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Online surveys have the potential to support adaptive questions, where later questions depend
on earlier responses. Past work has taken a rule-based approach, uniformly across all
respondents. We envision a richer interpretation of adaptive questions, which we call
Dynamic Question Ordering (DQO), where question order is personalized. Such an approach
could increase engagement, and therefore response rate, as well as imputation quality. We
present a DQO framework to improve survey completion and imputation. In the general
survey-taking setting, we want to maximize survey completion, and so we focus on ordering
questions to engage the respondent and collect hopefully all information, or at least the
information that most characterizes the respondent, for accurate imputations. In another
scenario, our goal is to provide a personalized prediction. Since it is possible to give
reasonable predictions with only a subset of questions, we are not concerned with motivating
users to answer all questions. Instead, we want to order questions to get information that
reduces prediction uncertainty, while not being too burdensome. We illustrate this framework
with two case studies, for the prediction and survey-taking settings. We also discuss DQO for
national surveys and consider connections between our statistics-based question-ordering
approach and cognitive survey methodology.

Key words: Adaptive survey design; cognitive aspects of survey methodology; cost-based
dynamic question ordering; questionnaire design.

1. Introduction

Survey response rates have been falling for decades, leading to results that do not

necessarily represent the full population of interest (Porter 2004). Online surveys tend to

have much lower response rates than traditional mail-out/mail-back and telephone surveys

(Shih and Fan 2008). Unlike these traditional-styled surveys, online surveys can easily

support adaptive question ordering, where the order of later questions depends on

responses to earlier questions. Past work in adaptive questions for online surveys has taken

a rule-based, question-specific approach where a certain response to a certain question

leads to a new set of questions, uniformly across all respondents (e.g., (Pitkow and Recker

1995; Bouamrane et al. 2008)). We envision a richer interpretation of adaptive question

ordering, where question order is dynamic and personalized to the individual, depending

on their previous answers. Such a dynamic question-ordering approach has the potential of
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increasing engagement, and therefore response rates, as well as imputation quality for

missing values.

In addition to using surveys to gain insights about general populations, we can use

survey results to provide individual respondents with useful information. We consider a

respondent’s answering a sequence of questions to receive a personalized estimate as a

type of survey too. An example of such a survey is a carbon calculator, where a user

provides information about their home infrastructure and energy consumption to get an

estimate of their carbon footprint (Pandey et al. 2011). Here the respondent receives useful

information from the survey, has a personal incentive to complete the survey, and likely

self-selects into the survey. It is possible that the user does not need to answer all questions

to get an accurate estimate. For some users, certain features will be more relevant than for

other users. We can lower the cost (to users) of providing answers by ordering the

questions so that the most informative questions for a particular user are asked first.

We present a general framework for dynamically ordering the questions that make up a

survey questionnaire, based on previous responses, to engage respondents and improve

survey completion and imputation of unknown items. Our work considers two scenarios

for data collection from survey-takers. In the first, we want to maximize survey completion

(and the quality of necessary imputations) and so we focus on ordering questions to engage

the respondent and collect hopefully all the information we seek, or at least the

information that most characterizes the respondent so imputed values will be accurate. For

example, there may be a latent structure to a respondent’s answers, and this underlying

structure could guide question selection. In the second scenario, our goal is to give the

respondent a personalized prediction, based on information they provide. Since it is

possible to give a reasonable prediction with only a subset of questions, we are not

concerned with motivating the user to answer all questions. Instead, we want to order

questions so that the user provides information that most reduces the uncertainty of our

prediction, while not being too burdensome to answer.

Any statistics-based approach to dynamic question ordering of the sort we consider here

would seem to run counter to traditional arguments that questionnaires should have a fixed

structure for all respondents and when the same quantities, for example, unemployment

or poverty, are measured by surveys over time. Just over thirty years ago, the Cognitive

Aspects of Survey Methodology (CASM) movement, for example, see (Jabine et al. 1984;

Sudman et al. 1996; Tanur 1992), made the argument that this traditional approach to survey

design shackled respondents and often prevented them from providing the very answers that

the survey methodologists sought for their questions, for example, see (Suchman and Jordan

1990; Tanur 1992). We believe our approach reopens the door to the arguments raised by

that movement, but in a very different manner, and somehow survey statisticians will

ultimately need to blend the lessons from the CASM movement with the needs for cost-

driven dynamic ordering. One important problem is that order effects (Sudman et al. 1996)

can influence how people interpret and answer certain questions, leading to inconsistent

data across respondents who received questions in different orders. However, not all

questions are susceptible to order effects, and it is possible to constrain dynamically ordered

questionnaires to respect relative orderings among sensitive questions (see Section 4).

The remaining sections of the article are as follows: first, in Section 2, we review related

work in survey burden, respondent engagement, and question ordering from a variety of
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fields. Then, in Section 3, we illustrate the promise of DQO with two case studies: the first

collects data to provide personalized energy estimates to prospective tenants, drawing on

data from the Residential Energy Consumption Survey (U.S. Energy Information

Administration 2009), and the second is a traditional survey collection approach, with the

Survey of Income and Program Participation (U.S. Bureau of the Census 2014b). In

Section 4 we formalize and generalize the DQO framework, beyond the particular

applications in the previous section. In Section 5 we set forth a broader view of the forms

dynamic question ordering can take in other national surveys and suggest how they might

benefit from a dynamic question-ordering approach. Finally, in Sections 6 and 7 we

summarize our contribution and note avenues for future work in this area.

2. Related Work

In this section we first review the literature on survey burden, respondent engagement, and

data quality. Then we cover work from several fields on adaptive question ordering, for

personalizing the order in which information is acquired to achieve higher quality data at

lower costs.

2.1. Survey Burden, Respondent Engagement, and Data Quality

Respondent burden in surveys is multifaceted, with multiple factors influencing what is

ultimately a subjective measure for the respondent. Some of these factors are survey length

(e.g., number of questions or estimated time), respondent effort, respondent stress, or

frequency of interviews (Bradburn 1978). A respondent’s perception of the survey task has

a significant direct effect on self-reports of survey burden (Fricker et al. 2014). Recent

work has demonstrated that telling respondents that they have been screened into a longer

or shorter survey, with a longer or shorter expected time commitment, can influence their

perception of survey burden. Those who were told they were screened into a longer survey

reported more burden than those who also received the longer survey but were not

informed of their selection (Yu et al. 2015). Reported survey length is one factor that

influences a respondent’s decision to begin a survey: fewer people start surveys that are

announced to take more time to complete (e.g., (Walston et al. 2006; Marcus et al. 2007;

Galesic and Bosnjak 2009)). However, this phenomenon is not universal (e.g., (Cook et al.

2000)). Furthermore, response quality tends to decrease as the survey progresses (e.g.,

(Galesic 2006; Barge and Gehlbach 2012)).

As survey response rates have been dropping (e.g., (Porter 2004; Shih and Fan 2008)),

researchers have been looking at how to motivate respondents to fill out these surveys, to

avoid having survey results not represent the full population. Commercial surveys often

pay respondents, but compensation does not necessarily ensure thoughtful responses –

participants still exhibit satisficing behavior in paid surveys (e.g., (Barge and Gehlbach

2012; Kapelner and Chandler 2010)). Incentivizing respondents with something

dependent on the quality of their answers, like a personalized prediction or calculation,

can motivate them to provide correct data. For example, Angelovska and Mavrikiou

(2013) design an online questionnaire that gives the respondent feedback on their level of

procrastination, based on their responses. Their experiments find that the questionnaire

that promises feedback has lower breakoff rates than the standard questionnaire in which
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the respondent does not receive personalized feedback. Marcus et al. (2007) find that

offering personalized feedback increased response rates for low-salience surveys but had

no significant effect for high-salience surveys.

Another promising venue for increasing respondent motivation and lowering breakoff is

by using paradata collected as the respondent answers an online survey (e.g., time spent

on page, mouse clicks (Kaczmirek 2008)) to model user engagement (Couper et al. 2010).

Survey breakoff is influenced by respondent factors (e.g., demographics), survey design

(e.g., topic), and page and question characteristics (e.g., question type) (Peytchev 2009).

Respondent interest and burden are negatively and positively, respectively, associated

with breakoff, and respondent and survey factors influence these components too (Galesic

2006). Furthermore, lower-quality answers (e.g., skipped items) often precede breakoff

(Galesic 2006). Survey action can be taken to increase user engagement and response

rates.

2.2. Adaptive Question Ordering

There is a rich literature focusing on adaptively ordering questions to improve outcomes

while minimizing respondent burden, across multiple fields. Examples include adaptive

design in survey methodology, adaptive treatment design in medical statistics, adaptive

testing in educational research, and test-time feature selection in machine learning.

2.2.1. Adaptive Survey Design

Adaptive survey design (ASD) attempts to improve survey quality (in terms of achieving a

higher response rate or lower error) by giving respondents custom survey designs, rather

than the same one (Schouten et al. 2013). Usually ASD tries to minimize nonresponse, and

designs involve factors like number of follow-ups, which can be costly. The general

technique is to maximize survey quality while keeping costs below a budget.

Often in ASD, changes in survey design happen between phases of the survey, where

the exact same survey protocol (e.g., sampling frame, survey mode, measurement

conditions) is in place within a phase and results from that phase inform changes to the

protocol for the next phase. Groves and Heeringa (2006) introduce an approach they call

responsive survey design, which uses indicators of the cost and error of design features to

make decisions about how to change the survey design in future phases and then combines

data from all phases into a final estimator. They also introduce the concept of phase

capacity––once a stable estimate has been reached in a design phase, it is unlikely that

expending more effort in that phase will result in a better estimate. Their definition of

“effort” focuses on collecting participants for each phase. They propose the use of error-

sensitive indicators to identify when a phase has reached capacity and no more participants

need to be recruited for that phase. This notion of phase capacity could extend to reaching

a stable estimate of a participant’s survey-answering, and no more questions need to be

asked.

2.2.2. Adaptive Treatment Strategies

In the field of medical statistics, adaptive treatment strategies (also called dynamic

treatment regimes) continually adjust treatments, according to decision rules, depending
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on an individual’s responses to previous treatments as well as characteristics of the patient

(Collins et al. 2007). This technique contrasts with the research standard of randomized

controlled trials but more closely matches real-world practice of medical intervention

(since, when a treatment fails for a particular patient, that patient is reassigned to a new

treatment, based on how they reacted). Adaptive treatment strategies are targeted for an

individual, rather than basing future treatment decisions on outcomes of previous patients.

The design of the sequential multiple assignment randomized (SMAR) trial (Murphy

2005) chooses a decision to make at each point according to what action will maximize the

expected treatment outcome, given past information that has occurred. SMAR trials

randomize individuals to different treatments at each decision time point.

Adaptive treatment strategies have been applied to treat depression, with the STAR*D

(sequenced treatment alternatives to relieve depression) treatment (Rush et al. 2004), in

which patients who did not respond to less-intensive therapies were randomly assigned to

more intensive treatments at higher levels; to treat schizophrenia, with the CATIE (clinical

antipsychotic trials of intervention effectiveness) design (Stroup et al. 2003), a three-phase

study where patients were randomly assigned to new treatments at successive phases if

they did not respond to earlier treatments; to treat advanced prostate cancer (Wang et al.

2012) by randomizing nonfavorably-responding patients to untried chemotherapy

treatments at eight-week intervals, up to four times; and many other medical settings

(e.g., smoking cessation (Collins et al. 2005), pediatric generalized anxiety disorders

(Almirall et al. 2012), and mood disorders (Lavori et al. 2000; Kilbourne et al. 2014)).

2.2.3. Adaptive Testing

For tests that measure ability or aptitude, adaptive testing selects test questions based on

the respondent’s answers to previous questions. The goal is to measure the examinee’s

achievement accurately, without making the examinee answer too many questions.

Adaptive tests have been shown to be as reliable and valid as conventional tests (with

static question orders), while reducing test length up to 50% (Weiss 1982). Unlike

classical test theory, which assumes all questions equally indicate an assessment outcome,

item response theory (IRT) (Lord 1980) considers individual test questions through an

item response function, the probability of a correct answer by an individual at a particular

skill level u. The item response function has three parameters: the pseudo-chance score

level (how easy it is to guess the correct answer), item difficulty (how hard it is to answer

the question), and discriminating power (how much the skill level influences question

response). According to Weiss (1982), an IRT-based adaptive testing framework has these

three components: (1) a way to choose the first item to ask, (2) a way to score items and

choose the next item to ask during test administration, and (3) a way to choose to end the

test, based on an individual’s performance.

Weiss and Kingsbury (1984) introduce adaptive mastery testing to assess a student’s

achievement level û, specifically how the estimated achievement level compares to a

“mastery level,” um. At each time point, a question is selected which gives the maximum

information at the student’s current estimated mastery level and asked. As the student

answers questions, the estimate û is updated, along with a confidence interval. Once the

confidence interval for û no longer includes um, the test is finished and the student’s

mastery level is assigned as sufficient or not (depending if um lies above or below the
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confidence interval for û). Kamakura and Balasubramanian (1989) take a similar approach

to adaptive question selection for personality trait assessment, but they terminate the

process once a minimum standard error is achieved or a minimum number of questions

have been asked. These two examples assume dichotomous items (i.e., responses were

coded as “correct”/“incorrect” in achievement testing (Weiss and Kingsbury 1984) and

“yes”/“no” to responses for personality scoring (Kamakura and Balasubramanian 1989)).

Singh et al. (1990) extend the maximum-information question selection criterion to handle

graded responses (e.g., Likert scales) and apply this adaptive method to a questionnaire to

assess consumer discontent; they achieve comparable estimates as the full-item model at a

33% reduction of items.

More recently, IRT-based adaptive testing has been used for diagnoses of mental health

disorders through patient questionnaires, for measuring both unidimensional (e.g.,

(Gardner et al. 2004; Fliege et al. 2005)) and multidimensional (e.g., (Gibbons et al. 2008

2012; Achtyes et al. 2015)) constructs (see overview in (Gibbons et al. 2016)). For

example, Gibbons et al. (2008) use a bifactor IRT model to assess patients’ severity of

mood and anxiety disorders. Their computerized adaptive testing method yields similar

scores as the full-scale version, at a 95% reduction of items. Montgomery and Cutler

(2013) have also used IRT-based adaptive testing, but for public opinion surveys. In an

empirical study using adaptive testing to measure respondents’ political knowledge, the

authors found that the adaptive testing approach could produce more accurate

measurements than traditional test administration, at a 40% reduction in questionnaire

length.

2.2.4. Test-Time Feature Selection

In the case where survey collection is targeted toward the goal of providing the user with a

personalized prediction (e.g., for energy consumption), at test time, the goal is to make a

prediction on a new example. Making a prediction on a test instance requires gathering

values for features (i.e., predictor variables), which can be costly, especially if it requires

cooperation from users who might stop before completion. In this case, strategically

ordering questions asked (based on previous answers) can get the most useful information

first, while providing predictions on partial information. This way, people receive

meaningful predictions without spending much time or effort answering questions.

The test-time feature ordering problem resembles active learning, which assumes labels

(i.e., response variables) are expensive. Active learning algorithms strategically select

which unlabeled points to query to maximize the model’s performance (using both labeled

and unlabeled data) while minimizing the cost of data collection (Cohn et al. 1996). Test-

time feature ordering has a similar goal of making accurate predictions while keeping data

collection costs low. However, rather than choosing an example to be labeled, test-time

feature ordering chooses a single feature to be entered (by asking the user a question).

He et al. (2012) consider the setting of test-time feature selection, where all features are

available for training, and at test time they want an instance-specific subset of features for

prediction, trading off feature cost with prediction accuracy. They formulate dynamic

feature selection as a Markov decision process (MDP). The policy selects a feature to add;

the reward function reflects the classifier margin with the next feature, penalized by the

cost of including that feature. However, this method does not make sequential predictions,
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and instead only chooses whether to keep getting features or to stop and make a final

prediction. Karayev et al. (2012) also take an MDP approach to classify images with a

framework they call “timely object recognition,” which sequentially runs detectors and

classifiers on subsets of the image and uses previous results to inform the next action to

take, while providing the best object recognition in the available runtime.

Another related area is personalization, where a system suggests items from user

preferences. However, the cold-start problem makes it hard to give recommendations at

first, when the system knows nothing about the user, including which questions to ask. Sun

et al. (2013) present a multiple-question decision tree for recommendation, where each

node asks users for opinions on several movies, rather than just one. This model lets users

sooner provide information about movies they have seen, but it is designed to minimize the

number of questions and not the amount of effort required to answer questions of varying

difficulty.

Most work in test-time feature ordering does not consider the situation of providing

predictions with partial information as questions are answered, nor does it address the

issue of giving measures of prediction quality to users.

3. Case Studies

In this section, we consider two case studies that illustrate how dynamically ordering

questions in a survey can be beneficial to survey respondents and data collectors. The first

uses the Residential Energy Consumption Survey (RECS) (U.S. Energy Information

Administration 2009) to predict energy costs for prospective tenants. We use prediction

quality to guide question ordering, trading off how much a new feature is expected to

increase the certainty of the next prediction against the effort the respondent must exert to

answer a question. We find that respondents can get high-quality predictions at only 21%

of the cost of asking the full set of questions. The second case study uses the Survey of

Income and Program Participation (SIPP) (U.S. Bureau of the Census 2014b) to gather

information about households, mostly related to their use of social programs such as

Medicare and Supplemental Security Income. We use the conditional entropy of a

respondent’s answers to guide question ordering, trading off how much new information

a question is expected to give against the likelihood that that question will be answered

(measured as the item nonresponse rate). We also simulate survey breakoff and see how a

dynamically ordered form can reduce or delay breakoff. We find that the dynamically

ordered form can recover enough relevant information to impute unanswered questions, at

up to a 57% cost reduction compared to the standard survey question order. Furthermore,

even when breakoff rates are fixed between the dynamically ordered form and the standard

fixed order form, the dynamic form acquires relevant information to achieve lower bias

and variance for survey estimates than the fixed order form.

3.1. Providing Personalized Energy Estimates with the Residential Energy

Consumption Survey

In this subsection, we illustrate the concept of dynamic question ordering for prediction

with an application of predicting energy consumption for a prospective tenant in a

potential home.
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Selecting homes with energy-efficient infrastructure is important for renters, because

infrastructure influences energy consumption far more than in-home behavior (Dietz et al.

2009). The importance of energy estimates for apartment hunters is twofold. First, since

renters often cannot make infrastructure upgrades for efficiency in a property they do not

own, they need to know upfront the expected costs of living in a rental unit. Second, 30%

of the U.S. population rent, and renters move on average every two years (U.S. Bureau of

the Census 2013). Therefore, renters can potentially choose improved infrastructure more

frequently than homeowners can make costly upgrades.

Personalized energy estimates can guide prospective tenants toward energy-efficient

homes, but this information is not readily available. Utility estimates are not typically

offered to house-hunters, and existing technologies like carbon calculators require users to

answer (prohibitively) many questions that may require considerable research to answer.

For the task of providing personalized utility estimates to prospective tenants, we present a

cost-based model for feature selection at training time, where all features are available and

costs assigned to each feature reflect the difficulty of acquisition. At test time, we have

immediate access to some features but others are difficult to acquire (costly). In this

limited-information setting, we strategically order questions we ask each user, tailored to

previous information provided, to give the most certain predictions while minimizing the

cost to users. During the critical first ten questions that our approach selects, prediction

accuracy improves equally to fixed-order approaches, but prediction certainty is higher.

We considered this application as one short example for a framework of prediction-guided

feature selection in (Early et al. 2016). Here, we include details on the statistical models

and methods used to make predictions with partial information and choose a question

ordering.

3.1.1. Introduction

Since energy consumption depends on home infrastructure (e.g., square footage) and

occupant behavior (e.g., preferred temperature), we can learn the relationship between

these features and energy consumption through established data sets, like the Residential

Energy Consumption Survey (RECS) (U.S. Energy Information Administration 2009).

Some information can be extracted automatically from online rental advertisements,

while other information must be provided by prospective tenants at various costs (for

example, the question of how many windows a home has requires more effort to answer

than how many people will live there). To develop a predictive model of energy

consumption at training time, we begin with the extractable (i.e., “free”) features in a

regression model to predict energy usage and use forward selection to add a subset of the

costly features.

After learning this predictive model on the training data set, the main problem lies in

how to make a prediction on a new test instance. Initially, only a subset of the features (the

free features) in the model is available, and asking users for each unknown value incurs a

cost, depending on how hard it is to provide that feature. Our dynamic question-ordering

algorithm (DQO) chooses the best question to ask next by considering which feature, if

its value were known, would most reduce uncertainty, measured by the width of the

prediction interval, with a penalty term on that feature’s cost.

Journal of Official Statistics632



3.1.2. Method

Training Time: Cost-Aware Feature Selection A greedy approximation to feature

selection, forward selection starts with an empty feature set and, at each iteration, adds

the feature that minimizes error (Harrell 2001; Tropp 2004). For this analysis, we started

with the free features (rather than no features, as in classic forward selection) and

minimized leave-one-out cross-validation error with linear regression to add higher-cost

features.

Test Time: Cost-Effective Dynamic Question Ordering After learning regression models

for energy usage on the selected features from our training set, we want to make a

prediction on a new test point, where initially only some features of the model are

available. Our approach considers a trajectory of prediction intervals as a user provides

information. A prediction interval consists of a lower and upper bound such that the true

value lies in this interval with at least some probability (Weisberg 2014). Prediction

interval width corresponds to prediction uncertainty: a wider interval means less

confidence. We select as the optimal next question the one whose inclusion most reduces

the expected prediction interval width; that is, it most reduces the expected uncertainty of

the next prediction.

In this problem, there are features that are unknown (not yet supplied by the user). We

use k nearest neighbors (kNN) (Cover and Hart 1967) to supply values for unanswered

features in vector x [ Rd. For each unknown feature f, we find the k data points in the

training set X [ Rn£d (n samples, each d-dimensional) that are closest to x, along the

dimensionsK that are currently known. Then we estimate xf as zf, the mean or mode, as

appropriate, of feature f in the k nearest neighbors (depending whether the feature is

continuous or discrete).

Because these z values estimate unknown features of x, we use the measurement error

model (MEM) (Fuller 2009) to capture error associated with estimated features. Unlike

traditional regression models, MEMs do not assume we observe each component xf

exactly. There is an error df associated with the estimation:

zf ¼ xf þ df ; where E½df jxf � ¼ 0:

Prediction ŷ still depends on the true, unobserved value x:

ŷ ¼ b̂T �x ¼ b̂ð�z 2 �dÞ;

where b̂ [ Rdþ1 is the parameter vector learned on the training set X (recall all feature

values are known at training time). The notation �x; �z; �d means vectors x, z have a 1

appended to them and d a 0 to account for the constant term in the regression. Let �X extend

this notion to the training matrix: �X ¼ ½1nX�.

We can calculate a 100(1 2 a)% prediction interval for a new point z as

ŷ ^ tn2d21;a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ2 1þ �zT ð �XT �XÞ21�zþ �dT ð �XT �XÞ21 �d
� �

q

; ð1Þ

where the �dT ð �XT �XÞ21 �d term accounts for error from estimated features and tn2d21;a=2 is

the value at which a Student’s t distribution with n 2 d 2 1 degrees of freedom has

cumulative distribution function value a/2. We can estimate d from training data by
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calculating the error of predicting each feature with kNN, from the other features. We also

estimate ŝ2, the regression variance, from training data.

Then, we cycle through each candidate feature f and compute the expected prediction

interval width E[w( f )] for asking that feature next, over each value r that feature f might

take on from its range of potential values R:

E½wð f Þ� ¼ 2�tn2d21;a=2
r[R

X

pðzf ¼ rÞ

£

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ2 1þ �zT
f :¼rð

�XT �XÞ21�zf :¼r þ �d
T

f :¼0ð
�XT �XÞ21 �df :¼0

� �

r

;

ð2Þ

where pðzf ¼ rÞ, the probability that the f th feature’s value is r, is calculated empirically

from the training set, and the notation �uf :¼q means the f-th component of u is replaced with

the value q.

Including the feature that attains the narrowest expected prediction interval width

E[w( f )] will reduce the uncertainty of our prediction more than any other feature. This

approach allows incorporation of feature cost into the question selection, by weighting the

expected prediction interval width against the cost of acquiring the feature:

f w ¼ arg
f

min E½wð f Þ� þ lcf

� �

; ð3Þ

where cf is the cost of feature f and l [ R trades off feature cost with reduced uncertainty.

A high-cost feature might not be chosen, if another feature can provide enough

improvement at lower cost. We ask for this information, update our vector of known data

with the response (and estimate the unknown features again, now including the new

feature in the set for kNN prediction), and repeat the process until all feature values are

filled in (or the user stops answering).

More generally, this algorithm can be seen as a framework that makes predictions on

partial information and selects which feature to query next by (1) estimating values for

unknown features (here with kNN) and (2) asking for the feature that will most reduce

the expected uncertainty of the next prediction (here measured by prediction interval

width). With this approach, we strategically order questions, tailored to previous

information, to give accurate predictions while minimizing the user burden of answering

many or difficult questions that will not provide a substantial reduction in prediction

uncertainty.

3.1.3. Data

The Residential Energy Consumption Survey (RECS) contains information about home

infrastructure, occupants, and energy consumption. We can use this data set to learn

relationships between household features and energy consumption to predict energy

usage for prospective tenants. The most recently released RECS was a nationally

representative sample of 12,083 homes across the U.S. (U.S. Energy Information

Administration 2009). For each household, RECS records fuel consumption by fuel type

(e.g., electricity, natural gas) and around 500 features of the home (e.g., age of

refrigerator, number of occupants).
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Defining Feature Costs In our problem setting, features have different costs of being

obtained, and we want to build models and make predictions that leverage features cost-

effectively. Some information is easily found in the rental listing (e.g., number of

bedrooms) and is therefore “free,” while other information requires asking users. For

example, the number of windows does not appear in listings and would require a

prospective tenant to visit each site. Consequently, this question has high cost. Other

useful features relate to occupant behavior (e.g., preferred temperature). These questions

likely remain constant for each user across homes and therefore require asking only once

and are cheaper. We categorize feature costs as “extractable/free” (can be automatically

extracted from rental listings), “low” (occupant-related; require asking only once), and

“high” (unit-related; must be answered once for each apartment and may require a site

visit). Table 1 lists the information used for extractable features and how often it appears in

Rent Jungle, a company that scrapes rental listings from the Internet. These “free” features

appear in the majority of listings on Rent Jungle. In our experiments, we assume all homes

have a rental advertisement with all of this extractable information. If a home does not

have an advertisement (or its advertisement is missing information), the missing

information can be included in the list of features to acquire from the user, with no change

to our method.

3.1.4. Experimental Validation

We validated our test-time feature ordering approach on the RECS data set for predicting

household electricity and natural gas consumption. We restricted our analysis to homes in

the same climate zone as our planned deployment location in Pittsburgh, a subset of 2,470

households in climate zone 2. We used 90% of these homes for training and the remaining

10% for testing. The training set was further subdivided into feature selection and cross-

validation subsets. We trained and tested separate models for predicting electricity

consumption (on all homes in our climate zone) and for predicting natural gas

consumption (on the 75% of homes that use natural gas) with forward feature selection

(Harrell 2001; Tropp 2004). Due to the similarity of the results from electricity prediction

and natural gas prediction, we show here results from only electricity prediction.

Test Time: Cost-Effective Dynamic Question Ordering After learning regression models

for electricity and natural gas prediction on the training set, we want to make predictions of

energy usage for a new test point. We use our dynamic question-ordering framework

(DQO) to make sequential predictions with partial, evolving information. To apply DQO,

Table 1. The features we define as extractable (i.e., “free”) appear in most of the listings on Rent Jungle.

Geographic features associated with the city, zip code, or state include climate zone and whether the area is

urban or rural, among others.

Feature Presence in Rent Jungle database (%)

Number of bedrooms 85
Number of full bathrooms 57
Studio apartment 85
City or zip code 99
State 100
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we first used the training set to choose parameters for imputing unknown features (k, for

k-nearest neighbors) and to estimate the measurement error d. Then, we simulated question-

asking on RECS to evaluate the performance of DQO for test-time feature ordering.

Parameter Selection and Estimation We used the training set to choose k ¼ 100 for

imputing the values of features that have not yet been asked, based on the prediction

performance of kNN for the higher-cost features. Then, we estimated the measurement

error df for each feature as the error from kNN on the training set.

Simulating the Question-Asking and -Answering Process With RECS We simulated the

process of asking and answering questions on the testing subset of RECS by hiding the

values for features that were not yet known. After we used DQO to choose a feature to

acquire, we “asked” this question and unveiled its value once it was “answered.”

Evaluating DQO Performance with Prediction Certainty, Error, and Cost We evaluated

the performance of our cost-effective DQO algorithm in making sequential predictions

with partial, evolving information on a held-out test set. For comparison, we implemented

several baselines. The Random algorithm chooses a random question ordering for each

sample, the Fixed Decreasing algorithm asks questions in decreasing order of feature

measurement error df (identical ordering for all samples), and the Fixed Selection

algorithm asks questions in the order of forward selection in the training phase (also

identical for all samples). Finally, the Oracle chooses the next best feature according to the

minimum true prediction interval width (calculated on the test sample using true feature

values, rather than the expected width as in Equation 3). We tested two versions of DQO

and oracle: ordering additional features without cost and with cost (implemented as l ¼ 0

and l . 0). The two Fixed algorithms illustrate the performance of a fixed order of

questions, applied to all respondents. The DQO algorithms show the benefits of adapting

question order to the individual respondent (compared to the baseline Random order,

where each respondent gets a different ordering, but not based on responses or prediction

quality). Finally, the Oracle algorithms demonstrate the optimal performance of a

personalized question order, since they rely on knowing the true feature values, even

before they are provided by the respondent.

We calculated several metrics related to the trajectory of prediction performance and

cost, for orderings given by the algorithms: DQO and Oracle with and without cost,

Random, Fixed Decreasing, and Fixed Selection. We summarized prediction performance

with the width of the current prediction interval (prediction certainty) and the absolute

value of the difference between the current prediction and the truth (prediction error). We

also measured the cumulative cost of all features asked at each step (prediction cost).

Table 2 summarizes the metric trajectories as areas under the curve––smaller values are

better because they mean the algorithm spent less time in high uncertainty, error, and cost.

Certainty Metrics For certainty, we calculated widths of 90% prediction intervals as

features were answered. Since narrower prediction interval widths correspond to more

certain predictions, we expect DQO interval widths to be less than those of the baselines,

particularly in the early stages. Figure 1a plots the actual prediction interval widths as

questions are asked (calculated with Equation 1, using the true known feature values and

imputed values for unknown features), averaged across the test data set, for the question
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sets from the seven orderings. The DQO sets result in the narrowest (or near-narrowest)

prediction intervals (i.e., most certain predictions), compared to the baselines, with

improvements most notable in the first ten questions answered – the situation when users

do not answer all the questions.

Error Metrics For error, we calculated the absolute value of differences between the

midpoint of the 90% prediction interval and truth as questions are answered, plotted in

Figure 1b. Because this metric compares a point prediction to the true value, error is still

incurred for prediction intervals that include the true value (as 90% of them will, by

construction), when the true value is not the exact midpoint of the range. For all orderings,

predictions approach the true value as questions are answered. Once about ten questions

have been asked, DQO with cost reaches similar performance as DQO without cost and the

fixed order baselines (Fixed decreasing and Fixed selection).

Cost Metrics Progressive total feature costs as features are asked and their true values are

used in the models are plotted in Figure 1c. Cumulative feature costs are lower for

orderings that penalize feature cost (DQO, Oracle with cost), with cost decreasing as the

penalty on cost l increases. The other orderings have similar cost trajectories to each

other.

Overall, these metrics show that our test-time DQO approach quickly achieves accurate,

confident predictions. By asking around ten questions, DQO (with and without cost)

reaches similar accuracy as the fixed order baselines, but the sequential predictions by the

fixed orderings are less confident than DQO until about 20 questions have been asked.

Figure 1d shows how frequently the oracle asked each feature in each position across

test instances. Most features are chosen fairly uniformly at each position in the question

ordering. This indicates that there is no single best orderto ask questions across all

households, which is why the dynamic question-ordering process is so valuable.

3.1.5. Limitations

Currently, our DQO algorithm assumes that (1) users are able to answer the next question

we ask and (2) their answers are accurate. However, situations could arise where these

assumptions do not hold. For example, in the energy prediction task, a prospective tenant

may be interested in getting personalized energy estimates for a home before visiting –

they could still answer occupant-related features. DQO can be easily extended to this case

Table 2. Areas under the curve for the certainty, error, and cost metrics from various methods, for electricity

prediction: smaller values mean the algorithm spent less time in high uncertainty, error, and cost.

Method Interval width jy 2 ŷj Cost

DQO without cost 42.43 12.06 1212.91
DQO with cost 42.44 12.53 1120.50
Random 42.53 13.18 1213.30
Fixed decreasing 42.46 11.85 1233.50
Fixed selection 42.47 11.45 1190.50
Oracle without cost 42.35 14.62 1222.91
Oracle with cost 42.39 13.63 1120.50
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by offering users a “don’t know” option for answering questions and removing unknown

features from consideration in later iterations. Breaking the second assumption, that user

answers are accurate, would allow people to give estimates for features (e.g., refrigerator

size by looking at pictures in the rental listing). Incorporating this element into DQO

would require a way to estimate error associated with user-provided feature estimates.

Furthermore, we have not yet tested the DQO question-asking and prediction-providing

process with human users. We hypothesize that giving users estimates from partial

information will motivate them to continue answering questions to receive more accurate

personalized predictions. On the other hand, once the prediction interval width is small

enough or stable enough, users may no longer see the value in continuing to answer

questions and will stop.

3.1.6. Conclusion

Providing personalized energy estimates to prospective tenants with limited, costly

information is a challenge. Our solution uses an established data set to build cost-effective
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Fig. 1. Results from dynamically ordering questions for test-time electricity prediction.
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predictive models and, at test time, dynamically orders questions for each user. At test

time, when we want to make a personalized estimate for a new renter-home pair, we

present a cost-effective way to choose questions to ask a user about their habits and a rental

unit, based on which feature’s inclusion would most improve the certainty of our

prediction, given the information we already know. Our experiments show that, for

predicting energy consumption, we achieve prediction performance that is equally

accurate to, but more certain than, two fixed order baselines by asking users only 21% of

features (26% of the cost of the full-feature model).

3.2. General Data Collection with the Survey of Income and Program Participation

A prediction-guided approach to dynamic question ordering (Subsection 3.1) is only

reasonable when the goal of information gathering is to make a prediction. Now we

consider how to dynamically order questions in a way that most characterizes the

respondent so that if they do drop out of the survey, imputed values for their unanswered

questions will be accurate.

3.2.1. Introduction

The Survey of Income and Program Participation (SIPP), conducted by the U.S. Census

Bureau, collects data on income, employment, and social program participation and

eligibility from households (U.S. Bureau of the Census 2014b). The SIPP is designed as a

longitudinal national panel survey, where each panel is a representative sample of 14,000

to 52,000 households, contacted yearly for three to five consecutive years. Each household

interview is conducted in person, via a computer-assisted personal interviewing (CAPI)

instrument, and aims to get self-reports from all household members at least 15 years old.

In addition to demographic information, interviews ask respondents for their participation

in various social programs, financial situation, and employment status, in the previous

calendar year. The chief goal of SIPP is to understand household program eligibility and

participation and to assess the effectiveness of social programs like Supplemental Security

Income, Supplemental Nutrition Assistance Program, Temporary Assistance for Needy

Families, and Medicaid.

Since responses to survey questions tend to be related, we can use information-theoretic

concepts like entropy to measure the information content of a new question, taking into

account what we already know about the respondent from their previously provided

responses.

3.2.2. Method

To measure the amount of information expected to be contained in answers to potential

questions that might be asked next, we use conditional entropy as the measure of

utility (Cover and Thomas 2012). Entropy measures the information in a random

variable X. If this random variable can take on one of D possible values, its entropy is

defined as

HðXÞ ¼ 2
x[X

X

pðxÞ log pðxÞ: ð4Þ
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Conditional entropy measures the information in a random variable Y, when the value

of another variable X is already known:

HðYjXÞ ¼
x[X

X

pðxÞHðYjX ¼ xÞ: ð5Þ

When iteratively selecting which question to ask next, we want to maximize conditional

entropy while keeping costs low:

qw ¼ arg
q

min 2HðqjXÞ þ lcq

� �

; ð6Þ

where q represents a question, X is the set of questions that have already been answered, cq

is the cost of question q, and l is a tradeoff parameter that controls how heavily cost is

weighted in this question selection rule.

3.2.3. Data

In our experiments, we use the SIPP Synthetic Beta (SSB), a synthetic data set created by

first multiply-imputing missing values in the SIPP Gold Standard File and then multiply-

imputing replacement values for actual responses to preserve privacy (Benedetto et al.

2013). The SSB combines SIPP data with administrative records from sources like the

Internal Revenue Service. These data from administrative records are not asked of a

respondent and can be considered initializing information when selecting questions to ask.

Defining Question Costs In this case study, we use item nonresponse rates as a proxy for

question burden. We calculate item nonresponse rates as the fraction of respondents for

whom a value to a particular survey item had to be imputed, using publicly-available SIPP

data (http://thedataweb.rm.census.gov/ftp/sipp_ftp.html). We consider data from admin-

istrative records in the SSB to be “free,” since no household had to answer questions to get

those values.

3.2.4. Experimental Validation

In the experiments in this subsection, we use conditional entropy to measure how much

information a new question will give, in light of what is already known about the respondent.

We order questions and calculate performance metrics for the DQO-ordered questions with

a variety of cost penalties l, a random order selected for each respondent, and a fixed order

baseline according to the order in which these questions are asked in the SIPP interview.

At each point in the question-asking process, we calculated the cost and imputation error.

Cost is defined as the sum of the costs (nonresponse rates) for all questions asked thus far.

Imputation error is defined as the number of incorrect imputed values for yet-unanswered

questions. We impute values for unanswered questions by using k-nearest neighbors to

find the points in the training data set nearest to the current respondent and predicting

unknown values as the mode of those values among the nearest neighbors. This is not the

method used for imputation in the SIPP (U.S. Bureau of the Census 2014b).

Figure 2 shows the costs (Figure 2a) and imputation errors (Figure 2b) as questions are

asked in SIPP for the DQO-ordered sets, a random question ordering, and the fixed order

baseline.
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Simulating Breakoff in Survey Collection Next, we simulated survey breakoff at the

presentation of each question by randomly choosing if a respondent would “drop out” of

the survey, with probability according to the cost of the current question. If the person did

drop out, their responses to that question and all remaining questions would be left blank.

In this simulation, we assume that item nonresponse comes only from these breakoffs (i.e.,

there are no “skipped” questions).

Figure 3 plots the cost (Figure 3a) and imputation error (Figure 3b) trajectories for DQO

with several cost penalties l, the random ordering for each respondent, and the fixed order

baseline. The colors in the plot represent when at least 75% (light gray), 50–75% (gray),

and fewer than 50% (black) of respondents answered that number of questions. DQO

consistently attains lower imputation error than the fixed order baseline and the random
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ordering. The imputation error is similar for all DQO orderings, regardless of cost penalty.

The cost penalty does affect the cost trajectory, with higher cost penalties resulting in

lower cost trajectories.

Figure 4 illustrates the nonresponse rates for the different methods: Figure 4a plots the

average nonresponse rate for each question (fraction of respondents who answered each

question before dropping out), and Figure 4b plots the average nonresponse rate for each

respondent (fraction of questions each respondent answered before dropping out). For both

types of nonresponse, DQO performs similarly to the fixed order baseline when l ¼ 0,

slightly worse when l ¼ 0.1,1.0, and better when l ¼ 10. Figure 5 shows individual item
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nonresponse rates, compared to the fixed order baseline. This plot illustrates how DQO can

achieve lower nonresponse (i.e., higher values in the plot of “baseline item nonresponse

rate” – “DQO item nonresponse rate”) for later items in the survey, since those items

might be asked earlier and therefore are less likely to suffer from dropout.

Figure 6 plots the final imputation error for each method. Final imputation error is the

total number of incorrectly-imputed values once a respondent stops providing answers.

For this metric, all variants of DQO outperform the fixed order baseline. Even though

some of the DQO orderings have higher nonresponse rates than the fixed order baseline

(Figure 4), DQO tends to choose the most informative questions near the beginning so

imputation quality does not suffer even when a respondent drops out before completing the

survey.

Bias and Variance of Survey Estimates To compare performance in terms of the quality

of final survey estimates (e.g., population means), we set the DQO orderings and the fixed

orderings to have 16% breakoff rates (the average breakoff rate for web surveys (Manfreda

and Vehovar 2002)). We ran multiple imputation to get multiple sets of imputations for the

values missing due to dropout (Rubin 2004). Then we calculated the bias and variance of

the resulting survey estimates. Table 3 shows that the estimates from DQO have bias and

variance lower than or similar to those from the standard SIPP order.

3.2.5. Limitations

The SIPP Synthetic Beta (SSB) data set has several downsides. First, household structure

is not preserved – each respondent is treated as a separate entity. Though there are spouse

links for female-male married couples, this information is insufficient to recover a

household structure which may include same-sex married couples, unmarried partners,

children, other relatives, and other household members. Second, because the SSB is
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synthetic and fully imputed, it does not have any information on when respondents break

off from the survey. However, since we simulated breakoff as proportional to question cost

(measured as item nonresponse rate), we expect our breakoff-related results to hold for the

case of known breakoff when breakoff probability is the cost metric.

3.2.6. Conclusion

We can capitalize on the relationships among survey responses when dynamically

ordering questions to collect the most informative data first, so that if a respondent drops

out before finishing the survey, imputation quality will be good. Additionally, when such a

method for dynamic question ordering takes breakoff probability into account when

ordering questions, breakoffs will be delayed until after the most relevant information

is collected. Although this approach means that certain items are more likely to be

unanswered (i.e., high-cost items), the dynamic process collects enough low-cost

information from the respondent before they break off, so that imputation quality is higher

than a fixed order for the questions. Furthermore, even when DQO and standard question

orders are fixed to have the same amount of breakoff, DQO collects information such that

final survey estimates have bias and variance that are less than or similar to those of

estimates from a fixed question order.

4. General Framework for Dynamic Question Ordering in Online Surveys

4.1. Selecting an Optimal Next Question to Ask

To choose an optimal next question to ask in our two case studies, DQO maximized the

utility of a new question, penalized by the cost of that question. For personalized energy

estimates using RECS, the measure of utility was prediction certainty, measured by the

expected width of the prediction interval, while the measure of cost was the difficulty to

the respondent of answering a certain type of question. For survey-taking on SIPP, the

measure of utility was conditional entropy, and the cost metric was item nonresponse rates

for individual questions.

We can generalize the specifics of these two case studies into a question selection rule

that trades off the expected utility of having an answer to a question (or a set of questions)

Table 3. Bias and variance of final survey estimates for SIPP order and DQO orders. Bias was calculated as

the (absolute value of the) difference between the calculated survey estimates (which include imputed values) and

the true values (from the completedata). Variance was calculated as the variance of survey estimates, across the

multiply-imputed data sets. For both metrics, means and standard deviations are given across the survey variables.

Method Bias Variance

SIPP order 0.063 ^ 0.194 0.013 ^ 0.056
DQO, l ¼ 0 0.034 ^ 0.111 0.005 ^ 0.023
DQO, l ¼ 0.1 0.047 ^ 0.103 0.007 ^ 0.031
DQO, l ¼ 1.0 0.051 ^ 0.146 0.012 ^ 0.054
DQO, l ¼ 10 0.024 ^ 0.063 0.001 ^ 0.004
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with the cost of getting the answer:

qw ¼ arg
q

min 2E½UðqÞ� þ lcq

� �

; ð7Þ

where q is a question or set of questions, U(q) is the utility of q, cq is the cost of q, and l is a

tradeoff parameter. We want to maximize utility while minimizing costs. Definitions of

question utility and cost will vary according tothe application and the purpose of the data

collection. This iterative question selection rule allows for both the utility and cost metrics

to take into account all information provided up to that point in the survey. For example, if

a person already answered the RECS question that they find their home too drafty all the

time, asking them next about the insulation of their home would not be very informative

(i.e., that question would have low utility), since their home is probably poorly insulated.

4.1.1. Question Utility

Intuitively, question utility captures how “useful” a candidate question is. The exact

definition for utility depends on the application (i.e., what do we value as useful?) and the

data (i.e., how can we calculate this value?). For example, if the application is a prediction

task, we can use the impact a question will have on the prediction quality as a definition for

utility. One aspect of prediction quality is certainty. The calculation of prediction certainty

as a measure of utility will depend on the data and the predictive model being used. If the

value to be predicted is continuous, one measure for prediction certainty is the width of

the prediction interval, where a wider interval means a less certain prediction. The

mathematical definition for the prediction interval width will depend on the predictive

model being used. If the value to be predicted is discrete, one measure for prediction

certainty is the distance of the sample from the decision boundary. Again, calculation for

this measure of certainty (the distance from the decision boundary) will depend on the

predictive model.

To be dynamic, these definitions of utility will take into account information already

known about the sample. Such information may come from previously answered questions

or paradata collected in the survey process. Paradata in particular will be helpful for

informing a utility function that captures respondent engagement.

When defining a metric for question utility, it can be challenging to reflect the multiple

purposes of a survey in a single utility function. Large-scale government surveys in

particular often have multiple federal agencies who care about different questions.

Developing a composite utility function that meets the needs of all stakeholders in a multi-

purpose survey is important, but also complicated and context-specific, and a topic for

continued work.

4.1.2. Question Cost

The cost of a question reflects how “difficult” it is to get an answer for that question.

Different applications have different cost measures that are best suited to them. Examples

of cost include (1) the amount of resources needed to answer the question (e.g., time,

money, battery, effort), (2) the likelihood that the question will not be answered (i.e., item

nonresponse rate), (3) the likelihood that the question will cause the respondent to stop the

survey (i.e., item breakoff rate), and (4) a combination of multiple types of cost. These
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costs can be predefined according to rules (as in the RECS case study) or determined

empirically from collected data (as in the SIPP case study). Respondent burden in surveys

is multi-faceted, with multiple factors influencing what is ultimately a subjective measure

on the respondent (e.g., (Bradburn 1978; Fricker et al. 2014; Yu et al. 2015)). Thus, it is

difficult to measure the actual burden a question poses to a respondent. Our case studies in

Section 3 used simple proxies for respondent burden. However, this framework is general,

and so any more cognitively precise measure can be used, were it available.

When determining question order is deferred to test time, these costs can be context-

dependent. That is, the current situation of data collection can inform the costs of future

questions that might be asked. For example, in a system that makes medical diagnoses and

can request tests (e.g., (Ferrucci et al. 2013)), it will be less costly to request an invasive

biopsy if a surgery is already scheduled in that area. Context-dependent costs can also be

used to address questions that are sensitive to order effects (McFarland 1981). At response

time, the cost of a dependent question can be assigned to be infinite when its prerequisite

question(s) have not already been asked. Thus, such a question would never minimize the

objective in Equation 7 and would never be chosen if the respondent has not already seen

questions that need to precede it.

This method can be generalized to order modules of related questions, rather than

individual questions. Reasons to present questions in modules rather than purely

sequentially include (1) presenting related items in a group can reduce the cognitive

burden required of a respondent to answer the group (e.g., if a set of questions asks the

respondent about various aspects of their commute, as the American Community Survey

does, it will be easier for the respondent to answer those commute-related questions as a

unit rather than scattered throughout the entire questionnaire) (Tourangeau 1984) and (2)

imposing a standard order on certain questions that are susceptible to order effects

(McFarland 1981), in a module, can ensure that all participants understand and answer

questions in the same way, even when the order of question modules is determined

dynamically.

4.2. Terminating Data Collection

A key component of computerized adaptive testing procedures is a criterion for

determining when to stop administering test items (Weiss 1982). Typically, the test is

terminated once the estimate about the testee is certain enough (e.g., (Weiss and

Kingsbury 1984; Kamakura and Balasubramanian 1989)). A similar stopping criterion

could be used for prediction-guided DQO (e.g., the RECS case study), but most often

surveys aim for complete response. In that case, it is advantageous to ask questions as long

as the respondent is willing to answer them. One exception could be for longitudinal

surveys, where respondent attrition is partly due to panel fatigue (Laurie and Scott 1999).

Terminating a panel survey before completion would reduce respondent burden and could

increase willingness to participate in future surveys.

4.3. Assumptions and Requirements

Most generally, this approach requires only definitions of question utility and cost and

ways to calculate the expected utility of each candidate question given what is known. In
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practice, a training set of question responses is needed: measures of utility often depend on

statistical properties of samples and estimators, and distributions of question responses

need to be known to calculate expected values.

5. Other Potential Survey Applications

In this section, we elaborate on particular problems DQO could solve in other surveys. All

surveys in this section are administered in computerized modes in which DQO would be

possible. Some surveys, such as the Current Population Survey and the National Crime

Victimization Survey, have predictions as goals (identifying employment status or

classifying incidents of victimization) and can directly incorporate a prediction-motivated

approach to DQO, as in Subsection 3.1. Other surveys, like the American Community

Survey (ACS) and National Health Interview Survey, have the broad goal of collecting

information on a population. DQO in these surveys would need to focus on maximizing

information gain or respondent engagement, calculated from previously provided answers

and paradata. National surveys are complicated, due to complex sampling requirements

(e.g., oversampling certain populations) and multi-purpose goals (e.g., adding

supplemental modules to core surveys).

Typically, statistical agencies already have strategies for handling nonresponse, and the

current protocol could influence DQO. For example, the Census Bureau defines several

categories of nonresponse in the ACS: households that answer basic demographic and

housing questions, but not any detailed person questions, are considered “sufficient

partial” responses who are not contacted for follow-up. Households that do not answer the

basic questions are “insufficient partial” responses and are contacted for follow-up (U.S.

Bureau of the Census 2014a; Clark 2014). Thus, Census might want to apply DQO within

sections of the survey: first order questions in the basic subset, to ensure that more people

will become at least sufficient partial responses, if not complete. Then, once a household’s

sufficient partial status is confirmed, the survey can continue with the detailed person

questions.

5.1. American Community Survey

The goal of the mandatory American Community Survey (ACS) is to gather complete

statistics on the U.S. population, and follow-up with nonrespondents is expensive. Each

year 3.54 million households receive mailed surveys to answer between 77 and 347

questions, depending on the number of occupants (U.S. Bureau of the Census 2016). The

survey takes, on average, 40 minutes to complete and 54% of homes return theirs (U.S.

Bureau of the Census 2014a). The Census Bureau calls nonrespondents for telephone

interviews and then samples nonrespondents for home interviews. In 2012 in-person

follow-up amounted to 129,000 person-hours per month (Griffin and Nelson 2014).

Furthermore, in-person interviews can bias survey results, if nonresponse adjustment

weights are not allocated correctly (U.S. Bureau of the Census 2014a). The Census Bureau

tested an online survey and found similar data quality for Internet and mail return (Horwitz

et al. 2012). Overall response rates were similar, but online surveys had higher item

response rates for earlier questions and more blank responses for later questions than paper

surveys (Horwitz et al. 2012). Dynamically ordering questions in the online form could
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ensure that even if households do not complete the survey, they answer the most

informative questions before breaking off.

The online mode for the ACS also collects paradata as respondents complete the survey.

These paradata include clicked links (including navigation buttons, responses, help

buttons), timestamps, field values, errors, invalid logins, timeouts, logouts (Horwitz et al.

2012). Such paradata could be used to model user engagement, understanding, and

willingness to respond, as another component for dynamic question ordering to increase

response rate.

5.2. Current Population Survey

The Current Population Survey (CPS) is a monthly survey of 60,000 households across the

United States, jointly sponsored by the U.S. Census Bureau and Bureau of Labor Statistics

(U.S. Bureau of the Census 2006). Selected households are in the survey for four

consecutive months, out of the survey for eight months, and then back in the survey for

four months. The chief purpose of the CPS is to estimate the U.S. unemployment rate for

the past month, and the majority of the official survey is devoted to this task. Respondents

answer a battery of questions related to their work status in the past week to determine if

they were employed, unemployed, or not in the labor force. There are over 200 questions

in the labor force portion of the items. Not all of these questions apply to every household,

so the current version of the CPS uses predefined skip patterns to avoid asking irrelevant

questions. Augmenting the rule-based skip patterns with dynamic question ordering

derived from statistical properties of the respondent could further lower respondent

burden.

Various survey sponsors add supplemental question modules to the CPS (e.g., the

Tobacco Use Supplement, sponsored by the National Cancer Institute), which may also

benefit from dynamic question ordering. The number of supplements is heavily restricted,

due to not wanting to overburden respondents with too many questions and detract from

the main purpose of the survey – estimating employment rate (U.S. Bureau of the Census

2006). Using dynamic question ordering within or between modules could effectively

selectitems to ask of populations of interest, thereby reducing the effective number of

questions respondents must answer and increasing the potential for supplemental

questions on the CPS.

5.3. National Health Interview Survey

The largest U.S. health survey, the National Health Interview Survey (NHIS) is

administered in person to about 35,000 households each year (National Center for Health

Statistics 2014). The main purpose of the NHIS is to collect health information, at the

household, family, and individual levels. Currently, the NHIS uses predefined skip

patterns to advance respondents through the survey, but a statistical approach to question

ordering could enhance the survey. Like the CPS, the NHIS has supplements to the main

survey sponsored by other agencies.

The structure of the NHIS designates one person from a household as the “household

respondent” who provides information for all members in the household (even for multi-

family households). This type of proxy reporting is more likely to have errors than
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self-reports (Sudman et al. 1996), and so a dynamic question-ordering procedure would

need to consider the impact of uncertain provided values when choosing which question

to ask next.

The NHIS oversamples underrepresented populations, like black, Hispanic, and Asian

people, to obtain more precise estimates for these populations (National Center for Health

Statistics 2014). With this goal in mind, DQO for the NHIS could consider the accuracy of

imputed values for questions that are not yet asked, with thresholds for allowable

imputation error. Such thresholds could be population-specific, with minorities’ having

lower allowable error thresholds, to ensure that more complete data are collected from

these populations.

5.4. National Crime Victimization Survey

Every year the U.S. Census Bureau, on behalf of the Bureau of Justice Statistics,

administers the National Crime Victimization Survey (NCVS) to 90,000 households

(Bureau of Justice Statistics 2014). Occupants of sampled households are interviewed

every six months over three years. In interviews, respondents report victimizations in the

previous six months.

The NCVS collects detailed information about each incident reported by a respondent to

classify incidents into fine-grained categories of crime (e.g., “Robbery – attempted with

injury”). The current NCVS design asks a respondent a set of questions regarding each

incident they report and uses answers to these questions to classify the crime, rather than

directly asking respondents for the crime category (Bureau of Justice Statistics 2014). As

such, this survey has a per-individual prediction problem at its core (labeling an incident as

a type of crime), like the personalized energy estimate example presented in Subsection

3.1, and could benefit from a similar DQO process, except for classification rather than

regression.

DQO could further benefit the NCVS because, especially as households complete the

survey multiple times, respondents recognize that reporting an incident results in an

extended set of questions. This full questioning takes place for each individual report,

including repeat victimizations (e.g., domestic violence). To speed up the interview,

participants are likely to underreport victimization, to avoid lengthy subsets of questions

for each report. By reducing the number of questions to categorize incidents and using

previously provided information to help in question ordering for repeat incidents, DQO

could reduce the number of questions in the entire survey, making it less burdensome for

respondents to provide complete reports.

6. Future Work

Although the supposed neutrality of the survey as an impartial data collection tool means

that all respondents have the same (or very similar) survey experiences, this rigid structure

can also hinder the natural flow of information that occurs in a conversation (Suchman and

Jordan 1990). Often for a participant, a particular event influences their answers for

multiple questions. However, unless a direct question about this event appears in the

survey, they have to answer many repetitive questions that could have been avoided in a

conversation. Learning a latent structure of participants’ answers in a survey could be a
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step toward uncovering these hidden events that determine the answers to multiple

questions, and DQO could use this knowledge to guide question selection as well.

As we mentioned at the outset, the cognitive aspects of survey methodology movement

that originated in the 1980s (Jabine et al. 1984; Tanur 1992) raised issues with the

traditional approach to survey questionnaire design, which keeps order fixed for all

respondents and which measures the same quantities at different points in time. The need

to reduce respondent burden and to keep respondents engaged in online surveys is raising a

complementary set of issues that are now being addressed under the rubric of adaptive

survey design. These two perspectives do need to be reconciled in some fashion.

In this article, we considered the prediction-focused implementation of DQO as a

special case of the more general survey-taking setting. However, given typical survey

respondents’ disengagement from surveys and declining survey response rates, maybe a

new paradigm of survey collection, in which respondents get something useful to them out

of answering a survey, could motivate participants to provide complete and accurate

responses (e.g., (Marcus et al. 2007; Angelovska and Mavrikiou 2013)). However, one

clear downside to this approach is that giving respondents information that comes from the

survey they are currently answering contaminates their response. For example, suppose

that a person is answering questions about their energy-using habits to receive a

personalized energy estimate, as in Subsection 3.1. Their current estimate for natural gas

consumption is higher than they would like, and the next question asks for their preferred

temperature in the winter. Because they do not want their estimate for natural gas usage

to climb even higher, the respondent gives an optimistically-low value for preferred

temperature. The uncertainty associated with these predictions can also influence a user’s

decision to continue answering questions: once a participant feels that their given

prediction is certain enough, they may stop answering questions. Depending on the

purpose of the survey (namely, whether its chief goal is to provide information to or to

collect information from the respondent), this type of breakoff may or may not be bad.

7. Conclusion

Dynamic question ordering – that is, choosing which question to ask a survey respondent

next, depending on their answers to previous questions – can improve survey quality in

two key ways. First, giving participants personalized question orders can engage them and

motivate them to complete the survey. Second, eliciting the most relevant information for

a particular respondent upfront can improve the quality of imputations for unanswered

questions if the respondent breaks off before completing the questionnaire. For some

surveys, the goal is only to estimate a value for each respondent. In this case, it is not even

necessary for the participant to answer all questions – it is sufficient for them to answer a

subset that will ensure a confident prediction.

We present a general framework for dynamic question ordering in online surveys that

sequentially considers which question to ask a respondent next, based on their previous

answers, trading off the expected utility of having an answer to that question with the cost

of asking that question. The definition of “utility” for an answer depends on the survey and

its purpose. Examples include information gain, response probability, (negative) breakoff

probability, or certainty of the subsequent prediction. Similarly, the definition of question

Journal of Official Statistics650



“cost” also depends on the survey. Examples include difficulty to the user of answering the

question, (negative) likelihood of answering (since respondents may be reluctant to

respond to sensitive questions, even if they are easy to answer), or breakoff rates of

individual questions.

We illustrated two examples of this DQO framework. The first was for a prediction-

oriented survey – providing prospective tenants with personalized energy estimates in

potential homes. In this application, we found that asking users, on average, 21% of 30

questions could provide certain and accurate predictions at only 26% of the cost of the full-

feature model, and that there was no fixed order of questions that was optimal across all

users. Our second case study focused on traditional survey data collection on the Survey of

Income and Program Participation. We selected subsequent questions that maximized

conditional entropy to get a “representative” set of answers from participants early on. We

simulated survey breakoff and found that, compared to the standard SIPP question order,

the dynamic order delays breakoff, better recovers values for unanswered items that must

be imputed, and achieves better quality survey estimates (lower bias and variance). Then,

we discussed ways that dynamic question ordering could improve quality in computerized

national surveys, focusing on unique aspects of each survey that DQO must take into

account.

As more surveys move online or to computerized modes, dynamic question ordering

can improve survey results at scale and at low cost to the data collectors. DQO trades off

the utility from having an answer to a question with its cost and sequentially requests

feature values in order to make useful, confident predictions and gather survey data with

the resources users are willing and able to provide.
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