Performance

The variation in response rate is modest: the interquartile range is 63 2 61 ¼ 2%-point

(Figure 2). As a result, the number of respondents per age group (not shown) is fairly

stable. In 52% of the draws the number of respondents met the threshold and in only four

percent of the draws the number of respondents was below 95% of the threshold. However,

the costs show more variation: in 44% of the draws the costs exceeded the threshold, in

Table 2. Fictive group costs per sampling unit for two phases in two consecutive years t and t þ 1. For the first

year, standard deviations are given in parentheses.

Year t Year t þ 1

Group Baseline Paradata Phase 1 Phase 2 Phase 1 Phase 2

1 #25 No break-off 4 (0.1) 25 (2) 4 30
2 Break-off 5 (0.1) 30 (2) 5 32
3 .25 No break-off 4 (0.1) 20 (1) 4 22
4 Break-off 5 (0.1) 25 (2) 5 26
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18% of the draws the costs exceeded five percent of the budget, and in five percent of the

draws the costs exceeded ten percent of the budget. As is usually done in survey contracts,

some level of variation is explicitly acknowledged. A ten percent increase in budget is

common, but even then in five percent of cases this would be insufficient.

2a) Effect of Biased Input on ASD Structure

The distance measures in optimal designs between years are d1(t, t þ 1) ¼ 0.19, d2(t,

t þ 1) ¼ 0.23 and d3(t, t þ 1) ¼ 0.58. Starting with the sample sizes, d1 points at a fairly

large change. The optimal sample sizes are 2,505 and 3,705, respectively, for year t and

t þ 1, and are indeed quite different. Since the t þ 1 design has limited follow-up in Phase 2,

most of the response must come from Phase 1, and, hence, requires a much larger sample

size. Moving to the group inclusion probabilities, d2 also points at a fairly large change.

The relative shares of the groups in the sample are ngðtÞ=nðtÞ ¼ ð0:30; 0:30; 0:20; 0:20Þ

400

d1 (sample size) d2 (incl. prob.) d3 (cond. alloc prob.)
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Fig. 1. Histograms for the three metrics d1, d2 and d3 for 1,000 simulated sets of design parameters in year t.
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t applied to 1,000 simulated sets of design parameters. Dashed line shows budget.
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and ng t þ 1ð Þ=n t þ 1ð Þ ¼ 0:23; 0:23; 0:27; 0:27
� �

. Note that population units can be

allocated based only on age, so that the relative shares for Phase 1 break-offs and non-break-

offs are the same. In year t, persons of 25 and under are oversampled, whereas in year

t þ 1 persons over 25 years are oversampled. Indeed, the sampling design is quite different.

Finally, the d3 value points at a large difference in strategy allocation structure. The

optimal follow-up probabilities conditional upon being sampled are ~pgðtÞ ¼ ð0:3; 1; 1; 1Þ

and ~pgðt þ 1Þ ¼ ð0; 1; 0; 0:5Þ; the allocation structure to Phase 2 has clearly changed in

all groups, except the break-offs by persons of 25 years and under. In this example,

the decrease in Phase 1 response propensities implies a big change in the form of the optimal

design.

2b) Effect of Biased Input on ASD Performance

When the optimal design for year t is applied in year t þ 1, then the response rate drops by

1.1%-point from 62.4% to 61.3%, the number of respondents in the age groups drops on

average also by 1.1%, and the costs per responding unit increase to 41.4 and lead to a

budget overrun of almost 10%. We can conclude that the drop in Phase 1 response

propensities has a strong impact on the performance.

In Section 4, we analyze the effects on imprecise and biased input on ASD structure and

performance for a real example linked to the Dutch Travel Survey.

4. Case Study

We apply the proposed methodology to the Dutch Travel Survey (DTS, abbreviated to

OViN in Dutch) for the years 2010 through 2013. In this case study, we minimize mode-

effects subject to constraints on costs, precision and response rate by optimizing follow-up

probabilities. After briefly introducing the survey (4.1), we will explain how subpopulations

and strategies are defined (4.2), specify the optimization problem (4.3), estimate the design

parameters across time, including the sampling error from bootstrap samples (4.4), solve the

optimization problem (4.5), introduce a number of scenarios with different constraints (4.6),

and assess the robustness against imprecise input (4.7) and biased input (4.8).

4.1. Dutch Travel Survey

The DTS monitors the travel behavior of the Dutch non-institutional population of all

ages. The sampling design is a stratified random sample, where strata are defined by

region. The current survey design is a uniform sequential mixed-mode design. Each

sampling unit is requested by mail to fill out a web questionnaire. After two mail

reminders, nonrespondents are approached for a telephone interview (CATI) if a telephone

number is available and for a face-to-face interview (CAPI) if not. For CATI, three contact

attempts are made, each consisting of a calling attempt in the morning, afternoon and

evening. For CAPI, up to seven visits are made.

4.2. Population Groups and Strategies

In an ASD, the design features are adapted to each stratum. As explained in Section 2, we

refer to stratum or subpopulation as group g to avoid confusion with strategy s. Population
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groups were defined using a CHAID/regression tree analysis, maximizing the between-

group variance and minimizing the within-group variance in a key target variable: total

distance traveled on a particular day. As auxiliary variables, we used gender (2), age (18),

degree of urbanization (5), region (12), origin (3), car ownership (3), household income

(6), day of the week (7), household size (6), socioeconomic status (5), and availability of

a telephone number (2), with the number of categories in parentheses. The resulting

stratification into G ¼ 8 groups is shown in supplementary Table S1, including the labels

used in subsequent figures (supplementary file available online at: http://dx.doi.org/10.

1515/JOS-2017-0032).

From the sequential mixed-mode design Web–CATI/CAPI (s3), we could deduce

two more strategies without the need for additional experiments: Web only (s1) and

Web–CATI (s2). The current Web–CATI/CAPI design was set as benchmark strategy and

consequently has no mode effect by definition. It has the highest response propensities, but

is also the most expensive design.

4.3. The DTS Optimization Problem

The DTS considers removing part of the CATI and CAPI follow-up in order to reduce the

costs of the survey. The impact on DTS survey statistics, in this study the total distance

travelled on a given day, must, however, be minimized. DTS users demand a minimum

precision in relevant population groups, which is translated to minimum numbers of

respondents. Furthermore, DTS users and Statistics Netherlands have also agreed on a

minimum response rate. Hence, the DTS constrained optimization problem is defined by

one cost function (survey costs) and three quality functions (method effect on distance

travelled, numbers of respondents, and response rate).

We choose to minimize the absolute method effect under constraints on the total costs,

the numbers of respondents in the eight groups defined in Subsection 4.2, and the overall

response rate. The roles of costs and method effect could be switched to define a dual

problem, but, since the budget cut is most real, we focus on optimizing quality. The

constraint parameters are denoted as B (budget), Rg (minimum number of respondents in

group g) and G (minimum response rate).

In the optimization, we search for the best allocation probabilities, ps,g, of the three

possible strategies s (Web only, Web–CATI, Web–CATI/CAPI) to each of the eight

groups g. The optimization problems in terms of the strategy allocation probabilities

are formulated in the Supplement (available online at: http://dx.doi.org/10.1515/

JOS-2017-0032).

The quality and cost function depend on three design parameters: the method effects

Ds,g, the response propensities rs;g and the costs per sampling unit cs,g. These parameters

need to be estimated.

4.4. Estimating the Design Parameters

We discuss estimation of each of the three types of design parameters.

The first design parameter, the relative mode effect Ds,g is defined as the difference

between two population parameter estimates, û estimated from the response by group g
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using either strategy s or a benchmark strategy BM:

Ds;g ¼ ûs;g 2 ûBM;g: ð4Þ

The population parameter ûs;g is a key target variable, here the total distance traveled on

a particular day. It is estimated using the inclusion weights of the sampling design,

corrected for selective nonresponse by multiplicatively weighting the appropriate

subsamples to known population distributions of auxiliary variables (Deming and Stephan

1940). The auxiliary variables are the same as those used to define the population groups

(Subsection 4.2). Since the population parameters for strategies s1 and s2 are estimated

from subsamples of the original sample, the original weighting model of the DTS is too

detailed and is reduced to the main effects.

Thus, the mode effect is operationalized as the difference between weighted estimates,

and is the net effect of a difference in selection and a difference in measurement. The

latter, we would call a pure mode effect or measurement effect. The more effective

the weighting model, the more it will correct for the selection effect and the more similar

the mode effect will be to the measurement effect (of strategy s relative to the benchmark

strategy).

The second design parameter, the response propensity rs;g, is estimated by multiplying

the overall response rate r
n

by the cumulative proportion of respondents that participated

in strategy s:

rs;g ¼
r

n

X
i[RwiIgiJsi

X
i[RwiIgi

; ð5Þ

where wi is the calibration weight of responding unit i, Igi the binary indicator for

responding unit i being an element of group g and Jsi is the binary indicator for responding

unit i participating in strategy s, and R the response set.

Population sizes were estimated by summing the calibration weights of the respondents.

The calibration weights are produced in the regular statistical production process based on

generalized regression calibration (Särndal et al. 1992). In the calibration, the selected

auxiliary variables from administrative data are included as well as a range of additional

variables (see CBS 2015 for the exact weighting model).

The third design parameter, the cost per sampling unit cs,g is derived from cost

calculation sheets provided by data collection staff. In addition to fixed costs that are

similar for each group, costs differ between groups, because they differ in response

propensities and telephone registration propensities.

The design parameters Ds,g, rs;g and cs,g were estimated for S ¼ 3 strategies times G ¼ 8

groups times four years (Figures 3–5). The uncertainty in the estimates was quantified by

drawing 1,000 bootstrap samples from the data and recalculating the design parameters for

each bootstrap sample. Multicollinearity between the design parameters is thus taken into

account.

The estimates of the relative mode effects, Ds,g (Figure 3) show wide confidence

intervals relative to the point estimates. They generally did not show obvious trends over

time, except for units in group g7 (0_18 þ _,30k: unemployed adults with relatively low

household income), for whom the total distance traveled was estimated about one hundred
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hectometers (ten kilometers) higher in Web than in benchmark strategy Web–CATI/

CAPI.

The estimates of the response propensities, rs;g (Figure 4) show narrower confidence

intervals relative to the point estimates than the estimates of the mode effects (see

Figure 3). The response propensity estimates declined for Web and Web–CATI, but not

for Web–CATI/CAPI. The decline in response to Web–CATI is caused by a decline in the

availability of telephone numbers to call web nonrespondents. As a result, more web

nonrespondents receive a personal interview (CAPI).

The costs, cs,g were estimated with narrow confidence intervals relative to the point

estimates (Figure 5). Web is obviously the cheapest strategy with on average 2.3 euro per

sampling unit, whereas Web–CATI is about 3 to 4 times more expensive, and the

benchmark Web–CATI/CAPI even 10 to 13 times in 2010. For Web–CATI/CAPI costs

strongly rose over time, because both the web response and the availability of telephone

numbers declined and more sampling units were assigned to the most expensive CAPI

mode.

4.5. Solving the Optimization Problem

To find the optimal allocation probabilities, ps,g, the optimization problem (supplementary

Eq. S1, available online at: http://dx.doi.org/10.1515/JOS-2017-0032) was solved using

the R package nloptr (R Core Team 2014; Ypma 2015), which is an R interface to

NLopt, an open-source library for nonlinear optimization (Johnson 2016). As starting
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2.5th, 50th and 97.5th percentiles.
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values we chose the allocation probabilities under the current uniform Web–CATI/CAPI

design. Based on previous experiences with global and local search algorithms in the

NLopt library (Calinescu and Schouten 2015), we selected the local search algorithm

Constrained Optimization BY Linear Approximations (COBYLA, Powell 1994). An

optimization was run using the design parameters Ds,g, rs;g; and cs,g estimated from the

original sample (resulting in a design referred to as ORt or pORt
s;g for a given year t) or from a

bootstrap sample (resulting in a design referred to as BSt or pBSt
s;g ). To reduce runtime,

optimizations were executed in parallel using the R packages foreach and

doParallel (Calaway et al. 2015a; Calaway et al. 2015b) on an eight-core machine.

4.6. Scenarios

In all scenarios (Table 3), we set the minimum total number of respondents, R and allocate

this over groups according to what has been realized in the field: Rg ¼
r*

gP
g

r*
g

R. The first

scenario was defined by the current DTS, which has a budget of B ¼ 1.8 mln euro and is

aimed at obtaining at least R ¼ 35,000 respondents and a response rate of at least

G ¼ 0.585. To reduce costs, we studied to what extent R and G need to be compromised

when the budget would be cut to B ¼ 1.5 mln euro – a reduction of almost 17%. Survey

stakeholders have indicated that they are willing to compromise to G ¼ 0.565. Moreover,

from 2010 through 2013 the average number of respondents was closer to about

R ¼ 32,000. Reducing the budget without compromising R or G resulted in no solutions

(supplementary Fig. S1, available online at: http://dx.doi.org/10.1515/JOS-2017-0032):

none of the bootstraps converged and met the constraints. Either R or G has to be relaxed,
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or both to some lesser extent. Scenarios 2 and 3 were chosen along the diagonal of

supplementary Fig. S1 for more detailed analyses.

4.7. Robustness Against Imprecise Input

In this subsection, we assess the effect of imprecise estimates of design parameters on

ASD structure and performance. The effect of biased estimates will be discussed in the

next subsection.

ASD Structure

Here we compare the structure of the bootstrapped ASDs with the structure of the original

ASD. In all three scenarios and eight groups the inclusion probability ð
P

s ps;gÞwas around

0.004 and slightly decreased with decreasing R (see supplementary Fig. S2, available

online at: http://dx.doi.org/10.1515/JOS-2017-0032). Within-group variance in inclusion
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Table 3. Scenarios defined by the constraint parameters.

Scenario Label†
Budget,

B (mln euro)
Minimum number of

respondents, R
Minimum response

rate, G

1 Current 1.8 35,000 0.585
2 B # RR # 1.5 35,000 0.570
3 B # SE " 1.5 32,000 0.585

†B: budget, RR: response rate, SE: standard error, # ( " ): decrease (increase) relative to Scenario 1.
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probabilities generally inflates the variance of the population parameter estimates (Kish

1987). This variance in inclusion probabilities was highest in Scenario 1 (‘Current’),

where the inclusion probabilities were most sensitive to inaccuracy of the design

parameters.

In Scenario 1 (‘Current’), the budget is sufficient to almost uniformly administer the

benchmark strategy Web–CATI/CAPI (see supplementary Fig. S3 available online at:

http://dx.doi.org/10.1515/JOS-2017-0032). When the budget is cut, some portion of each

group should be administered the Web–CATI strategy. This means that some group

members will not be visited for a personal interview (CAPI) if they do not respond to the

web questionnaire and their telephone number is unavailable for a telephone interview

(CATI). This effect is strongest when the constraint on the precision remains fixed and

only the constraint on the response rate is relaxed (Scenario 2: ‘B # RR # ’). In that case the

conditional allocation probability is fairly sensitive to inaccuracy of the design parameter

estimates. When the constraint on the precision is relaxed and the constraint on the

response rate remains fixed (Scenario 3: ‘B # SE " ’) the optimal design remains almost

uniformly the benchmark strategy.

The distance measures summarize these patterns (Figure 6). The distance in overall

sample size (d1, Eq. 1) was small but highest in Scenario 1 (‘Current’), which also had the

highest variation in inclusion probabilities (see Fig. S2). This is also expressed in more

detail by the distance in inclusion probabilities (d2, Eq. 2). The distance in conditional

allocation probabilities (d3, Eq. 3) corroborate the details in supplementary Fig. S3

(available online at: http://dx.doi.org/10.1515/JOS-2017-0032).

ASD Performance

When applying the original ASD to the bootstrap samples, the objective function, that is,

the population average mode effect �DBM (Eq. 4) was successfully eliminated in all

three scenarios (not shown here but integrated in Figure 8 below). Given the constraints,

the objective function was very robust against inaccuracy of the design parameter

Current
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Fig. 6. Robustness of ASDs against imprecision of design parameter estimates of the 2010 Dutch Travel Survey,

for three scenarios (panels). Each distance is measured between two optimal designs, one using the design

parameters from the original sample (OR2010), the other using the design parameters estimated from a bootstrap

sample (BS2010). Shown are 2.5th, 50th, and 97.5th percentiles of distances between ASDs that converged and

met the constraints.
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estimates – if a solution was found (see supplementary Fig. S1, available online at: http://

dx.doi.org/10.1515/JOS-2017-0032). Only when a lower budget was compensated by

relaxing the constraint on the response rate (Scenario 2: ‘B # RR # ’) some bootstraps

resulted in a population average mode effect of up to about one hectometer.

In 95% of the samples, the budget is not overrun by more than eleven thousand euro

(Scenario 1: ‘Current’), that is, less than 0.7% of the budget in all scenarios

(supplementary Fig. S4, available online at: http://dx.doi.org/10.1515/JOS-2017-0032). In

all scenarios, the precision is still met when design parameters are estimated from a

bootstrap sample. In 95% of the samples, the design is no more than 145 respondents short

to meet the constraint on the response rate (Scenario 1: ‘Current’), that is, less than 0.5% in

all scenarios.

We conclude that the performance of the ASD is robust against imprecise input. The

uniform benchmark design, on the other hand, either structurally overruns the budget by

20 thousand euro, that is, 1.3% of the budget (low-budget Scenarios 2 and 3), or is

structurally short of more than two thousand respondents, that is, 6% of the minimum

(high-precision Scenarios 1 and 2), or both (Scenario 2).

4.8. Robustness Against Biased Input

In this subsection, we assess the effect of biased estimates of design parameters on ASD

structure and performance.

ASD Structure

For the DTS, the design parameter estimates changed over time: response rates decreased

in the strategies Web and Web–CATI (see Figure 4), and costs increased in the benchmark

strategy Web–CATI/CAPI (see Figure 5). These changes were so severe that in 2011 the

majority of bootstraps no longer yielded a solution in the acceptable range of R and G at

B ¼ 1.5 mln euro (see supplementary Fig. S1, available online at: http://dx.doi.org/10.

1515/JOS-2017-0032). When both R and G were relaxed – a scenario not included in

Table 3 – the valid ASDs for 2010 and 2011 differed mostly in the conditional allocation

probabilities (Figure 7). Further loosening of the constraints B, R or G would be necessary

to find more solutions that could meet those constraints. The design was, thus, not robust

against strong but real temporal changes in design parameter estimates. Note that this

holds for both the uniform and the adaptive design.

ASD Performance

When the ASDs of 2010 from the previous section were applied to subsequent years, the

population average mode effect, �Ds3 could no longer be eliminated (Figure 8). Again, this

effect is strongest when a lower budget was compensated by relaxing the constraint on the

response rate (Scenario 2: ‘B # RR # ’). By definition, the uniform benchmark design

causes no mode effect and its population average mode effect is therefore insensitive to

dynamics in design parameter estimates.

The ASDs of 2010 administered high proportions of the benchmark strategy

Web–CATI/CAPI (see supplementary Fig. S3 available online at: http://dx.doi.org/10.

1515/JOS-2017-0032). The costs of this strategy, cs3,g rose strongly over time (see
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Figure 5). As a result, the budget would be overrun considerably when the ASDs of 2010

were applied in subsequent years (Figure 9A: C 2 B . 0). Note that in the low-budget

Scenarios 2 and 3, the uniform benchmark design would overrun the budget even more

(and as we have seen already overran the budget in 2010). In the more expensive Scenario

1 (‘Current’) the uniform benchmark design seemed cheaper than the adaptive designs, but

there it did not meet the constraint on the minimum number of respondents (Figure 9B:

R 2 r . 0). The variation is caused by the variation in the design parameter estimates,

Ds,g, rs;g and cs,g (both designs) and the variation in the allocation probabilities, ps,g

(adaptive design).
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The response propensities of the benchmark strategy Web–CATI/CAPI, rs3;g were

fairly stable over time (see Figure 4). As a result, in most groups the ASDs of 2010 still

obtained (almost) enough respondents in subsequent years (Figure 9B: R 2 r # 0;

supplementary Fig. S5: Rg 2 rg # 0). As we have discussed in the previous section, in the

scenarios with a tight constraint on precision (1 and 2), a uniform benchmark design was

already in 2010 deficient in the number of respondents (R 2 r . 0).

The ASDs of 2010 would still meet the constraint on the response rate in 2011

(Figure 9C: Gn 2 r # 0), but no longer in subsequent years (Gn 2 r . 0). The uniform

benchmark design could meet the constraint on the response rate, but only in Scenario 2

(‘B # RR # ’) where it could not meet the constraint on the response size (Figure 9B).

We conclude that the performance of the ASD is not robust against (strongly) biased

input, although it outperforms the uniform design.

5. Discussion

To optimally adapt a survey design to the response and answering behavior of sampling

units, design parameters need to be estimated. In this article, we propose and evaluate four

viewpoints to assess robustness of adaptive survey designs to inaccuracy of design

parameter estimates: the effect of both imprecision and bias on both ASD structure and

ASD performance. We additionally propose three distance measures to compare the

structure of ASDs. The methodology is illustrated using a simple simulation study and a

more complex but realistic case study on the Dutch Travel Survey.

By bootstrapping the survey data and recalculating the design parameters, realistic

combinations are obtained to assess an ASD’s sensitivity to estimation error. The

simulation study showed that optimal sample sizes and inclusion probabilities were robust

to estimation error, but conditional allocation probabilities were not. The objective

function was fairly robust to estimation error, but the optimal design could not meet all

restrictions when applied to resampled data. The case study on the Dutch Travel Survey –

with high variance in mode effect estimates – also showed that optimal sample sizes were

robust to imprecision, but the robustness of the allocation probabilities depended on the

constraint parameters. When applied to resampled data, the optimal DTS design remained

successful in minimizing the objective function, and fairly successful in meeting the

constraints. Variation in optimal allocation probabilities is undesirable for logistical

and process-control reasons; it is practically not feasible to implement and monitor a

constantly changing allocation structure.

When it comes to bias in design parameter estimates, the simulation study showed that

the structure of the optimal design can change substantially in the next year. The optimal

design also performed considerably poorer when applied to the next year. The DTS case

study confirmed that both ASD structure and performance are very sensitive to bias.

Scenarios that were feasible in 2010 became unsolvable in subsequent years because of

sharply declining response rates in web and availability of phone numbers, unless one or

more of the constraints were relaxed. Applying the optimal design to subsequent years

revealed that the objective function could no longer be eliminated, the budget would be

overrun and the minimum response rate would not be met, especially when the budget is

cut without compromising on precision. It is important to note, however, that the uniform
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benchmark design is a special, suboptimal case of an ASD and already did not meet the

constraints in 2010.

Robustness will obviously improve when design parameters are estimated with greater

precision, for example by larger sample sizes. Robustness might also improve when more

constraints are added, such as a lower bound on the costs in addition to a budget. This

might, however, reduce the probability of convergence and the number of solutions. Third,

robustness could be improved by creating homogenous groups that differ in more than one

survey outcome variable, and/or that differ in the design parameters, like the mode effects,

response propensities, or costs. The more groups differ in the design parameters, the more

an adaptive design can gain over a uniform design. Large between-group variances also

urge the need for up to date information used to assign sampling units to groups. Finally,

time series of design parameters could be modeled to predict potential problems such as

declining response rates and availability of valid telephone numbers. When choosing the

constraints, one could anticipate a narrower solution space than at present.

In conclusion, sensitivity of adaptive survey designs to inaccuracy of key input

parameters urges the need for a more sophisticated choice of population groups, and for

a frequent updating of the design parameters and the optimal ASD. Even when input

parameters evolve greatly, mode effects might still be minimized to obtain unbiased

statistics, but only at the expense of lower response sizes and consequently less precise

statistics. Hence, robustness of the resulting (adaptive) survey design needs to be balanced

against the precision and bias of the key statistics.

Nonlinear optimization problems can result in local minima, and, thus, suboptimal

solutions. Optimization may also be stopped before a solution is found if the objective

function or optimization parameters change too little between iterations. The probability

of finding the global minimum could be increased by choosing a larger set of starting

values, possibly after a brute force optimization as employed in the simulation study, or

choosing another search algorithm. Future research should be directed at more

sophisticated, more informed methods to optimize ASDs.

Future research should also set ASD optimization in a Bayesian context where historic

survey data and expert knowledge are entered through prior distributions on the design

parameters. Some of the costs that can be saved by switching from a uniform to an

adaptive design should be used to learn the design parameters. The design parameter

distributions would then be updated during and after data collection, leading to an integral

analysis of sensitivity. The faster the design parameters evolve, the more frequently they

need to be updated. A Bayesian framework is currently under development to allow the

learning and updating of the design parameters (Bruin et al. 2016). Performing

optimization of ASDs in a Bayesian setting is not straightforward, however, and would

have to be combined with a more flexible design of surveys.

This article is inspired from realistic and practical quality-costs tradeoffs. The framework

and metrics are especially designed for data collection staff involved in monitoring and

analysis and in (re)designing surveys. The analyses in this article help assessing uncertainty

in quality and costs and may support or guide design decisions. However, a broader

application is warranted in order to evaluate the utility and use in practice.
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