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Adult Americans are encouraged to engage in at least 150 minutes of moderate to vigorous
physical activity (MVPA) each week. National surveys that collect physical activity data to
assess whether or not adults adhere to this guideline use self-report questionnaires that are
prone to measurement error and nonresponse. Studies have examined the individual effects of
each of these error sources on estimators of physical activity, but little is known about the
consequences of not adjusting for both error sources. We conducted a simulation study to
determine how estimators of adherence to the guideline for adults to engage in 150 minutes of
MVPA each week respond to different magnitudes of measurement and nonresponse errors in
self-reported physical activity survey data. Estimators that adjust for both measurement and
nonresponse errors provide the least amount of bias regardless of the magnitudes of
measurement error and nonresponse. In some scenarios, the naı̈ve estimator, which does not
adjust for either error source, results in less bias than estimators that adjust for only one error
source. To avoid biased physical activity estimates using data collected from self-report
questionnaires, researchers should adjust for both measurement error and nonresponse.

Key words: Measurement error model; moderate to vigorous physical activity; response
propensity model; total survey error.

1. Introduction

The U.S. Department of Health and Human Services establishes physical activity

guidelines for Americans (Department of Health and Human Services 2008). A key

guideline is for adults to engage in at least 150 minutes of moderate to vigorous physical

activity (MVPA) each week. Intensity of physical activity is measured in terms of

metabolic equivalents (METs), where an individual at rest is at a baseline level of one

MET (Welk 2002). For adults, moderate physical activity requires three to six METs of

intensity, and vigorous activity requires more than six METs of intensity (Ainsworth et al.

2000; Crouter et al. 2006; Troiano et al. 2008).

One key component of physical activity research is determining the percentage of adult

Americans who adhere to this guideline, using information collected via self-report
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surveys or questionnaires that ask individuals about their physical activity or using

monitoring devices such as accelerometers. Troiano et al. (2008) estimated that

approximately 51 percent of adult Americans engage in at least 150 minutes of MVPA

each week, using physical activity questionnaire data collected for the 2003–2004

National Health and Nutrition Examination Survey (NHANES). Alternatively, using

accelerometers from NHANES 2003–2004, which tend to underestimate the amount of

physical activity in individuals (Matthews 2005), Troiano et al. (2008) estimated that less

than five percent engage in at least 150 minutes of MVPA each week. Tucker et al. (2011)

estimated that about 60 percent of adult Americans adhere to the same guideline, using

NHANES questionnaire data from 2005–2006, and about ten percent adhere to the

guideline using accelerometer data from NHANES 2005–2006. A study using data from

the National Health and Interview Survey (NHIS) estimated that closer to 42 percent of

adults adhere to the guideline of 150 minutes of MVPA each week (Schoenborn and

Stommel 2011), whereas a study of data from the Behavioral Risk Factor Surveillance

System (BRFSS) found that approximately 65 percent of adults adhere to the same

guideline (Loustalot et al. 2009). Table A in the Appendix provides more summative

information about these surveys and the physical activity self-report questionnaires

they used.

These studies provide estimates of the same parameter (percentage of individuals who

adhere to the guideline for minutes of MVPA) with data collected from the same

population (adult Americans), yet yield different results. This is due, in part, to

nonsampling errors. Unlike sampling errors, which result from the conscious choice to

collect data from a sample instead of an entire population, nonsampling errors are

unintentional and can exist in a number of forms (Lessler and Kalsbeek 1992). If there is a

difference between a reported or measured value and the true, unknown value for a survey

outcome, the consequence is a form of nonsampling error known as measurement error (or

response error). Measurement error exists in self-reported physical activity data because of

cognitive limitations associated with recalling activities, which may result in unintentional

misreporting about the frequency and duration of activity (Bassett et al. 2000; Matthews

2002). Social desirability effects may also entice some respondents to overreport their

physical activity from the recent past (Adams et al. 2005; Warnecke et al. 1997). In

addition, the terminology used in self-report questionnaires may be confusing or unclear,

which can result in misreporting (Sallis and Saelens 2000). Self-reporting errors like these

often result in much larger estimates of physical activity than those taken from more

objective instruments like accelerometers or other monitoring devices and can

fundamentally bias estimates of physical activity in adult populations (Ferrari et al.

2007; Nusser et al. 2012; Tooze et al. 2013).

If some sampled participants fail to respond to survey questions and those individuals

would have responded in a systematically different way than sampled participants who do

respond to survey questions, there is the potential for nonresponse error (or bias). Like

many surveys, those that collect physical activity information through self-reporting are

prone to nonresponse. National surveys attempt to reduce the effects of nonresponse bias

by using weighting adjustments or other adjustment procedures, but it is unclear whether

such approaches are actually beneficial, since physical activity data are unavailable for

nonrespondents. The limited research available on the relationship between nonresponse
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and physical activity self-reporting in national surveys is inconclusive about whether

nonresponse leads to biased estimates of physical activity outcomes. Hill et al. (1997)

found that initial survey respondents reported more physical activity relative to survey

nonrespondents who were part of a responding follow-up subsample. Van Loon et al.

(2003) found that a smaller percentage of survey respondents had low physical activity

compared to nonrespondents. However, other studies did not find significant biases

in physical activity estimates due to nonresponse (Smith and Nutbeam 1990; Vink

et al. 2004).

To obtain accurate estimates for the percentage of adult Americans that adhere to

physical activity guidelines, appropriate adjustments for both measurement error and

nonresponse are prudent. However, to the best of our knowledge, no study currently exists

in which a total survey error framework (Groves and Lyberg 2010) is utilized to account

for both measurement error and nonresponse in physical activity self-report surveys to see

if and when such an approach is superior to one that adjusts for only one error source or

neither error source. Our goal, in this article, is to determine what the combined impacts of

measurement error and nonresponse are on estimates of physical activity generated from

self-report data. Because no study or data currently exist which focus on both of these error

sources, simulation procedures are needed to help achieve this goal. We present results

from a simulation study which measures the bias from not adjusting for one or more of

these nonsampling errors when estimating adherence to the physical activity guideline for

adult Americans to engage in at least 150 minutes of MVPA each week. We developed our

simulation models using established statistical methods from the literature for analyzing

physical activity data. We present results for simulated scenarios that cover a range of

situations in which measurement and nonresponse errors may exist in self-reported

physical activity data collected from adult Americans. For each scenario, we consider

estimators that account and adjust for both measurement and nonresponse errors,

measurement error only, nonresponse error only, and neither error source.

2. Methods

In this section we describe the procedures used for the simulation study. A more technical

description of the simulation procedures is provided in the Appendix. For the simulation,

we assume that a random sample of 1,000 individuals is selected from the population of all

adult Americans, and sampled participants are asked to provide information about their

physical activity using a self-report survey during two separate weeks, randomly selected,

over the course of a year. We assume that each sampled individual has some true,

unknown amount of time he or she spends engaging in MVPA during a typical week which

is different than the amount he or she reports from the self-report survey. This difference

is due to measurement error, which we assume to be random (see Equation 1 in the

Appendix). We also assume that some sampled individuals will not provide all the

necessary information to measure the amount of time they spend engaged in MVPA from

the self-report survey. Each sampled individual is assumed to have some propensity to

respond to the survey which is a function of his or her true, unknown physical activity level

(see Equation 2 in the Appendix). For the simulation, individuals are randomly assigned as

either respondents or nonrespondents according to their response propensity. So for
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example, if an individual’s propensity to respond is 0.75, he or she has a 75 percent

probability of being assigned as a respondent.

Using the simulated data for the 1,000 sampled individuals, we estimate the parameter,

the percentage of adults in the population that adhere to the physical activity guideline of

150 or more minutes of MVPA per week (which we denote u) using four different

estimators. One estimator accounts and adjusts for both the measurement error and

nonresponse (which we denote ûfull), one accounts for nonresponse only, ignoring the

measurement error (which we denote ûnr), one accounts for the measurement error only,

ignoring the nonresponse (which we denote ûme), and one accounts for neither

measurement error nor nonresponse (which we denote ûnaive). (These estimators are

defined more explicitly in the Appendix along with other simulation model parameters.)

It is important to focus on all four of these estimators so that we understand not only the

combined impact of not adjusting for measurement error and nonresponse (which is

represented by the naı̈ve estimator) but also what the impact is if adjustments for only one

of these error sources is ignored. Once we calculate estimates for these four estimators

based on the sample of 1,000 individuals we repeat the simulation process again

(randomly selecting another 1,000 individuals) and calculate four new estimates. In total,

we run 1,000 simulations, generating 1,000 replicate estimates for each of the four

estimators. We calculate the average bias for each estimator by averaging the differences

between the 1,000 simulated estimates and the true value being estimated (the percentage

of adults that engage in 150 or more minutes of MVPA each week).

As with any simulation, a number of assumptions are made about the parameter values.

The parameter values selected for the simulations (which are provided along with the

simulation models in the Appendix) were based on research which studied measurement

error and nonresponse in data from physical activity self-report surveys (Ferrari et al.

2007; Tooze et al. 2013; Hill et al. 1997). We assumed that the true percentage of adults

that adhere to the physical activity guideline of 150 or more minutes of MVPA each week

was u ¼ 25 percent. We consider this value reasonable since the available self-report-

based estimates of this quantity, ranging from 42 to 65 percent (Troiano et al. 2008;

Tucker et al. 2011; Schoenborn and Stommel 2011; Loustalot et al. 2009), are likely too

high due to reporting biases, and the accelerometer-based estimates of this quantity,

ranging from five to ten percent (Troiano et al. 2008; Tucker et al. 2011), are likely too

low, since accelerometers are unable to accurately measure all types of activity in

free-living conditions (Matthews 2005).

To investigate the combined impacts of measurement error and nonresponse on the

estimators, we considered a range of scenarios. We considered nine different measurement

error scenarios (ranging from no random measurement error to very large random

measurement error). We also considered nine different nonresponse scenarios (ranging

from a strong negative relationship between propensity to respond and physical activity to

a strong positive relationship between propensity to respond and physical activity). In

total, we considered 81 different simulation scenarios based on the combinations of nine

measurement error scenarios and nine nonresponse scenarios. In the results section, we

conduct a more detailed examination of six of these scenarios summarized in Table 1 and

then summarize findings from all 81 scenarios at the end of the section.
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3. Results

The simulation results for the six scenarios given in Table 1 are presented in terms of

average biases in Table 2. There are two separate panels in Table 2 that provide results for

scenarios with large measurement error (top panel) and no measurement error (bottom

panel). Within each panel, three columns represent three different nonresponse bias

conditions – negative nonresponse bias, no nonresponse bias, and positive nonresponse

bias. Each table cell includes four average bias estimates for the four estimators of u.

3.1. Simulation Scenarios with Large Measurement Error

Average biases for a scenario in which there is large measurement error and negative

nonresponse bias are given in the first column of the top panel of Table 2. The estimators

Table 1. Model parameter specifications for six simulation scenarios.

Scenario

Empirical values of
key model parameters
for Models (1) and (2)
in the Appendix

Large measurement error and large negative nonresponse bias s 2
e ¼ 8 and a1 ¼ 22

Large measurement error and no nonresponse bias s 2
e ¼ 8 and a1 ¼ 0

Large measurement error and large positive nonresponse bias s 2
e ¼ 8 and a1 ¼ 2

No measurement error and large negative nonresponse bias s 2
e ¼ 0 and a1 ¼ 22

No measurement error and no nonresponse bias s 2
e ¼ 0 and a1 ¼ 0

No measurement error and large positive nonresponse bias s 2
e ¼ 0 and a1 ¼ 2

Note: s 2
e represents measurement error variability and a1 represents nonresponse bias. Both terms are explicitly

defined in the Appendix.

Table 2. Average biases for estimators of u for six simulation scenarios.

Large measurement error (s 2
e ¼ 8 in Model (1) in the Appendix)

Negative nonresponse bias
(a1 ¼ 22 in Model (2)
in the Appendix)

No nonresponse bias
(a1 ¼ 0 in Model (2)
in the Appendix)

Positive nonresponse
bias (a1 ¼ 2 in Model (2)
in the Appendix)

ûnaive: 1.0 ûnaive: 11.5 ûnaive: 21.5
ûnr: 11.5 ûnr: 11.5 ûnr: 11.6
ûme: 218.0 ûme: 20.4 ûme: 17.1
ûfull: 21.3 ûfull: 20.4 ûfull: 0.3

No measurement error (s 2
e ¼ 0 in Model (1))

Negative nonresponse bias
(a1 ¼ 22 in Model (2))

No nonresponse bias
(a1 ¼ 0 in Model (2))

Positive nonresponse bias
(a1 ¼ 2 in Model (2))

ûnaive: 219.5 ûnaive: 0.0 ûnaive: 15.1
ûnr: 20.0 ûnr: 0.0 ûnr: 20.1
ûme: 218.5 ûme: 0.1 ûme: 17.1
ûfull: 21.0 ûfull: 0.0 ûfull: 20.3
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that account for only one error source do not perform well under this scenario. The average

bias for ûnr is 11.5 percentage points. This means that when accounting for nonresponse

bias but not for measurement error, under this scenario estimates of u will be around 36 or

37 percent for a true value of u that is 25 percent. The average bias for ûme is 218.0

percentage points under this same scenario, so that when accounting for only measurement

error, estimates of u will be around seven percent (well below the true value of 25 percent).

The naı̈ve estimator, ûnaive, has an average bias of 1.0 percentage points and performs as

well as the full-adjustment estimator, ûfull, which has an average bias of 21.3 percentage

points.

In the scenario where there is large measurement error and no bias due to nonresponse,

the measurement error estimator performs well, as does the full-adjustment estimator.

Both have average biases that are 1.0 percentage points in absolute value. Neither the

nonresponse adjustment estimator nor the naı̈ve estimator perform well. Both have

average biases of 11.5 percentage points.

The final scenario in the top panel of Table 2, with large measurement error and positive

nonresponse bias, provides the largest absolute bias in the naı̈ve estimator: 21.5 percentage

points. This means that, under this scenario, the naı̈ve estimator provides estimates of

u close to 50 percent, almost double the true value of 25 percent. Like the naı̈ve estimator,

the nonresponse adjustment and measurement error adjustment estimators do not perform

well. The full-adjustment estimator does perform well, with an average bias of only

0.3 percentage points.

3.2. Simulation Scenarios with no Measurement Error

The bottom panel of Table 2 provides three scenarios where there is no measurement error.

As one would expect, under these scenarios the nonresponse adjustment estimator

performs as well as the full-adjustment estimator. The naı̈ve and measurement error

adjustment estimators do not perform as well, except for the scenario where there is no

nonresponse bias. In the scenario with negative nonresponse bias and no measurement

error, the average negative bias for the naı̈ve and measurement error adjustment estimators

are both about 19 percentage points. So if these estimators were used under this scenario,

the estimates would be around six percent, much less than the true parameter value of

25 percent.

3.3. Graphical Representations for Biases in the Naı̈ve and Full Estimators

A more comprehensive picture of the simulation results across all 81 scenarios for the

naı̈ve and full estimators is provided in Figures 1 and 2, respectively. In each figure, the

x-axis represents the magnitude of the nonresponse bias, which ranges from large negative

nonresponse bias (when a1 ¼ 22) to large positive nonresponse bias (when a1 ¼ 2).

Along the y-axis, the measurement error ranges from no measurement error (when s 2
e ¼ 0)

to large positive measurement error (when s2
e ¼ 8). The shading in the plot is darker when

there is larger bias and the color key in the top left corner of each figure shows the

numerical values associated with different shading (little to no shading means that there is

little to no bias in the estimator). The “þ” and “2” signs indicate whether the bias is

positive or negative, respectively. For example, a box that is a dark shade with a “þ” sign
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means that the estimator was positively biased under the specific scenario the box

represents in terms of the measurement error and nonresponse bias scenarios.

In Figure 1, we see that the bias in the naı̈ve estimator varies greatly depending on the

magnitudes of the measurement and nonresponse errors. In the bottom left portion of the

plot, there is negative bias in the naı̈ve estimator; in the top right portion there tends to be

more positive bias in the naı̈ve estimator. There is lighter shading in the middle of the plot,

which represent scenarios where there is little to no bias in the naı̈ve estimator. This was

also observed in the scenario presented in the top left cell of Table 2, where we saw the

naı̈ve estimator perform relatively well.

In comparison to Figure 1, the shading in Figure 2 is consistently much lighter,

ranging from only about 22 toþ2 percentage points in bias across all scenarios, suggesting

that there is always little to no bias in the full estimator regardless of the magnitudes of

measurement error and nonresponse bias. This was also reflected in Table 2 where the bias

in the full estimator was always about one percentage point or less in absolute value.
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Fig. 1. Average biases in the naı̈ve estimator for simulation scenarios with negative to positive nonresponse

bias and no to large measurement error. Darker shades of grey with “–” signs indicate greater negative bias in

the naı̈ve estimator; darker shades of grey with “ þ ” signs indicate greater positive bias in the naı̈ve estimator.
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4. Discussion

Across all scenarios in our simulation study, which investigate the effects of 81 different

combinations of measurement error and nonresponse on estimators of the percentage of

adults that adhere to physical activity guidelines, the results suggest that adjusting for both

measurement error and nonresponse is preferable to adjusting for one error source or

neither error source. The average bias for the full estimator, ûfull, is close to zero regardless

of the magnitudes of the measurement error and nonresponse biases (Figure 2). In contrast,

the average bias for all other estimators ranges from 219.5 to 21.5 percentage points,

depending on the scenario being considered (Table 2). There are a few other findings that

deserve further discussion.

In scenarios where there is large measurement error and negative nonresponse bias, the

naı̈ve estimator, which does not adjust for measurement error or nonresponse, performs

better than the estimators that adjust for only one error source (Table 2). This is due to a

cancelling-out effect in the error sources. With negative nonresponse bias, more inactive

individuals respond than active individuals. But with large measurement error, these
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Fig. 2. Average biases in the full estimator for simulation scenarios with negative to positive nonresponse bias

and no to large measurement error. Darker shades of grey with “–” signs indicate greater negative bias in the

full estimator; darker shades of grey with “ þ ” signs indicate greater positive bias in the full estimator.

Journal of Official Statistics540



individuals are also misreporting their activity, which creates a positive bias that negates

the effect of the negative nonresponse bias in the naı̈ve estimator. The likelihood of

scenarios in which there is a negative nonresponse bias in large-scale survey settings may

be small. Intuitively, one may actually expect inactive individuals to be less likely to

respond to a physical activity survey – not more likely – because they are not as aware of

or as interested in their physical activity compared to more active individuals. Moreover,

the current, albeit limited, research that looks at relationships between physical activity

and nonresponse suggests that the correlation between physical activity and propensity to

respond is either positive (Hill et al. 1997; Van Loon et al. 2003) or close to zero (Smith

and Nutbeam 1990; Vink et al. 2004).

The more likely simulation scenarios that we could observe in practice may be those in

which there is large measurement error and positive nonresponse bias. In these scenarios,

the full-adjustment estimator performs well, but the other three estimators do not. The naı̈ve

estimator and those that adjust for only one error source produce average biases ranging

from 12 to 22 percentage points (Table 2). Therefore, in the more extreme cases, estimates

for the percentage of adults that adhere to the physical activity guideline of 150 minutes of

MVPA per week that do not adjust for both error sources reach almost 50 percent, whereas

the true parameter being estimated is 25 percent. In other words, only one in four adult

Americans adheres to the guideline (in our simulation study), whereas estimates that do not

properly adjust for measurement error and nonresponse suggest that anywhere between one

in three and one in two adult Americans adheres to the guideline. Estimates based on self-

report data from national surveys are not far off from 50 percent (Troiano et al. 2008;

Tucker et al. 2011; Schoenborn and Stommel 2011; Loustalot et al. 2009). In these studies,

weighted estimates are presented that account for the sample design and nonresponse, but

nonresponse adjustments are based primarily on demographic characteristics of

respondents and nonrespondents, like gender and race, and not on physical activity

outcomes. For this reason, the methods considered in this simulation study cannot be

directly applied to data from national surveys such as NHANES or NHIS because these

surveys do not collect two or more independent measures at different points in time from a

subset of individuals. We recommend that future surveys be designed with these

specifications to allow for both adjustments. So although it is unclear whether the true value

of 25 percent used in the simulations is accurate, the simulations in which we see

overestimation of this parameter may be good proxies for what is happening in practice

with the self-report data from these national surveys: a combination of positive,

nonresponse bias and large measurement error. Respondents in these surveys may tend to

be more physically active individuals and may also misreport their activity.

The findings presented in this article are not without their limitations. The findings are

based on simulations and should be interpreted as such. The relationship between

propensity to respond and physical activity may not be as simplistic as we depict it in

Model (2). There may be different response patterns that depend on the gender, age group,

racial or ethnic status, or other characteristics of the adult Americans in the population.

Moreover, in some subgroups of the population, there may be no association between

physical activity and propensity to respond, as some studies suggest (Smith and Nutbeam

1990; Vink et al. 2004). Additional research that sets out to capture the physical activity of
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individuals who tend to be nonrespondents in national surveys through other avenues, like

field follow up, is needed.

Another caution to note is that the measurement error model (1) used in the

simulations assumes that there is no systematic bias in the self-report measurements.

This is likely too optimistic an assumption and was used in our simulations to focus,

specifically, on random measurement error. Other studies have shown evidence of

systematic biases in self-reports of physical activity outcomes (Ferrari et al. 2007;

Nusser et al. 2012; Tooze et al. 2013), although they focused on data analyzed from

convenience samples that are not representative of all adult Americans. To better

understand measurement error properties of self-reported physical activity data in

national surveys, multiple measurements from different points in time should be

considered for at least a subsample of survey participants in order to distinguish

measurement error and other forms of intra-individual variation in the data from actual

variability in physical activity across individuals. Such an approach would not require a

major change in a survey’s design; at a minimum, a single follow-up data collection on a

randomly selected subsample of the individuals at a later point in time (after the initial

survey data are collected) would be required. As an alternative to this measurement error

approach, structural equation models which model multiple indicators of physical

activity from national surveys could be considered to better understand the measurement

error properties in physical activity measurements.

The study’s limitations should not diminish the importance of the findings to the study

of physical activity measurement. As part of a comprehensive simulation study, we

established 81 different scenarios in which measurement error and nonresponse influence

self-reported physical activity data. Although there are a number of other scenarios we

could have considered, including those that simulated systematic measurement error or

more complex patterns of nonresponse, the ones we focus on provide a good starting point

for this line of research focusing on the impacts of multiple sources of nonsampling error

on self-reported physical activity outcomes.

Appendix

Technical Documentation for the Simulation Study

In this Appendix, we provide a more technical presentation of the simulation study set up

provided in the methods section.

Model Development

For the simulation, we assume that a random sample is selected from the population of all

adult Americans, and sampled participants are asked to provide information about their

physical activity using a self-report survey. Each individual i in the sample has some true,

unknown amount of time he or she spends engaging in MVPA during a typical week. We

define Ti to be the time spent in MVPA during a typical week for individual i in minutes.

Without loss of generality we assume that in the population, individuals’ Ti are

independent and normally distributed with mean mT and variance s2
T . In practice, a log

transformation (Ferrari et al. 2007; Tooze et al. 2013) or power transformation (Beyler
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et al. 2015) may be required to achieve normality. The main parameter of interest, u, is the

percentage of adult Americans that engage in 150 minutes or more MVPA during a typical

week. If we knew the value of Ti for each individual in the sample, we could estimate u as

û ¼ n21
Xn

i¼1

I Ti $ 150f g;

where n is the number of individuals in the sample and I{Ti $ 150} is an indicator

function that takes a value of 1 if Ti is greater than or equal to 150, and a value of 0

otherwise. However, in practice, Ti is unknown and subject to nonsampling errors;

therefore, alternative estimation methods must be considered.

We assume that the survey asks each (simulated) individual in the sample to report on

his or her physical activity during two weeks randomly selected over the course of a year;

from these reports, we obtain two measures for the time he or she spends engaging in

MVPA (in minutes) during the course of a typical week. We define Xij to be the self-report

measure for individual i from week j ( j ¼ 1, 2). We assume that Xij is subject to

measurement error and define the relationship between Xij and Ti for each individual as

Xij ¼ Ti þ eij; ð1Þ

where eij is a random measurement error term for individual i from week j. We assume that

the eij are independent and normally distributed with mean 0 and variance s 2
e . We also

assume that Ti and ei 0j are independent for all i, i0, and j. These assumptions are necessary

for model identifiability. Model (1) is often referred to as the classical measurement error

model (Carroll et al. 2006) and assumes that Xij is an unbiased measurement of Ti. Such an

assumption is considered for the purposes of model development for this simulation study

but in practice is often not justifiable for self-report measures and more robust model

assumptions and model equations should be considered (Ferrari et al. 2007; Nusser et al.

2012; Tooze et al. 2013).

We assume that all individuals sampled will not respond and hence we will not obtain

Xij values from all of our sampled individuals. We assume that each sampled individual

i has a propensity to respond to the survey, pi, defined by

log
pi

1 2 pi

� �
¼ a0 þ a1Ti; ð2Þ

where a0 and a1 are fixed intercept and slope coefficients, respectively. In model (2) we

assume that for a1 – 0 there is a relationship between an individual’s propensity to

respond and how physically active he or she is. The full simulation model, accounting for

the influence of measurement error and nonresponse on true activity (Ti), is represented by

model equations (1) and (2).

Simulation Procedures

In our simulation study, we consider four estimators of u, the true percentage of adult

Americans who engage in 150 or more minutes of MVPA each week. We define ûfull to be

the estimator of u that accounts and adjusts for both measurement error and nonresponse,

ûnr to be the estimator of u that accounts and adjusts for nonresponse only, ûme to be the
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estimator of u that accounts and adjusts for measurement error only, and ûnaive to be the

estimator of u that does not account for either error source. We develop these four

estimators in a series of steps:

1. First we randomly generate n values of Ti from a normal distribution with mean mT

and variance s 2
T .

2. For each Ti we randomly generate two values of eij (ei1 and ei2) from a normal

distribution with mean 0 and variance s 2
e .

3. Next, we calculate values of Xij and pi from Models (1) and (2), respectively.

4. For each individual i, we randomly generate Ri from a Bernoulli distribution with

success probability pi. If Ri is 1, individual i is a respondent; if Ri is 0, individual i is

a nonrespondent.

5. Because pi is not known, in practice, for the simulation we estimate pi for all

respondents. For individuals with Ri ¼ 1, we let

p̂i ¼
exp a0 þ a1Ti þ wif g

1þ exp a0 þ a1Ti þ wif g
;

where wi is randomly generated from a normal distribution with mean 0 and

variance s 2
w . Each respondent is then assigned a nonresponse adjustment weight of

wi ¼ p̂21
i .

6. Next, we fit the measurement error model (1) to the data from responding

individuals using method of moments. (For this measurement error model, method

of moments provides similar estimates to those calculated using maximum

likelihood.) We estimate both unweighted and weighted model parameters. The

unweighted estimator of mT is

m̂unwt
T ¼ n21

R

XnR

i¼1

�Xi;

where nR is the number of responding individuals (those with Ri ¼ 1) and �Xi is the

average of Xi1 and Xi2. The weighted estimator of mT is

m̂wt
T ¼

XnR

i¼1
wi

�XiXnR

i¼1
wi

;

where wi is the nonresponse adjustment weight defined in Step 5. The unweighted

and weighted estimators of s 2
e are

ŝ 2
e;unwt ¼ n21

R

XnR

i¼1

X2

j¼1

Xij 2 �Xi

� �2
;

and

ŝ 2
e;wt ¼

XnR

i¼1

X2

j¼1
wi Xij 2 �Xi

� �2

XnR

i¼1
wi

;
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respectively. The unweighted and weighted estimators of s 2
T are

ŝ 2
T ;unwt ¼ nR 2 1ð Þ21

XnR

i¼1

�Xi 2 �X::
� �2

2
1

2
ŝ 2

e;unwt;

and

ŝ 2
T ;wt ¼

XnR

i¼1
wi

�Xi 2 �X::
� �2

XnR

i¼1
wi

� �
2 1

2
1

2
ŝ 2

e;wt;

respectively, where �X:: is the overall mean of the Xij for responding individuals.

7. We estimate ûnaive as

ûnaive ¼ n21
R

XnR

i¼1

I �Xi $ 150f g;

where I �Xi $ 150f g is an indicator function that takes a value of 1 if �Xi is greater than

or equal 150, and a value of 0 otherwise.

8. We estimate ûnr as

ûnr ¼

XnR

i¼1
wiI �Xi $ 150f g
XnR

i¼1
wi

;

where wi is the nonresponse adjustment weight defined in Step 5.

9. To estimate ûme we first generate 1,000 values of Ẍi from a normal distribution with

mean m̂unwt
T and variance ŝ2

T ;unwt. Then, the estimator is

ûme ¼

X1;000

i¼1
I €Xi $ 150
� 	

1; 000
:

This approach, which adjusts for the measurement error in Xij, is based on methods

described in Dodd et al. (2006) and elsewhere.

10. To estimate ûfull, we use a similar approach to that described in Step 9, but use the

weighted measurement error model parameter estimates instead of the unweighted

estimates. We generate 1,000 values of ~Xi from a normal distribution with mean m̂wt
T

and variance ŝ 2
T ;wt. Then, the estimator ûfull is

ûfull ¼

X1;000

i¼1
I ~Xi $ 150
� 	

1; 000
:

This entire process (Steps 1–10) is repeated M times to account for simulation variation.

For each of the M simulations and each of the four estimators, we calculate the bias as the

difference between an estimate and the true value of the parameter u. The average bias

across the M simulations is then calculated for each of the four estimators.

For the simulation, we set mT ¼ 4.20 and s 2
T ¼ 1:44 which represent the mean and

variance of time spent in MVPA during a typical week in the log scale. We use the log

scale because physical activity data are often analyzed in the log scale (Ferrari et al. 2007;
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Tooze et al. 2013). For these choices of mT and s 2
T , the true value of u is about 25 percent

and the ratio of mT and s 2
T is similar to the ratio found in other studies (Ferrari et al. 2007;

Tooze et al. 2013).

We set s 2
w ¼ 0:04 to estimate the response propensities (see Step 5 above). Values of s 2

w

larger than 0.04 introduce increased uncertainty in the estimated response propensities

which diminishes the effectiveness of the nonresponse adjustments. Although this may

very well occur in practice, the goal of these simulations is to compare the effects of

adjusting and not adjusting for measurement error and nonresponse when the adjustments

are considered effective, without model misspecifications that could result in poorly

estimated response propensities or measurement error model parameters.

For the remaining model parameters that subject the data to measurement error and

nonresponse bias, we considered a range of scenarios. We let the measurement error

variance, s 2
e , range from 0 (no measurement error), to 8 (large measurement error) by

1-unit increments. With larger measurement error there will be more positive bias when

estimating u without proper adjustments for the measurement error because there will be

more variability in the data and consequently a higher percentage of cases above the

threshold of 150 minutes of MVPA per week. We let the response propensity parameter,

a1, range from 22 to 2 by 0.5-unit increments. Negative values of a1 will result in

negative bias when estimating u (without accounting and adjusting for nonresponse) and

positive values of a1 will result in positive bias. The empirical values of a0 are chosen to

correspond with values of a1, so that each set of response propensity parameters gives an

expected response rate of about 60 percent. In total, we considered 81 different simulation

scenarios based on the nine values of s 2
e and nine combinations of a0 and a1.
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