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To mitigate the potentially harmful effects of nonresponse, most surveys repeatedly follow up
with nonrespondents, often targeting a response rate or predetermined number of completes.
Each additional recruitment attempt generally brings in a new wave of data, but returns
gradually diminish over the course of a fixed data collection protocol, as each subsequent
wave tends to consist of fewer responses than the last. Consequently, point estimates begin to
stabilize. This is the notion of phase capacity, suggesting some form of design change is in
order, such as switching modes, increasing the incentive, or, as is considered exclusively in
this research, discontinuing the nonrespondent follow-up campaign altogether. A previously
proposed test for phase capacity calls for multiply imputing nonrespondents’ missing data to
assess, retrospectively, whether the most recent wave of data significantly altered a key,
nonresponse-adjusted point estimate. This study introduces a more flexible adaptation
amenable to surveys that instead reweight the observed data to compensate for nonresponse.
Results from a simulation study and application indicate that, all else equal, the weighting
version of the test is more sensitive to point estimate changes, thereby dictating more follow-
up attempts are warranted.
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1. Background

Few surveys are immune to unit nonresponse, which occurs when sampled individuals fail

to respond to a survey request. Indeed, response rates have been declining in both the

United States and abroad over the past few decades (Atrostic et al. 2001; De Leeuw and

De Heer 2002; Curtin et al. 2005; Brick and Williams 2013; Tourangeau and Plewes 2013).

Typically, a survey’s data collection protocol involves making a sequence of follow-ups

on nonrespondents, which can take on various forms depending on the survey’s mode –

reminder mailings, additional telephone calls, or revisits to a residence, to name a few.

Each follow-up attempt tends to produce more survey completes, which can be

conceptualized as incoming waves of data. More follow-ups are ostensibly desirable, as

they serve to reduce the nonresponse rate, but they do not guarantee a reduction in

nonresponse error. More follow-ups come at a cost, however, and can extend the data
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collection period, delaying subsequent stages of the survey process, such as the reporting

and analysis stages. Moreover, from a purely practical standpoint, empirical evidence

(e.g., Table 1 in Potthoff et al.1993) suggests returns diminish with each subsequent wave.

Fewer and fewer completes are attained, impinging smaller and smaller changes upon key

estimates.

Descriptive statistics about the nonrespondent follow-up campaign can be subsumed

under the concept of paradata, a term coined by Couper (1998) to denote process data

generated as a byproduct of data collection. Paradata analyses have burgeoned since that

time (Kreuter and Casas-Cordero 2010; Kreuter 2013). The number of follow-up attempts

is one example paradata measure summarizing the level of effort expended to obtain

a response. Given the count is known for the entire sample, researchers have evaluated

its ability to adjust for nonresponse. Potthoff et al. (1993) reweighted survey data in a

telephone survey based on an assumed relationship between the number of callbacks and

an outcome variable. Rao et al. (2004) evaluated the effect of incorporating the number of

follow-up attempts as a continuous predictor variable in an imputation model. Like any

candidate variable, its utility hinges on a strong relationship with both the probability of

responding and the key survey outcome variables (Little and Vartivarian 2005).

A related strand of research has focused on comparing and contrasting the response

distributions and associated covariate compositions across some distinction of “early”

versus “late” wave respondents (Curtin et al. 2000; Keeter et al. 2006; Billiet et al. 2007;

Peytchev et al. 2009; Sigman et al. 2014). In some instances, the objective is to evaluate

whether estimates derived from early respondents differ notably from estimates derived

using the ultimate set of respondents, early and late. A natural limitation of these types of

these studies is that they tend to measure relative bias, not absolute bias. Estimates using

all respondents may not differ much from estimates using only the early wave respondents,

but the former is still subject to bias. In other instances, the objective is to assess whether

late respondents can proxy for ultimate nonrespondents in some form of nonresponse

adjustment procedure. Sometimes the hypothesized relationship holds (Bates and

Creighton 2000), but the technique can backfire when the mechanisms of noncontact differ

from nonresponse (Lin and Schaeffer 1995).

To mitigate the increased costs associated with efforts to stem further declines in

response rates, Groves and Heeringa (2006) urge researchers to employ principles of

responsive survey design, which Bethlehem et al. (2011) note is a special case of adaptive

survey design (Wagner 2008). The basic premise of responsive survey design is to utilize

paradata in real-time to help inform data collection decisions and, if necessary, change

course. Groves and Heeringa (2006) refer to a design phase as a spell of data collection

with a stable frame, sample, and recruitment protocol, and phase capacity as the point

during a design phase at which the additional responses cease influencing key statistics.

They argue instead of terminating data collection or transitioning to a new design phase

at some arbitrary threshold, such as a target response rate, one should monitor the

accumulating data and stop once phase capacity has been reached. As Wagner and

Raghunathan (2010) point out, however, Groves and Heeringa (2006) offer no specific,

calculable rule to test for phase capacity. The concept is only illustrated visually in Figure 2

of their article, in which they plot the trend of a key, nonresponse-adjusted point

estimate over the data collection period and comment on how it stabilizes well before the
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design phase concludes. The methods discussed in this article aim to fill this gap in the

literature.

As an aside, it should be acknowledged that the survey methodology literature is replete

with strategies for allocating resources while following up with nonrespondents to

maximize precision, minimize costs, and/or minimize nonresponse error (e.g., Hansen and

Hurwitz 1946; Filion 1976; Deming 1953; El-Badry 1956; Elliott et al. 2000; Peytchev

et al. 2009; Beaumont et al. 2014; Schouten and Schlomo 2015). Testing for phase

capacity has a subtly different objective: to determine the point(s) during a fixed data

collection protocol when it would be prudent to introduce some form of change, perhaps

by pursuing one of these resource allocation strategies. Phase capacity does not necessarily

mean that the point estimate is devoid of nonresponse error, but it does suggest future

follow-up attempts using the same recruitment protocol will be limited in their ability to

reduce nonresponse error. If the point estimate itself is hardly changing, it follows that any

nonresponse error associated with it is also hardly changing.

Another critical point worth articulating is that phase capacity tests are often referred to

in the literature as “stopping rules.” We hesitate to adopt that terminology here because it

carries a connotation that the nonrespondent follow-up campaign should be discontinued

altogether once phase capacity has been reached. More precisely, phase capacity indicates

that a new design phase is warranted. Stopping the nonrespondent follow-up campaign is

one form of a design phase change, the one exclusively considered in this article, but

alternative interventions include switching modes (De Leeuw 2005) or increasing the

incentive to participate (McPhee and Hastedt 2012).

This article is structured as follows. Section 2 demonstrates the phenomenon of phase

capacity within the context of a real-world survey. In Section 3, two tests for phase

capacity are introduced. A simulation study conducted to compare and contrast their

performance is detailed in Section 4, followed by an application to actual survey data in

Section 5. Section 6 concludes with a summary of the key findings and a discussion of

potential avenues for further research.

2. Illustrating Phase Capacity in the Federal Employee Viewpoint Survey

To further elucidate the concept of phase capacity and introduce a real-world survey data

set on which the two phase capacity tests will be compared, we next discuss the Federal

Employee Viewpoint Survey (FEVS). The FEVS, formerly known as the Federal Human

Capital Survey (FHCS), was first administered in 2002 by the U.S. Office of Personnel

Management (OPM). Initially conducted biennially, the Web-based survey is now

conducted yearly on a sample of full- or part-time, permanently employed civilian

personnel of the U.S. federal government. The core survey instrument consists of 84 work

environment questions followed by 14 demographic questions. Most questions are

attitudinal, capturing answers in the form of a five-point Likert-type scale ranging from

Very Satisfied to Very Dissatisfied. Tests of statistical significance are typically performed

after collapsing these categories into the dichotomy of a positive/non-positive response.

Responses for which a “Do Not Know” or “No Basis to Judge” option is provided are

treated as if the positive/non-positive indicator were missing. The key estimate from each

item thus reduces to the proportion (or percentage) of employees who react positively
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to the statement posed. The terminology used to describe this statistic is the “percent

positive” for a particular survey item. Although this dichotomization foregoes some

information, Jacoby and Matell (1971) argue that it does not cause any significant

decrement in reliability or validity.

The FEVS sampling frame is derived from a personnel database maintained by OPM. In

FEVS 2011, a total of 560,084 individuals from 83 agencies were sampled as part of

a single-stage stratified design, where strata were defined by the cross-classification of

agency-subelement and one of three supervisory categories: non-supervisors, supervisors,

and executives. Agency-subelement is the first organizational component below the

agency level. For instance, whereas the U.S. Department of Homeland Security is

considered an agency, two of its agency-subelements are the Transportation Security

Administration and the U.S. Secret Service. The stratification scheme ensures adequate

numbers of supervisors and executives appear in the sample, as they constitute a domain

of analytic interest.

The sampling frame contains a plethora of auxiliary variables known for both

respondents and nonrespondents, a subset of which is utilized in a three-step weighting

procedure to compensate for unit nonresponse (Kalton and Flores-Cervantes 2003). As

described in Appendix E of OPM (U.S. Office of Personnel Management 2015), in the first

step, base weights are computed as the inverse of each sampled individual’s selection

probability. In the second step, base weights of nonrespondents are proportionally

allocated to respondents within classes formed by the cross-classification of agency and

demographics such as minority status, gender, tenure with the federal government, and

full- or part-time work status. In the third step, weights are raked such that they aggregate

to certain known frame totals for the agency as a whole.

The overall FEVS 2011 field period ran from March 29 to June 1, but the 83

participating agencies had staggered survey start and close dates. The agencies’ field

period lengths varied somewhat, but the median duration was six weeks. The FEVS 2011

data collection strategy fits well within the paradigm of a stable recruitment protocol with

multiple nonrespondent follow-up attempts. On the survey start date, an initial email

invitation containing the website URL and login credentials was sent to sampled

employees. Upon completing the survey, each employee’s unique identification number

and response vector were time stamped and appended real-time to a database stored on

the site’s server. Weekly reminders were sent to nonrespondents. Hence, one clear

demarcation of a data collection wave is the set of responses obtained between any two

weekly email solicitations. Table 1 shows the wave-specific respondent counts and

corresponding relative percent increase for the three agencies analyzed in this article. It is

plain to see how the relative increases quickly diminish after the first few waves,

suggesting that the impact on percent positive estimates diminishes correspondingly. At

the conclusion of the last respective wave undertaken, all three agencies had achieved

about a 50% response rate.

The survey reminder schedule is generally fixed for each agency prior to the start of the

survey, but for many percent positive estimates, phase capacity occurs before the final

reminder email is sent. Since responses are electronically recorded real-time and all

weighting adjustments can be made after merging the response indicator back onto the

sampling frame, a series of nonresponse-adjusted point estimates can be plotted as each
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incoming wave of data is incorporated. Figure 1 illustrates this type of plot for an example

agency based on the percent positive statistic associated with Item 4 on the survey

instrument, which asks employees their level of agreement with the statement “My work

gives me a feeling of personal accomplishment.” The figure shows how the point estimate

increases over the course of data collection, even after adjusting for unit nonresponse.

By about Wave 6, however, it has more or less stabilized. While the tendency for

nonresponse-adjusted estimates to change more in the earlier waves than latter waves is

not unique to FEVS (cf. Figure 3 in Wagner (2010) and Figure 3 in Peytchev et al. (2009)),

this particular pattern – estimates derived from earlier respondents tending to be less

Table 1. FEVS 2011 respondent counts by data collection wave (a calendar week) for three example agencies.

Agency 1 Agency 2 Agency 3

Wave Respondents
Percent
increase Respondents

Percent
increase Respondents

Percent
increase

1 2,175 – 240 – 2,178 –
2 1,568 72.1% 139 36.7% 1,516 69.6%
3 1,117 29.8% 49 11.4% 1,304 35.3%
4 865 17.8% 39 8.4% 959 19.2%
5 557 9.7% 31 6.2% 613 10.3%
6 594 9.5% 30 5.7% 510 7.8%
7 532 7.7% 22 4.0% 439 6.2%
8 592 8.0% 22 3.8% 381 5.1%
9 105 1.3% – – 408 5.2%
10 – – – – 379 4.6%

8,105 572 8,687
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Fig. 1. Trends of nonresponse-adjusted percent positive statistic and 95% confidence interval for FEVS 2011

Item 4 using cumulative data as of the given wave of nonrespondent follow-up for an example agency.
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positive than estimates generated using the ultimate set of respondents – is observed for

numerous FEVS items (Sigman et al. 2014).

3. Tests for Phase Capacity

3.1. A Method Based on Multiple Imputation

Rao, Glickman, and Glynn (RGG) (2008) was the first known proposal for quantifying

estimate stability across waves of nonrespondent follow-up, although their motivation was

a concurrently progressing literature on sequential decision rules in clinical trials

(O’Quigley et al. 1990), not the concept of phase capacity as discussed in Groves and

Heeringa (2006). RGG’s objective was to determine when they could stop mailing

replacement questionnaires to a sample of women recruited for a large pregnancy

prevention study. Covariates collected during the recruitment stage served as the auxiliary

variables, X, known for the entire sample. The key estimate of interested was a sample

mean, the proportion of women using birth control. They derived three rules to assess

whether the estimated proportion changed substantively following the completion of wave

k (k $ 2) relative to the value following the completion of wave k 2 1.

RGG’s third rule performed best in simulation and application. It adjusted for

nonresponse by multiply imputing (Rubin 1987) the birth control usage indicator variable.

In contrast to techniques that reweight respondent records to better reflect the target

population, imputation methods attempt to fill in the unobserved values. A survey data set

subject to missingness has an outcome vector Y that can be partitioned into two

components Y ¼ (Y1, Y0), where Y1 is the observed component and Y0 the missing

component. An imputation model exploits the observed relationship between X and Y1 to

derive plausible values of Y0 given X. Multiple imputation (MI) is a technique whereby

missing values are imputed M times (M $ 2), resulting in M completed data sets. Rubin

(1987) advocates this technique over single imputation because an augmentation to the

variance formula allows one to better reflect the missing data uncertainty.

Let Q̂m denote the mth completed data set estimate for a generic quantity Q. The MI

estimate is the arithmetic mean of the M completed data set estimates, or
�Q̂M ¼

1
M

PM
m¼1 Q̂m. Let Ûm denote the mth completed data set estimated variance for

Q̂m. The MI variance is the sum of two components: (1) the average of the M completed

data set variances, �ÛM ¼
1
M

PM
m¼1 Ûm; and (2) the between-imputation variance of the

estimate, B̂M ¼
PM

m¼1

Q̂m2
^
QM

� �2

M21
. Taken together, the overall multiple imputation variance

is T̂M ¼ �ÛM þ 1þ 1
M

� �
B̂M , where the term 1þ 1

M

� �
represents a finite imputation

correction factor, which converges to 1 as M ! 1.

RGG’s third rule proceeds as follows. First, one imputes the missing data for

nonrespondents using all available information. Next, responses obtained during wave k,

specifically, are deleted and imputation is performed using a model fit using only the

respondents as of wave k 2 1. The result is 2M completed data sets, which are clearly

dependent, because the two underlying models used to create them are based on the shared

set of respondents through wave k 2 1. To avert explicit calculation of a covariance,

RGG assert one can construct a sequence of M individual-level difference variables,
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dmi ¼ yk21
mi 2 yk

mi, where the superscript denotes the maximum wave or data used in the

imputation process and the subscript denotes the mth completed data set value (imputed or

observed), for the ith individual. A contrived data set is presented in an appendix to help

visualize the process. For respondents up to and including wave k 2 1, dmi ¼ 0, but

question marks indicate values subject to variation over repeated implementations of the

imputation procedure.

Phase capacity is declared whenever �d̂M ¼
1
M

PM
m¼1

�d̂m is not significantly different

from zero. The quantity �d̂M is standardized by dividing through by the square root of its MI

variance and referenced against a student t distribution with desired level of confidence.

The MI variance is defined as the sum of the average of the M values of var ð�d̂mÞ and the

sample variance of the M values of �d̂m times the finite imputation correction factor. The

former is the within-imputation variance component and the latter is the between-

imputation variance component.

3.2. A New Method Based on Weighting

RGG’s phase capacity test is restrictive in the sense that not all surveys employ MI to

address unit nonresponse. Many surveys, including the FEVS, instead adjusting the

weights of respondents (Kalton and Flores-Cervantes 2003) such that they better represent

the original sample or target population. In this section, we introduce an adaptation of the

MI phase capacity test amenable to surveys that reweight the observed data to combat

nonresponse.

Suppose for the moment that one is interested in determining whether �ŷk
1, the sample

mean using data from waves 1 through wave k, is not significantly different from �ŷk21
1 , the

sample mean using data only through wave k 2 1. Suppose further that the two sample

means are weighted by wk
1 and wk21

1 , the nonresponse-adjusted base weights at the

conclusion of the two respective, adjacent waves. For cases responding at or before wave

k 2 1, both weights are positive. For cases responding specifically during wave k, wk
1i is

positive while wk21
1i ¼ 0. For cases that have yet to respond by wave k, both wk

1i and wk21
1i

are 0.

From here, just as in the MI version of the test, the objective is to standardize the

difference between the two sample means. Fundamentals of Taylor series linearization can

be employed to derive an estimated variance of the difference after first observing how the

difference can be expressed as a function of p ¼ 4 estimated totals:

d̂
k

k21 ¼ �ŷk21
1 2 �ŷk

1 ¼

Xn

i¼1
wk21

1i yi
Xn

i¼1
wk21

1i

2

Xn

i¼1
wk

1iyi
Xn

i¼1
wk

1i

¼
Ŷ

k21

1

N̂
k21

1

2
Ŷ

k

1

N̂
k

1

¼
T̂1

T̂2

2
T̂3

T̂4

ð1Þ

When written in this fashion, Wolter (2007, sec. 6.5) demonstrates how a computational

algorithm attributable to Woodruff (1971) can greatly simplify the Taylor series variance

estimation process. Similarly to RGG’s difference variable approach, the technique’s

appeal is that it bypasses the need to calculate
� p

2

�
covariances. The algorithm calls for

one to create a variate ui at the Primary Sampling Unit (PSU) level equaling the sum of the

function’s partial derivatives multiplied by the corresponding estimated total. In the
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present case, var d̂
k

k21

� �
< var

Pn
i¼1

Pp
j¼1

›d k
k21

›Tj
tji

� �
, where tji represents the PSU-level

estimate of the jth total in the function. Specifically, t1i ¼ wk21
1i yi, t2i ¼ wk21

1i , t3i ¼ wk
1iyi,

and, t4i ¼ wk
1i. After a little algebra, it can be shown

Xp

j¼1

›d k
k21

›Tj

tji ¼ ui ¼
1

N̂
k21

1

wk21
1i yi 2

Ŷ
k21

1

N̂
k21

1

� �2
wk21

1i 2
1

N̂
k

1

wk
1iyi þ

Ŷ
k

1

N̂
k

1

� �2
wk

1i ð2Þ

and so the estimated variance of the sum of the ui’s with respect to the sample design

approximates var d̂
k

k21

� �
. Table 2 provides a visualization of this technique using a simple,

hypothetical survey data set where k ¼ 2.

Using figures in Table 2, we find

�ŷ1
1 ¼

X6

i¼1
w1

1iyi
X6

i¼1
w1

1i

¼
Ŷ

1

1

N̂
1

1

¼
99:96

60
¼ 1:666;

�ŷ2
1 ¼

X10

i¼1
w2

1iyi
X10

i¼1
w2

1i

¼
Ŷ

2

1

N̂
2

1

¼
100:86

60
¼ 1:681;

and so d̂
2

1 ¼ 20:015. The estimate of var d̂
2

1

� �
is approximated by

var
P10

i¼1 ui

� �
¼ 0:00567. The observed t statistic is then

d̂
2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðd̂
2

1 Þ

q ¼
20:015

0:075302
¼ 20:199;

which is referenced against a student t distribution with n 2 1 ¼ 9 degrees of freedom

to obtain a p-value under the two-tailed hypothesis test H0: d2
1 ¼ �y1

1 2 �y2
1 ¼ 0 versus

Table 2. Illustration of the Taylor series linearization method to approximate the variance of the difference of

two adjacent waves’ nonresponse-adjusted sample means.

Observed data Linearized variate*

Sampling unit ID Wave w1
1i w2

1i yi ui

1 1 10.1 4 1.3 20.0362
2 1 10.2 7 1.1 20.0284
3 1 9.7 7 2.1 0.0213
4 1 10.6 5.4 1.8 0.0130
5 1 8.8 6.3 1.7 0.0030
6 1 10.6 6.2 2.0 0.0260
7 2 0 6.4 1.4 0.0300
8 2 0 5.7 1.8 20.0113
9 2 0 5.3 1.6 0.0072
10 2 0 6.7 1.9 20.0245

*Calculated as ui ¼
1

N̂
1

1

w1
1iyi 2

Ŷ
1

1

N̂
1

1

� �2 w1
1i 2 1

N̂
2

1

w2
1iyi þ

Ŷ
2

1

N̂
2

1

� �2 w2
1i, where N̂

1

1 ¼ 60, and Ŷ
1

1 ¼ 99:96, N̂
2

1 ¼ 60, and

Ŷ
2

1 ¼ 100:86.
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H1: d2
1 ¼ �y1

1 2 �y2
1 – 0. As a general rule, the degrees of freedom would be calculated

based on number of respondents in the wave k data set. In this hypothetical setting, it

appears the nonresponse-adjusted sample mean did not change significantly between

waves 1 and 2, indicating that phase capacity has occurred.

When thinking about the structure of the quotient that makes up the phase capacity test

statistic, one can reason how the precision (or lack thereof ) of var d̂
k21

1

� �
, var d̂

k

1

� �
, and,

therefore, var d̂
k

k21

� �
¼ var d̂

k21

1

� �
þ var d̂

k

1

� �
2 2cov d̂

k21

1 ; d̂
k

1

� �
, is a key factor in

determining how many follow-up attempts are deemed necessary. In particular, a high

degree of precision renders one more likely to reject the null hypothesis and continue,

whereas imprecision renders one more likely to fail to reject the null hypothesis and

discontinue. A driver of the former might be, say, a small relative increase in new

respondents following a particular data collection wave. A driver of the latter might be

small respondent counts, say, in early data collection waves. On the one hand, a high

degree of precision could be perceived as an advantage, as there is seemingly less risk for

residual nonresponse error; however, this may lead the phase capacity test to detect

differences that are statistically significant, but not practically significant. On the other

hand, it seems ill-advised to have a lack of precision alone be the sole determinant of phase

capacity. As such, it may be prudent for practitioners to designate an attainable precision

target or minimum number of data collection waves that must be attempted prior to

adhering to the conclusions of the tests. Naturally, this will depend on the point estimate of

interest, the data collection mode, and the analytic objectives of the survey, among other

factors.

One potentially useful diagnostic tool for thinking about the role of (im)precision is to

plot a statistical power curve for detecting a statistically significant difference in the

adjacent wave point estimates. Figure 2 plots one such curve using the data from Table 2.
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Fig. 2. Statistical power curve based on the example survey data presented in Table 2.
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For hypothetical values of d plotted along the x-axis, the statistical power for detecting a

point estimate difference at the a ¼ 0.05 significance level is plotted along the y-axis. For

a two-sided alternative hypothesis test with cut-off tdf,1-a/2, the statistical power curve can

be found by solving for 1 2 Pr 2tdf ;12a=2 2 dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var d̂

k

k21

� �q , t , tdf ;12a=2 2 dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var d̂

k

k21

� �q

2

4

3

5.

With respect to the data in Table 2, t9,0.975 ¼ 2.262, and var d̂
k

k21

� �
¼ 0:00566.

The curve in Figure 2 indicates that one is virtually guaranteed to detect a difference of

þ /2 0.4. Acknowledging the tendency for point estimate changes to decrease as k

increases, practitioners may find information gleaned from this kind of plot useful in

reinforcing or overturning the phase capacity test declaration. For example, if a

meaningful change would have to be something much larger thanþ /2 0.4, it may weaken

the case for continuing under the same data collection protocol, despite the phase capacity

test indicating one should do so. Of course, information from this kind of plot could also be

used from the other end of the spectrum, such as to overturn an early-wave phase capacity

declaration.

While the set-up thus far has pertained only to simple random sample designs, complex

survey features can easily be accommodated. For instance, many survey samples involve

hierarchical stages of clustering, often within strata. To simplify the variance

approximation process, the “ultimate cluster” assumption (Heeringa et al. 2010, p. 67)

is frequently adopted in which case the ui’s are constructed as illustrated above at the PSU

level and stratum-specific variances are estimated and assimilated into an overall variance

estimate. And although the present exposition focuses only on the sample mean, the

Woodruff (1971) technique is applicable to any difference that can be expressed as a

differentiable function of unbiased totals, which covers a wide range of statistics. This is a

major advantage over the MI version of the test, which was designed specifically to test for

a difference in means.

Another avenue for estimating var
�
d̂

k

k21

�
is to employ a replication approach (Rust

1985), such as the jackknife (Wolter 2007, chap. 4) or the bootstrap (Efron and Tibshirani

1993). The idea is to form two sets of R replicate weights, one for respondents through

wave k 2 1 and another for all respondents through wave k. One then conducts the full

nonresponse adjustment procedure independently on all replicate weights. This enables

one to account for the added variance attributable to the nonresponse adjustment

procedure (Valliant 2004). After finding both û
ðk21Þr

1 and û
kr

1 using the two sets of replicate

weights, the 2R estimates are consolidated by forming û r ¼ û
ðk21Þr

1 2 û
kr

1 . From there,

var d̂
k

k21

� �
is estimated by a simple function of the squared deviation of these R differences

from the full-sample difference û ¼ û
k21

1 2 û
k

1 , depending on the particular method.

As one final aside, there is an alternative computational strategy practitioners may find

easier to apply than the method outlined whenever the point estimate of interest is a sample

mean. Drawing upon concepts demonstrated in Example 5.13 of Heeringa et al. (2010), the

first step is to stack the two respondent data sets, one as of wave k and another as of wave

k 21, with a like-named weight variable and PSU identifier. Note that even in a simple

random sample design, one would treat the unique respondent identifier as the PSU. The

next step is to assign an indicator variable in the stacked data set taking on a value of 0 for
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cases originally from the respondent data set as of wave k and a value of 1 for cases

originally from the respondent data set as of wave k 2 1. One then fits a linear regression

model with an intercept and this indicator variable serving as the lone predictor variable on

the outcome variable of interest. So long as the variance-covariance matrix of model

parameters is estimated properly accounting for the clustering (and stratification, if

applicable) (Fuller 1975), it can be shown that the t statistic generated from the null

hypothesis that the slope coefficient in the model is zero is equivalent to the two-sample

t test described earlier in this section.

4. A Simulation Study Comparing the Two Phase Capacity Tests

In this section, we report results from a simulation study conducted to compare and

contrast the two phase capacity tests. The goal was to evaluate their performance in four

settings based on the cross-classification of two conditions: (1) whether or not the response

wave is associated with a covariate known for the entire sample; and (2) whether or not a

continuous outcome variable is associated with the response wave. Using a randomly

generated covariate, each simulated survey sample was split into two classes within which

both a weighting adjustment and multiple imputation routine could be performed. In

effect, data were assumed Missing Completely At Random (MCAR) (Little and Rubin

2002) within each class. For the weighting version of the test, a single adjustment factor

proportional to the inverse of the class-specific response rate was used to inflate the

weights of respondents back the count from the initial sample. For the MI version of the

test, the Approximate Bayesian Bootstrap (ABB) was carried out within each class. Rubin

and Schenker (1986) prove that the expected value of the MI variance of a sample mean

after implementing the ABB is approximately equal to the variance of the sample mean

using only the observed portion of the data, Y1. Considering that, within a class, a constant

weight adjustment will have no effect on the estimated variance of a mean, we can reason

that the two techniques should be completely balanced in terms of their expected post-

adjustment effect on the estimated variance of �ŷk21
1 and �ŷk

1.

To partition each sample into two classes of roughly equal size, a random uniform

variate xi between 0 and 1 was first generated. A sample case was assigned to the first class

if this number was less than 0.5, and the second class otherwise. Table 3 summarizes the

two wave-of-response distributions that were defined using the empirical response

distribution of Agency 3 in FEVS 2011 reported in Table 1. For the condition where the

response wave is not associated with xi, sample cases were assigned response waves in

proportion to the empirical FEVS distribution. For the second condition where the

response wave is associated with the covariate, if xi , 0.5, the sample case was

predisposed to respond sooner than when xi $ 0.5. In doing so, however, the expected

marginal distribution was designed to match that of the first condition – for instance,

0.5*(34.5% þ 15.6%) < 25.1% and 0.5*(20.7% þ 14.2%) < 17.5%.

In contrast to the RGG (2008) simulation study design, the outcome variable yi was

assigned as continuous rather than dichotomous. This was done to magnify the potential

differences to be observed in sample means over the simulated data collection

period. For the condition where the outcome was not associated with wave of response,

yi ¼ 10xi þ 1i, where 1i , N(0,1). When the outcome was associated with respondent
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wave, yi ¼ 10xi þ wavei þ 1i. Thus, the wave-specific mean outcome increases linearly

in expectation.

Each of the four conditions were simulated 1,000 times for sample sizes n ¼ 500 and

n ¼ 5,000. A practical issue when employing MI is deciding on the size of M. A common

value used by many researchers (e.g., Schenker et al. 2006), including RGG (2008), is

M ¼ 5. Graham et al. (2007) argue that this number may be insufficient in certain

circumstances. During preliminary analyses, M ¼ 20 and M ¼ 100 were evaluated, but

results did not deviate markedly from M ¼ 5, so this was deemed not a parameter worthy

of manipulating in the simulation. Another consideration was the variance approximation

method for var d̂
k

k21

� �
. Although the exposition in the previous section focused

predominantly on the Taylor series linearization approach, it was noted that a replication

approach would also be viable. To this end, a nonparametric bootstrap estimator was

investigated during initial analyses, but results did not differ substantively from those

obtained via Taylor series linearization. As such, the particular variance approximation

method implemented was deemed immaterial for purposes of this simulation study.

One additional simulation parameter we did find enlightening to manipulate, however,

was the variance of the 1i terms. In addition to 1i , N(0,1), we evaluated 1i , N(0,9). This

enabled an assessment of the impact of a more variable underlying distribution of yi and,

thus, a more variable sample mean.

Tables 4a and 4b summarize results from the simulation study. The former presents a

summarization where n ¼ 500 and the latter where n ¼ 5,000. The mean stop wave is a

useful quantification of the length of data collection prior to declaring phase capacity. Its

standard deviation should be unambiguous. The row labeled “Mean NR Error” reports the

average distance between the abridged data set mean and the full-sample mean over all

1,000 replications. For each simulated sample’s stopping wave, a 95% confidence interval

on the sample mean was constructed. The line labeled “95 Percent Coverage” measures

the percentage of abridged data set sample mean confidence intervals that encompass the

full-sample mean.

Table 3. Summary of the two wave-of-response distributions used for the simulation study comparing the two

phase capacity tests.

Wave not associated with covariate Wave associated with covariate

Wave for any xi for xi , 0.5 for xi $ 0.5

1 25.1% 34.5% 15.6%
2 17.5% 20.7% 14.2%
3 15.0% 11.5% 18.5%
4 11.0% 9.2% 12.9%
5 7.1% 4.6% 9.5%
6 5.9% 4.6% 7.1%
7 5.1% 3.7% 6.4%
8 4.4% 3.5% 5.3%
9 4.7% 3.9% 5.5%
10 4.4% 3.7% 5.0%

100.0% 100.0% 100.0%
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One overarching finding is that when the outcome is not related to the wave of response,

as simulated in Conditions 1 and 3, both the MI and weighting versions of the test are

quick to detect phase capacity. Indeed, it is a rare occasion when phase capacity is not

detected at the second wave. Intuitively, the abridged data set introduces minimal

nonresponse error and the full-sample mean is adequately covered by the confidence

intervals formed earlier in the simulated data collection process. These are promising

results that hold for both n ¼ 500 and n ¼ 5,000.

Phase capacity is not declared as quickly for Conditions 2 and 4, those in which the

expected value of the outcome variable increases linearly with response wave. Despite the

tests often dictating data collection to proceed well beyond the second wave, when

n ¼ 500, the abridged data set sample means are plagued by substantial nonresponse error

and an unsatisfactory confidence interval coverage rate. That said, there is a fair amount of

variability in terms of the mean stopping wave in the n ¼ 500 setting. Other findings of

note are that the mean stopping wave for Condition 2 is somewhat less than Condition 4,

and that phase capacity tends to be detected earlier when the 1i terms are governed by less

variability.

A theme permeating the results from Conditions 2 and 4, at least for the case where

n ¼ 500, is that the weighting version of the phase capacity test tends to call for more

waves of nonresponse follow-up. For the simulation setting in which n ¼ 5,000

summarized in Table 4b, the mean stopping point is almost always the tenth (and final)

wave. The most probable explanation for this difference observed across sample sizes is

that a larger sample size results in more precision for the underlying estimates of

var �ŷk21
1

� �
, var �ŷk

1

� �
, and, therefore, var d̂

k

k21

� �
¼ var �ŷk21

1

� �
þ var �ŷk

1

� �
2 2cov �ŷk21

1 ; �ŷk
1

� �
.

Considering these terms comprise the denominator of the phase capacity test statistic

quotient, it follows that this would render one more likely to fail to reject the test.

Another finding that emerges from comparing the mean stopping waves for any given

simulation setting is that the weighting version of the test typically calls for more waves of

follow-up than the MI version. Because the expected values of �ŷk
1 and �ŷk21

1 are the same for

either version, the weighting version of the phase capacity test must produce a smaller

value of var d̂
k

k21

� �
. This is confirmed by Figure 3, which overlays the two average values

of var d̂
k

k21

� �
at each wave threshold over all 1,000 iterations of each simulation condition

where n ¼ 500 and 1i , N(0,1). One can observe how the variance is consistently smaller

for the weighting version until the two converge near the final wave threshold.

Recall how both tests avoid explicit calculation of the term cov �ŷk21
1 ; �ŷk

1

� �
embedded

within var d k
k21

� �
¼ var �ŷk21

1

� �
þ var �ŷk

1

� �
2 2cov �ŷk21

1 ; �ŷk
1

� �
. Bearing in mind the argument

made previously regarding the equivalence of the ABB and a single weight inflation factor

on the variance of a sample mean, any discrepancy in the overall variance estimate must be

attributable to cov �ŷk21
1 ; �ŷk

1

� �
. It appears the covariance from the weighting version of the

phase capacity test is larger in magnitude than the covariance calculated using the MI

version.

5. Federal Employee Viewpoint Survey Application

We next discuss an application of the two phase capacity tests using actual survey data

from three example agencies participating in FEVS 2011. The respondent counts by wave
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for these three agencies’ were summarized in Table 1. As before, the point estimates

investigated are sample means – namely, the seven percent positive estimates for items

constituting the Job Satisfaction Index of the Human Capital Assessment and

Accountability Framework (HCAAF) (U.S. Office of Personnel Management 2015, 28).

This subset of items was chosen because we felt it best captures the essence of the FEVS,

an 84-item survey tapping at various dimensions of an employees’ overall satisfaction

level with his or her job.

The interpretation of nonresponse error is different in the application as compared to the

simulation study. In the simulation study, the full-sample mean was known for all 1,000

replications of a given condition, and it was further assumed that a 100% response rate

could be achieved with enough follow-up attempts. This was not necessarily realistic, but

permitted a gold standard upon which to benchmark the point estimates derived from the

abridged sample data sets. Here, given the retrospective nature of the application,

nonresponse error is the difference between the point estimate computed once phase

capacity has been declared and the like computed at the conclusion of the agency’s FEVS

2011 field period.
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0.05

0.04

0.03

0.02

0.01

0.00

0.05

0.04

0.03

A
ve

ra
ge

 v
ar

ia
nc

e 
of

 th
e 

w
av

e-
ov

er
-w

av
e 

di
ff

er
en

ce
 in

 s
am

pl
e 

m
ea

ns

0.02

0.01

0.00

Condition = 2

Condition = 3

2 4 6 8

Latter wave (Wave k)

10 2 4 6 8 10

Condition = 4

Test version MI (M=5) Weighting

Fig. 3. Average estimated variance of the difference between two adjacent wave sample means by phase

capacity testing method for the simulation study setting where n ¼ 500 and 1i , N(0,1).
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As with the simulation study, the fundamental objective was to evaluate the

performance of the two competing tests of phase capacity. To foster a balanced

comparison, a shared set of five auxiliary variables was used in both nonresponse

adjustment procedures: (1) agency-subelement; (2) an indicator of whether the employee

works at the agency headquarters or in a field office; (3) gender; (4) a minority/non-

minority indicator variable; and (5) supervisory status (non-supervisor, supervisor, and

executive). For the MI version of the test, these variables served as main effects in a

sequence of logistic regression models fitted to impute the missing data, independently

fitted for each agency. At the end of each wave, the seven positive/non-positive indicators

for were multiply imputed M ¼ 5 times using the %IMPUTE module within IVEware

(http://www.isr.umich.edu/src/smp/ive/), a free, SAS-callable set of macros developed

by researchers at the Institute for Social Research at the University of Michigan. The

%IMPUTE module implements the Sequential Regression Multiple Imputation (SRMI)

algorithm discussed in Raghunathan et al. (2001). For the weighting version of the phase

capacity test, base weights of respondents at the end of a given wave were raked to

marginal, agency-level totals aggregated from the sampling frame. The totals were derived

from the same set of categorical variables serving as main effects in the imputation models

used in the MI version. The SAS macro developed by Izrael et al. (2000) was used to carry

out the raking process. As in the simulation study, Taylor series linearization was utilized

to estimate variances of the adjacent-wave weighted mean differences.

Table 5 summarizes results from the FEVS application. The wave at which phase

capacity was declared is given as well as the nonresponse-adjusted estimate at that point

and the nonresponse error relative to that using the ultimate set of respondents. Note that

these estimates are not precisely the same when arrived at via multiple imputation versus

weighting, but they are close. It is assumed, however, that as M ! 1, the estimates

derived using multiple imputation are asymptotically equivalent to those derived from

raking, and so this moderate amount of random variation reflected by using M ¼ 5 should

not substantively alter the main findings.

In many respects, the conclusions to be gleaned from Table 5 coincide with the main

takeaways from the simulation study. The weighting version of the test tends to necessitate

more wave of nonresponse follow-up than the MI version, which surpasses the second

wave only in a few instances. Due to the proclivity of the FEVS percent positive estimates

to increase with each additional wave (i.e., as demonstrated in Figure 1), it is of little

surprise to observe that the nonresponse error is smaller for the weighting test. The

differences are relatively small, however. For example, the average percentage point

difference for the seven estimates analyzed for Agency 1 is 21.4. This is the largest

average difference for any of the three agencies examined. Still, 1 to 2 percentage points is

enough to declare a statistically significant change relative to the previous years’ survey.

Lastly, another result that parallels a finding from the simulation study is how phase

capacity is concluded earlier for Agency 2, which is comprised of a notably smaller sample

size (n ¼ 1,057) than Agency 1 (n ¼ 16,565) and Agency 3 (n ¼ 17,177). There is no

evidence that the upward mobility exhibited in the nonresponse-adjusted percent positive

estimates is any less pronounced for Agency 2. As such, we suspect that the decreased

precision attributable to the smaller sample size relative to the other two agencies is the

most probable explanation.
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6. Discussion

According to Biemer and Lyberg (2003), a tenet of overall survey quality is timeliness,

and a key driver of a survey’s timetable is the data collection period. Invariably, not all

sampling units respond in the first recruitment attempt, and a sequence of follow-up

attempts typically ensues. Survey sponsors often sanction these to continue indefinitely in

pursuit of a target response rate or minimum respondent count, but this is not necessarily

guaranteed to reduce nonresponse error. Groves and Heeringa (2006) encourage

practitioners to employ paradata and other real-time information to help guide decisions

about the data collection process and, in particular, when to transition to a new design

phase. They defined the notion of phase capacity as the point during a design phase when

point estimates stabilize. Absent in their article, however, is a clearly defined, calculable

rule practitioners can follow to determine whether phase capacity has been reached. The

primary objective of this article was to compare and contrast two techniques to do so, one

based on multiple imputation to handle unit nonresponse and one based on weighting.

Evaluating the two tests via a simulation study and an application using actual survey

data from the 2011 FEVS, the weighting version was found to be more sensitive to sample

Table 5. Results from a FEVS 2011 application using data from three example agencies to compare the two

phase capacity tests.

MI (M ¼ 5) Weighting

Item
Stopping

wave
Point

estimate
Relative
NR error

Stopping
wave

Point
estimate

Relative
NR error

Agency 1
4 3 74.0 22.0 5 75.3 20.6
5 2 82.4 21.7 2 82.6 21.5
13 2 86.6 22.2 5 88.6 20.3
63 3 54.5 21.7 5 55.7 20.4
67 2 33.8 23.3 4 35.8 21.4
69 2 68.3 22.9 5 70.8 20.4
70 2 68.6 21.6 2 69.1 21.3

Agency 2
4 2 79.0 21.1 2 78.9 20.5
5 2 84.2 20.8 2 84.2 21.2
13 2 86.3 22.8 2 88.2 20.9
63 2 62.8 21.9 2 63.2 21.4
67 2 40.1 21.9 3 41.1 21.4
69 2 73.6 20.6 3 72.7 21.1
70 2 63.1 3.0 2 62.2 1.0

Agency 3
4 2 77.7 21.7 4 79.1 20.3
5 2 84.8 21.4 4 86.2 20.1
13 2 86.4 21.3 2 86.9 20.7
63 2 63.2 21.5 2 63.4 21.3
67 2 46.5 21.8 2 46.3 21.7
69 2 75.2 21.8 3 75.7 21.1
70 2 73.5 20.4 2 73.8 0.0
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mean changes and, thus, more conservative in declaring phase capacity. It was argued this

is due to the two tests’ implicit accounting of the covariance between the two adjacent-

wave means. We leave for further research the task of developing a more formal

theoretical understanding as to why the covariance is not accounted for equivalently in the

two tests. Further research could also study the behavior of the weighting version of the

phase capacity test for alternative point estimates or variance estimation methods.

Although an admittedly cursory analysis indicated certain replication approaches mirrored

the performance of the Taylor Series linearization approach utilized exclusively in this

research, a more rigorous study would help to rule out any potential anomalies.

The two tests described in this article share two general limitations. One is that they are

inherently univariate, meaning they focus on a single point estimate. It is not immediately

obvious how one would proceed if a phase capacity test was conducted on two or more point

estimates, which could take the form of the same point estimate computed for two or more

population domains, resulting in contradictory conclusions. The ideas of the weighting test

for phase capacity are extended to multivariate settings such as this in Chapter 4 of Lewis

(2014) and Lewis (2015). The second general criticism is that the two tests are retrospective

in nature. Knowing the most recent wave’s data did not significantly alter a key point

estimate is useful information, but knowing so before conducting an inefficacious wave of

data collection would be even more valuable. Acknowledging this, Wagner and

Raghunathan (WR) (2010) proposed a “stop-and-impute” test that is prospective in nature.

To be sure, more research is needed on prospective tests for phase capacity.

Despite our aversion to the phrase “stopping rule,” a limitation of this article is that the

sole design phase transition considered was, in fact, terminating the nonrespondent follow-

up process. More research is warranted to understand how these techniques perform under

alternative design phase changes such as changing the incentive or switching modes.

Another intriguing idea, at least for an annual survey like the FEVS, would be to research

whether information from prior administrations could be somehow incorporated into tests

for phase capacity.

In closing, we feel compelled to acknowledge that the actual adoption of a phase

capacity testing approach to guide the FEVS data collection process would face

headwinds. One reason is the survey administration team’s dogma that each agency should

be treated equitably. In FEVS 2011 and administrations prior, agencies were given

generous amounts of leeway with respect to the length and timing of their field period. As

the survey’s sample size continued to grow, however, accommodating these agency-

specific requests became increasingly challenging. Consequently, beginning with FEVS

2012, the field period for all agencies was preset at six weeks, with each agency choosing

from one of two possible start dates that are one week apart. Another point of contention

for a shortened data collection period is the tendency for point estimates to increase over

time, as shown in Figure 1, even after adjusting for nonresponse. From the perspective of

an agency’s senior leadership and stakeholders, higher scores are more desirable, as they

are indicative of a more satisfied, engaged workforce. Gaining an extra one-half

percentage point, say, even if failing to be a statistically significant change, could be

enough to increase the agency’s standing in the Partnership for Public Service’s Best

Places to Work in the Federal Governmentw rankings (www.bestplacestowork.org).
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