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Most important large-scale surveys carried out by national statistical institutes are the
repeated survey type, typically intended to produce estimates for several parameters of the
whole population, as well as parameters related to some subpopulations. Small area
estimation techniques are becoming more and more important for the production of official
statistics where direct estimators are not able to produce reliable estimates. In order to exploit
data from different survey cycles, unit-level linear mixed models with area and time random
effects can be considered. However, the large amount of data to be processed may cause
computational problems. To overcome the computational issues, a reformulation of predictors
and the correspondent mean cross product estimator is given. The R code based on the new
formulation enables the elaboration of about 7.2 millions of data records in a matter of
minutes.
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1. Introduction

Large-scale surveys are usually aimed at providing estimates of target parameters for the

whole population, as well as for relevant subpopulations defined at the sampling stage.

Design-consistent and design-unbiased direct estimates are produced for the parameters of

interest. However, in most surveys, the sample size is not large enough to guarantee

reliable estimates for all the target subpopulations. When direct estimates cannot be

provided, small area estimation (SAE) methods should be used to overcome the problem

(see Rao 2003; Pfeffermann 2002, 2013). SAE methods, usually referred to as indirect

estimators, cope with the lack of information from each domain by borrowing strength

from samples that belong to other domains, with the result that it increases the effective

sample size for each small area.

The most important surveys carried out by national statistical institutes are repeated

surveys (see Duncan and Kalton 1987, and Kish 1987). The repeated nature of these

surveys allows them to borrow strength not only from other areas but also from other

survey cycles.
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In this context, Saei and Chambers (2003) proposed the use of unit-level linear mixed

models (LMMs) with area and time random effects. However, this presents a

computational challenge, since large amounts of data from different survey cycles have

to be processed. The aim of this article is propose a method to overcome computational

problems that may arise from using the predictors and correspondent errors given by Saei

and Chambers (2003). For this reason, a reformulation of these expressions will be

presented. Furthermore, these more efficient expressions will be applied to the estimation

of the unemployment rate at Labour Market Area (LMA) level, using data from the Italian

Labour Force Survey (LFS). The case study aims to show the potential gains in efficiency

as a result of SAE methods borrowing strength from space and time. It does not aim to

suggest a ready solution for official LFS statistics, which necessarily involves many other

issues and considerations that are outside the scope of this article.

The LFS is a quarterly survey based on a two-stage stratified cluster design. Municipalities

are the primary sampling units, and households are the secondary sampling units. The survey

follows a rotating panel sample design, according to the rotation design 2-(2)-2. Households

are interviewed in two consecutive quarters. After a two-quarter break, they are interviewed

for an additional two consecutive quarters. The sample is uniformly spread across all the

weeks, such that all territorial domains are represented in each month and in each of the four

waves. The LFS is the main source of information on the Italian labour market and aims to

produce monthly, quarterly, and yearly estimates of employment, unemployment, and

inactivity rates for different planned territorial domains. Each sample contains information

about approximately 170,000 respondents. LMAs, on the other hand, are unplanned areas

that are defined every ten years based on daily commuting flows detected by the Population

Census. At present, there are 611 LMAs, of which about 450 are included in at least one of

the LFS samples in the years 2004–2014. The most unstable estimates refer to the estimation

of the unemployment rate. In this case, the Coefficient of Variations (CVs) of the direct

estimates are very large, and about three out of four CVs are larger than 30%. Therefore,

SAE methods are needed in order to obtain more precise estimates of the unemployment rate

that are suitable for dissemination. However, the areas are sampled with unequal selection

probabilities in relation to the values of the target variable values. In such situations, standard

SAE methods are biased; the magnitude of the bias depends on the sampling fraction and the

covariance between the sampling weights and the target variable. However, in the LFS, bias

resulting from informative sampling is considered to be small. Treatment of informative

sampling in SAE is not considered in this article.

As mentioned above, when LMMs with area and time random effects are assumed,

computational problems may result from the large amounts of data to be used in the

estimation process. For instance, the data used in this article comes from the 44 LFS

quarterly samples in 2004 to 2014, and the overall data size processed comprises about

7,200,000 records.

Usually, in order to overcome the computational problems deriving from large data sets,

area-level models are applied. For instance, Rao and Yu (1994) proposed an extension of

the basic Fay-Herriot (Fay and Herriot 1979) model to handle time series and cross-

sectional data by means of an AR(1) model specification. Datta et al. (2002) and

You (1999) used the Rao-Yu model but replace the AR(1) model specification with a

random walk model. Pfeffermann and Burck (1990) proposed a general model involving
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area-by-time specific random effects. Hidiroglou and You (2016) compared the

performances of unit- and area-level models, showing that the former outperforms the

latter in terms of bias and mean squared error. Furthermore, Gershunskaya (2015) showed

that due to errors associated with the variance of direct estimates, in terms of mean squared

error, there is no benefit to introducing temporal correlations between small areas over

using the regular Fay-Herriot model. The benefits only become apparent when theoretical

variances of direct estimates are used in Rao-Yu model specification.

To avoid the computational issues related to unit-level LMMs, formulas given in Saei

and Chambers (2003) have been rewritten in order to involve only small dimensional

matrices. The revised expressions, implemented in the ad hoc R function, enable the

processing of millions of survey records from different survey cycles in a matter of minutes.

The two-way unit-level linear mixed model with area and time random effects is

described in Section 2, while Section 3 is devoted to the reformulation of the expressions

needed to compute small area estimates and errors. Section 4 describes some particular

SAE methods obtained from the general model. Section 5 includes a case study based on

LFS data that aimed to compare the empirical performances of alternative model

specifications. Section 6 compares the computational performances of the available SAE

software tools with the R function implementing the new expression presented in

Section 3. In conclusion, Section 7 presents the most important conclusions of the work.

2. Two-Way Linear Mixed Model

Let d (d ¼ 1, : : : , D) and t (t ¼ 1, : : : ,T ) denote the generic domain and time indices

respectively. For domain d and time t, let Ndt and ndt denote population and sample sizes,

respectively, and let ydti be the observed value of the target variable for the generic unit i.

The parameter of interest is the vector u including the population means

�ydt ¼ ð1=NdtÞ
P

i ydti, for all domains and times (d ¼ 1, : : : , D, t ¼ 1, : : : , T ). Other

relevant parameters for large-scale repeated surveys, such as totals, or net changes

between two survey cycles, can be expressed as a linear combination of u. For this reason,

the results in this article can be easily extended to the other types of parameters.

Let us suppose that the data follows the two-way unit-level additive LMM (see Searle

et al. 1992; Saei and Chambers 2003)

y ¼ Xbþ Z1u1 þ Z2u2 þ e; ð1Þ

where X, Z1, Z2 are known full rank matrices, and u1, u2, e are random vectors,

independently distributed from each other. The random effect vectors, u1 and u2, modeling

between area and time variations not explained by fixed effects, include D and T levels

respectively. Furthermore, we assume for a ¼ 1, 2, ua , N(0,Ga), and e , N(0, R), where

the covariance matrices Ga ¼ s2
aVaðraÞ and R ¼ s2W21, with W as a known diagonal

matrix. In particular, for a ¼ 1, 2, s2
a and ra denote, respectively, the variance and a

measure of correlation for the elements of ua, while s 2 is the variance of the generic

element of e. For notational simplicity, it will be useful to introduce the parametrisation

fa ¼ s2
a=s

2. Hence, y is N(Xb,S), with S ¼ S(v) given by

SðvÞ ¼ s2ðW21 þ ZVV 0Þ;
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where v ¼ (s 2, f1, r1, f2, r2) is the overall variance component vector, Z ¼ [Z1, Z2], and

V ¼ diaga{faVaðraÞ}. The uncorrelated random effect case is obtained by setting

V1(0) ¼ ID and V2(0) ¼ IT. For models with correlated area effects and correlated time

effects, different structures of covariance matrices of random effects can be assumed. For

example, V1(r1) may depend on the distances among the areas, while V2(r2) may follow

an auto-regressive model.

Once the sample is collected, it is useful to partition Model (1) into two parts, depending

on whether or not units are observed. In the following, we use the subscripts s and r to refer

to sampled and nonsampled population units, respectively. The predicted values for

nonsampled population units of hr ¼ E½yrjXr;b; u� ¼ Xrbþ Zru are (see Royall 1976)

~hrðvÞ ¼ Xr
~bþ Zr ~u; ð2Þ

where ~b ¼ ~bðvÞ, the Best Linear Unbiased Estimator (BLUE) of b, is given by

~b ¼ X
0

sS
21
ss Xs

h i21

X
0

sS
21
ss ys;

and ~u ¼ ~uðvÞ, the Best Linear Unbiased Predictor (BLUP) of u 5 u 01u 02
� � 0

, is

~u ¼ VZ
0

sS
21
ss ys 2 Xs

~b
� �

:

Then, the BLUP of the target parameter u is

~uðvÞ ¼ Lsys þ Lr ~hrðvÞ; ð3Þ

where matrices Ls and Lr have the block-wise structure diagd diagt l
0

dt

� �� �
, being l

0

dt ¼

N21
dt 1

0

ndt
and l

0

dt ¼ N21
dt 1

0

Nr;dt
for Ls and Lr, respectively, and Nr;dt ¼ Ndt 2 ndt is the number

of nonsampled units in area d at time t.

The BLUP estimator ~uðvÞ, given in (3), depends on the variance component vector v,

which is unknown in practical applications. By replacing v by an estimator, v̂, a two stage

estimator called the Empirical Best Linear Unbiased Predictor (EBLUP) is obtained.

Maximum Likelihood (ML), Restricted Maximum Likelihood (REML) and the method of

fitting constants can be applied to the estimation of fixed effects and variance components

(for details see Harville 1977; Searle et al. 1992; Cressie 1992; Rao 2003; Saei and

Chambers 2003). Then, the EBLUP of u is given by

ûðv̂Þ ¼ Lsys þ Lrĥrðv̂Þ;

where ĥrðv̂Þ is the EBLUP correspondent to (2).

3. Reformulation

In this section, computationally more efficient expressions for predicted area means and

the mean cross product error are derived. Results 1 to 5 consist in rewriting the expressions

given in Saei and Chambers (2003) as a function of terms dependent on area and time level

matrices instead of unit-level matrices. In particular, Result 1 gives the expression of the

predicted value for u1 and u2, while Result 2 provides the estimate of the regression

coefficient b. Result 3 gives the mean cross-product error (MCPE) for the BLUP of u.

Result 4 computes the expression for updating the variance component estimates when
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EBLUP is performed, and finally Result 5 provides the MCPE of the EBLUP of u. For

the sake of simplicity and with obvious notation, we will use matrix operators col{�},

row{�}, diag{�}, and matr{�}. Different types of correlation matrices V(r) can be used

for both area and time effects, provided that they depend on a one-dimensional correlation

parameter r. For instance, the spatial correlation can be specified either as a SAR model

based on an adjacency matrix (Cressie 1993), or as exponential or gaussian correlation

structures, while the time correlation can follow an AR(1) process.

Two alternative cases for fixed effects are considered. In the first case (Case A), a

different regression coefficient vector bt, of dimension K, is defined for each time t,

determining b ¼ b
0

1; : : : ;b
0

T

� 	 0
to be a (T £ K)-dimensional vector. In the second case

(Case B), a common regression coefficient vector b, of dimension K, is considered for all

times t. The block-wise structure of matrix X under the two cases is given by

X ¼
cold{diagt{Xdt}}; for case A

cold{colt{{Xdt}}; for case B

(
;

where Xdt is the Ndt £ K design matrix for area d and time t. The ith row of Xdt is

xdti ¼ ðxdti;1; : : : ; xdti;KÞ
0

.

For the random effect part of the model, u ¼ cola{ua}, and Z ¼ rowa{Za}, where

Za ¼
diagd{colt{1Ndt

}}; for a ¼ 1

cold{diagt{1Ndt
}}; for a ¼ 2

(
:

Finally, W ¼ diagd{diagt{Wdt}} in which Wdt is a diagonal Ndt 2 dimensional matrix,

whose generic element, wdti(i ¼ 1, : : : , Ndt), is a known constant expressing the

heteroscedasticity weight for the unit i in area d at time t.

It is worthwhile to note that matrices and vectors partitioned into sampled and

nonsampled units have the same block-wise matrix structure of the corresponding

nonpartitioned matrices and vectors, but matrices or vectors referred to area d and time t

are, respectively, of size Ndt and Nr,dt instead of Ndt.

Let us define the following quantities referred to as area d and time t:

f dt ¼ ndt=Ndt;

�ys;dt ¼ n21
dt

X

i

ys;dti;

�yw;dt ¼ w21
dt

X

i

wdtiydti;

�xw;dt ¼ w21
dt

X

i

wdtixdti;

�xr;dt ¼ N21
r;dt

X

i

xr;dti:
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Then, the general aggregated expression of ~uðvÞ is

~u ¼ cold colt �y~dt

� �� �
;

where �y~dt ¼ �y~dtðvÞ is

�y~dt ¼ f dt �ys;dt þ ð1 2 f dtÞ �x
0

r;dt
~bþ ~u1;d þ ~u2;t

� 	
; ð4Þ

in which ~u1;d and ~u2;t are the dth and tth element of ~ua, a ¼ 1, 2. Let us define

T* ¼ T*ðvÞ as

T* ¼ Z
0

sWsZs þV21
h i21

¼
diagd{wd}þ f21

1 V21
1 ðr1Þ matrdt{wdt}

matrtd{wdt} diagt{wt}þ f21
2 V21

2 ðr2Þ

2

4

3

5

21

¼
T*

11 T*
12

T*
21 T*

22

2

4

3

5;

being wd ¼
P

t wdt and wt ¼
P

d wdt, in which wdt ¼
P

i wdti. Note that matrtd{wdt} is the

transpose of matrdt{wdt}.

Result 1. The predicted values ~ua ¼ ~uaðvÞ, a ¼ 1,2, are obtained as

~ua ¼ T*
a1�cold wd �e~w;d

� �
þ T*

a2�colt wt �e~w;t

� �
; ð5Þ

for wde�~w;d ¼
P

t wdte�~w;dt and wte�~w;t ¼
P

d wdte�~w;dt, being e�~w;dt ¼ e�~w;dtðvÞ given by e�~w;dt ¼

�yw;dt 2 �x
0

w;dt
~b:

Result 2. When case A is considered, the aggregated expression of ~b ¼ ~bðvÞ is

~b ¼ ½Bs;11 2 ~Bs;12�
21½bs;21 2 ~bs;22�; ð6Þ

being

Bs;11 ¼ diagt

d

X

i

X
wdtixdtix

0

dti

8
<

:

9
=

;
; ð7Þ

bs;21 ¼ colt

d

X

i

X
wdtix

0

dtiydti

8
<

:

9
=

;
; ð8Þ

~Bs;12 ¼ B �xw
T*B

0

�xw
;

~bs;22 ¼ B �xw
T*b �yw

;

where

B �xw
¼ ½matrtd{wdt �xw;dt}; diagt{wt �xw;t}�;

b �yw
¼ ½rowd{wd �yw;d}; rowt{wt �yw;t}�

0

;
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Under Case B, the external block-wise matrix operators in (7) and (8), diagt{�} and

colt{�}, are substituted by
P

t{�}, B �xw
¼ ½rowd{wd �xw;d}; rowt{wt �xw;t}�, and b �yw

does not

change.

Result 3. Following Saei and Chambers (2003), the MCPE matrix of the BLUP ~u is

given by

MCPEð ~uÞ ¼ E½ðu 2 ~uÞðu 2 ~uÞ
0

� ¼ G1ðvÞ þG2ðvÞ þG4ðvÞ; ð9Þ

where the aggregated expressions of G1(v), G2(v) and G4(v) are:

G1ðvÞ ¼ s2Z*
r T*Z*

0

r ¼
a

X

a 0

X
aaT*

a;a 0aa 0 ; ð10Þ

G2ðvÞ ¼s
2 X*

r 2 Z*
r T*Z

0

sW
21
s Xs

� 	�
Bs;11 2 ~Bs;12

�21

£ X*
0

r 2 X
0

sW
21
s ZsT

*Z*
0

r

� 	
;

ð11Þ

G4ðvÞ ¼ s2LrW
21
r L

0

r ¼ s2ðdiagd{diagt{Wr;dt}}Þ; ð12Þ

being

X*
r ¼ LrXr ¼ cold diagt Nr;dt �x

0

r;dt

n on o
;

when case A is considered, while the internal operator diagt{�} is substituted by colt{�}

under case B. In addition,

Z*
r ¼ LrZr ¼ ½rowd{diagt{Nr;dt}}; diagd{rowt{Nr;dt}}�; ð13Þ

in which a1 ¼ cold{diagt{Nr;dt}}, a2 ¼ diagd{colt{Nr;dt}}, a3 ¼ a
0

1 ¼ rowd{diagt{Nr;dt},

a4 ¼ a
0

2 ¼ diagd{rowt{Nr;dt}}.

Hence, the BLUP estimator, ~u, given in Results 1 and 2, depends on the variance

components vector v, which is unknown in practical applications. Replacing v by an

estimator, v̂, the correspondent EBLUP is obtained.

Result 4. The EBLUP û ¼ ûðv̂Þ of u corresponding to (4) is given by

û ¼ cold colt �ŷ dt

� �� �
; ð14Þ

where �ŷdt is the EBLUP of �ydt. The explicit expression of �ŷdt ¼ y�̂dt v̂ð Þ is obtained by

substituting the estimate v̂ of the variance component vector v into (6) and (5), namely

b̂ ¼ b̂ðv̂Þ, û1 ¼ û1ðv̂Þ and û2 ¼ û2ðv̂Þ.

REML estimates of model parameters are obtained following the iterative algorithm

given in Saei and Chambers (2003). Compact expressions for updating the variance

components from iteration k to iteration k þ 1 are:
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ŝ2 ¼ ðn 2 QÞ21

d

X

t

X

i

X
wdtiydti ydti 2 x

0

dtib̂
� 	

þ û11D þ û21T

0

@

1

A;

ŵ1 ¼
1

T
tr T̂s;11 þ P̂1 B̂11 2 B̂21

� �21
P̂
0

1

n o
þ ŝ22û

0

1V
21
1 û1

� 	
;

ŵ2 ¼
1

D
tr T̂s;22 þ P̂2 B̂11 2 B̂21

� �21
P̂
0

2

n o
þ ŝ22û

0

2V
21
2 û2

� 	
;

where Q denotes the number of columns of X, T̂s ¼ T̂* þ P̂ðB̂11 2 B̂21Þ
21P̂ 0, with

T̂* ¼ T*ðv̂Þ and

P̂ ¼
P̂1

P̂2

2

4

3

5 ¼
matrdt Ndt �x

0

dt

� �
T̂

*

11 þ diagt Nt �x
0

t

� �
T̂

*

12

matrdt Ndt �x
0

dt

� �
T̂

*

21 þ diagt Nt �x
0

t

� �
T̂

*

22

2

4

3

5;

r̂1ðk þ 1Þ ¼ r̂1ðkÞ þ Iðr̂1Þ þ DðlREMLðr̂1ÞÞ; ð15Þ

r̂2ðk þ 1Þ ¼ r̂2ðkÞ þ Iðr̂2Þ þ DðlREMLÞðr̂2ÞÞ; ð16Þ

where DðlREMLÞð�Þ is the derivative of the likelihood function with respect to the

parameter of interest, whereas I(�) is the relevant element of the inverse of the information

matrix. The expressions given above are updated iteratively together with the expression

(6) for ~b given in Result 2 until convergence is attained.

Result 5. The MCPE of the EBLUP û is given by the diagonal elements of the following

matrix

MCPEðûÞ ¼ MCPEð ~uÞ þ 2G3ðv̂Þ ¼ G1ðv̂Þ þG2ðv̂Þ þ 2G3ðv̂Þ þG4ðv̂Þ;

where G1ðv̂Þ, G2ðv̂Þ, G4ðv̂Þ are computed, respectively, plugging into (9), (10), (11), and

(12) the estimated values of the variance components. Matrix G3ðv̂Þ takes into account the

uncertainty of the estimation of the variance components. The explicit expression of

G3ðv̂Þ is

G3ðv̂Þ ¼ ŝ2 tr 7aŜ
*

s7
0

a
0 B̂

� 	h i
;

where B̂ is the asymptotic covariance matrix of the REML estimates of the variance

component vector v. It depends on the diagonal elements of the inverse of the Fisher

information matrix of REML estimators v̂. For more details, see Saei and Chambers

(2003). Furthermore, 7a and S*
s have the following expression

7a ¼ 2 Z*
aT̂*^IH

� � dV21

dv


 �

v¼v̂

T̂*;

S*
s ¼ Aþ AVV;
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where, denoting with ^ the Kronecker product, Z*
a is the ath row of matrix Z*

r given in

(13), IH is the identity matrix of dimension H¼4, and A is given by

A ¼
diagd{ws;d} matrdt{ws;dt}

matrtd{ws;dt} diagt{ws;t}

" #

;

for ws;d ¼
P

t ws;dt, ws;t ¼
P

d ws;dt and ws;dt ¼
Pndt

i wdti.

4. Particular Cases

Starting from the general LMM specification in Saei and Chambers (2003), we describe

the more relevant model, and two random effect model specifications presented in the

literature. The general model (1) will be denoted by MST
CC, where the superscript ST stands

for model with spatial and temporal random effects, and subscript CC stands for using a

correlation structure for both the random effects.

When Nd is large, fdt ø 0 and �xr;dt ø �xdt, and the general formula (4) of the unit-level

EBLUP with space and time correlation, �ŷdt, can be approximated by

MST
CC : �ŷdt ¼ �x

0

dtb̂þ

d
0

X

t
0

X
ĝd

0
t
0 �êw;d

0
t
0 ; ð17Þ

where ĝd
0
t
0 ¼ wd

0
t
0 Ĝdtðd

0; t 0Þ, being Ĝdtðd
0; t 0Þ ¼ T̂

*

11;dd
0 þ T̂

*

12;dt
0 þ T̂

*

21;td
0 þ T̂

*

22;tt
0 . The

corresponding estimator û of u is obtained by means of (14).

Special cases of (17) are obtained through particular settings for Ĝdtðd
0; t 0Þ. Using

analogous notation, MST
II is the two-way model with independent and identically

distributed area and time effects, while MST
IC and MST

CI denote, respectively, the two-way

linear mixed model with independent area effects and correlated time effects, and spatially

correlated area effects and independent time effects.

The case of two independent random effects, MST
II , is obtained when

Ĝdtðd
0; t 0Þ ¼ T̂

*

11;dd þ T̂
*

22;tt. Therefore, the expression for the estimator is given by

MST
II : �ŷdt ¼ �x

0

dtb̂þ ĝd �êw;d þ ĝt �êw;t;

where ĝd ¼ wdT̂
*

11;dd ¼ ŝ2
1 = ŝ2

1 þ ŝ 2=wd

� �
and ĝt ¼ wtT̂

*

22;tt ¼ ŝ2
2 = ŝ2

2 þ ŝ2=wt

� �
. This

estimator may be applied in many real situations, for example, when the spatial and

temporal correlation between area and time effects is lower than a given threshold.

Furthermore, it may be useful for cross-sectional surveys in which index t, instead of

representing time, represents a set of T domains which form a different partition of the

population than the D areas.

In many practical situations, it may be useful to consider the two estimators MST
CI and

MST
IC . Model MST

IC can be used for repeated business surveys, in which the small areas

of interest are small domains different from territorial subpopulations (e.g., industry

segments) and it is not possible, or straightforward, to define spatial correlation among

domains.

One-way models MS
C and MS

I , respectively, with spatially correlated area effects and

independent and identically distributed area effects, allow traditional cross-sectional small
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area estimation to borrow strength from other domains, but not from other survey cycles.

Specifically, MS
I corresponds to the standard model defined by Battese et al. (1988), while

examples for MS
C are given in Saei and Chambers (2003), and Petrucci and Salvati (2004).

To borrow strength from other survey cycles but not from other domains, alternative

modelisations for usual time series models are MT
C and MT

I , that is, linear mixed models

with correlated time effects and independent and identically distributed time effects.

5. Application to Real Data

In this section we present a case study aimed at comparing several alternative SAE models

and at testing different SAE software estimation tools. To this end, LFS data from 2004 to

2014 has been used to produce estimates of the unemployment rate at LMA level. The

overall amount of data is about 7,200,000 records and about 25% of LMAs are not covered

by the samples.

LMMs with both area and time random effects are considered, and their estimation is

made possible by means of the expressions described in Section 3. The corresponding

estimator has been applied to compute quarterly LMA unemployment rates and compared

with other standard SAE methods.

The binary nature of the target variable should suggest the use of non-normal mixed

models, for instance a binomial with a logistic link function. However, D’Aló et al. (2012)

showed that the use of logistic models does not improve substantially the quality of the

estimates with respect to normal model. Furthermore, Boonstra et al. (2007) do not find

evidence for the superiority of logistic mixed models over their normal counterparts in the

estimation of unemployment counts in Dutch municipalities. In addition, we are not

usually interested in individual predictions, but rather in predicting area and time

aggregates. Besides, for non-normal mixed models, easy interpretable closed-form

expressions for predictors are not available. Linear mixed models only need area and time

population totals for prediction, while non-normal models require cross-classified

population totals for the fixed effects, even though only marginal effects are included in

the model specification.

The LMMs and the correspondent estimators considered in the experimental study are

reported in Table 1.

In addition to the direct estimator, EBLUPs arising from one-way and two-way unit-

level LMMs are considered. Therefore, the estimator with area- and time-correlated

Table 1. List of models and estimators considered.

Model Estimator

– Direct
MS

I EBLUPS
I

MS
C EBLUPS

C

MST
CC EBLUPST

CC

MSð**Þ
I EBLUP ALLS

I

MSð**Þ
C EBLUP ALLS

C
(**)Model parameters are estimated using all LFS data from 2004 to 2014.
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random effects, EBLUPST
CC, is compared with two SAE cross-sectional methods,

specifically with the EBLUP with uncorrelated area random effects, EBLUPS
I , and with

spatially correlated area random effects, EBLUPS
C. Furthermore, EBLUPST

CC is computed

using the whole set of available time series data, while the cross-sectional methods exploit

only the last quarter data set. Then, in order to be able to set aside the effect of the amount

of data, when comparing EBLUPST
CC with its competitors, the one-way model parameters

have also been estimated using the overall set of data. These last two estimators are

denoted by EBLUP ALLS
I and EBLUP ALLS

C, respectively.

In particular, for EBLUPST
CC, the between-area correlation matrix proposed by Saei and

Chambers (2003) has been considered. This matrix is dependent on the distances among

the areas and on a scale parameter r1 connected to the spatial structure of the areas, and is

given by

V1ðr1Þ ¼ 1þ dd;d 0exp
distðd; d 0Þ

r1


 �� 
21

;

with dd,d 0 ¼ 0 if d ¼ d0 and dd,d 0 ¼ 1 otherwise and dist(d,d0) denoting the Euclidean

distance between area d and d0. Instead, the between-time correlation matrix arises from an

autoregressive AR(1) process whose expression is

V2ðr2Þ ¼
1

1 2 r2
2

1 r2 · · · rT21
2 r2

1 · · · rT22
2

..

. ..
.

. .
. ..

.
rT21

2 rT22
2 · · ·

1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

:

The scope of the empirical study is to assess the statistical properties of the estimators. To

this aim, the estimates computed for the last quarter of 2011 (October 2011–December

2011) are compared with the correspondent 2011 Census values, which are referred to on

9 October 2011.

The auxiliary information used in the experimental study, that is, the cross-classification

of 14 age groups by sex, is similar to what is used in the LFS calibration process. A

common regression coefficient vector is defined for all the quarters. This is the hypothesis

defined in Section 2 as Case B. We note that the assumption of fixed effects over time is

not very realistic, but the correlated random effects are expected to smooth the estimates.

A first comparison among the estimators has been carried out by means of Average

Absolute Relative Error (AARE) and Average Squared Error (ASE), defined as

AAREðûÞ ¼
1

D

XD

d¼1

AREd ¼
1

D

XD

d¼1

ûd

ud

2 1

�
�
�
�

�
�
�
�;

ASEðûÞ ¼
1

D

XD

d¼1

SEd ¼
1

D

XD

d¼1




ûd 2 ud

�2

;

where for domain d, d ¼ 1, : : : , D, ûd and ud are, respectively, the estimate computed with

a given estimator and the true parameter of interest.
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Table 2 displays the values of AARE and ASE evaluated over the 611 LMAs. The

EBLUPST
CC outperforms the others estimators both in terms of AARE and ASE. It shows

better performances than EBLUPS
I and EBLUPS

C. EBLUPS
I and EBLUPS

C performed

similarly, with a slight preference for the EBLUPS
C. This implies there is no strong

evidence for a significant spatial correlation. Therefore, the introduction of the time

random effect substantially increases the efficiency of the estimates. In fact, the estimated

value of the time correlation coefficient r2, computed with (16), is equal to 0.73, while the

estimate of the spatial parameter, obtained by means of (15), is 0.29. The spatial correlation

defined for the area random effects allows us to obtain more accurate estimates for out-of-

sample areas than the corresponding estimates computed only by synthetic prediction.

Furthermore, the better performance of EBLUPST
CC is not only due to the larger set of data

involved in the estimation process. In fact, EBLUP ALLS
I and EBLUPS

C, which use the same

data as EBLUPST
CC, perform poorly because they do not capture the true time pattern of data.

Table 3 reports the value of the coefficients of variation for all the estimates, with the

exception of EBLUP ALLS
I and EBLUP ALLS

C. It shows that EBLUPST
CC outperforms the

other methods, aside from minimum and maximum values. The direct estimator shows a

better coefficient of variation value only for the minimum value.

Figures 1a and 1b show the distribution of ARE and SE, respectively. The error

distribution of the direct estimator is not included due to its poor performance. In

accordance with Table 2, in both cases the distribution of the errors for EBLUPST
CC is more

concentrated around zero than the other distributions, with the exception of EBLUP ALLS
I

and EBLUP ALLS
C for the ARE.

Figure 2 displays the spatial distribution of the estimates for direct estimator (a),

EBLUPS
I (b), EBLUPS

C (c) and EBLUPST
CC (d). The direct estimates are plotted for

Table 2. AARE and ASE with respect to 2011 Census data.

Estimator AARE ASE(*)

Direct 0.65 18.86

EBLUPS
I 0.34 2.67

EBLUPS
C 0.33 2.59

EBLUPST
CC 0.26 2.07

EBLUP ALLSð**Þ
I 0.36 3.56

EBLUP ALLSð**Þ
C 0.36 3.56

(*)ASE is multiplied by 1,000.
(**)Model parameters are estimated using all LFS data from 2004 to 2014.

Table 3. CV% distribution.

Estimator Min. 1st Q Median Mean 3rd Q Max.

Direct(*) 0.72 31.57 52.01 54.56 77.34 119.80

EBLUPS
I 4.83 19.83 26.99 26.42 33.95 45.46

EBLUPS
C 4.83 19.71 27.18 26.35 33.79 45.60

EBLUPST
CC 1.19 4.23 6.16 7.80 9.44 27.97

(*)There are 158 empty LMAs.
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provinces, while the estimates for the EBLUPs are plotted on LMAs. This is because the

110 provinces are planned domains for which the direct estimator produce reliable

estimates. The spatial distribution of the direct estimates can be considered as a good

picture of the spatial distribution of the true unemployment rates, and for that it can be

used to benchmark SAE estimates. As showed in Figure 1, all the EBLUPs have analogous

spatial patterns to the distribution of the direct estimates.

6. SAE Software for Unit-Level Linear Mixed Models

We implemented the new formulation given in Section 3 in an R function named

space.time.eblup, which allows the computation of (a) estimates of the model parameters;

(b) SAE estimates and their MSEs for sampled areas; (c) SAE estimates and their MSEs

also for out-of-sample areas. In this section, the performance of this function is compared

with the most used software tools, available for SAE or for LMMs fitting. An exhaustive

review of available SAE software tools is provided by the Essnet SAE project.

The available SAE software packages carry out a complete estimation process with the

computation of (a) and (b), but, usually, do not allow (c). LMMs can be estimated using

general software tools for model fitting. In this case, they allow only (a), and extra work is

needed to complete the estimation process, that is, (b) and (c).

The result of the comparative analysis of space.time.eblup compared with the other

available functions and SAE packages shows evidence that space.time.eblup, in addition

to performing a more complete estimation process, is more efficient in terms of runtime.

Table 4 reports SAE software tools developed recently by national or international

projects dealing with small area estimation. All SAE software provides a complete tool for

treating SAE problems, but only the R functions produced by SAMPLE are able to deal

with LMMs that include area and time random effects. Specifically, time random effects

are nested within area random effects instead of including additive random effects as in

(1). Furthermore, no correlation structure can be specified for the area random effects.

Besides the software tools described in Table 4, R packages specifically dedicated to

SAE are available for download at the CRAN, https://cran.r-project.org/. The SAE

S-I S-C ST-CC ALL S-I ALL S-C

EBLUP

(a)   ARE. (b)   SE.

S-I S-C ST-CC ALL S-I ALL S-C

EBLUP

4

3

2

1

0

3

2

1

0

Fig. 1. ARE and SE distributions. SE is multiplied by 1,000.
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packages implementing unit-level LMMs are hbsae, JoSAE, rsae, sae, but do not include

time random effects in the model. Furthermore, as far as the software toos describe in

Table 4 are concerned, it is worthwhile to underline that they can only handle sets of data

much smaller than the 7,200,000 records processed for the case study.

Besides SAE packages, there are many R packages that provide functions for fitting

LMMs. A general package for LMMs is lme4. It can fit linear mixed models by means of

the function lmer. These models can also be fitted using the function lme from the package

estimates

[1.8, 2.7]
[2.7, 3.4]
[3.4, 4.04]
[4.04, 5.12]
[5.12, 9]

estimates

[1.8, 2.7]
[2.7, 3.4]
[3.4, 4.04]
[4.04, 5.12]
[5.12, 9]

estimates

(a) Direct at province level. (b) EBLUPS at LMA level.
I

(c) EBLUPS at LMA level.
C

(d) EBLUPST at LMA level.
CC

[1.8, 2.7]
[2.7, 3.4]
[3.4, 4.04]
[4.04, 5.12]
[5.12, 9]

estimates

[1.8, 2.7]
[2.7, 3.4]
[3.4, 4.04]
[4.04, 5.12]
[5.12, 9]

Fig. 2. Unemployment rate estimates for direct (a), EBLUPS
I (b), EBLUPS

C (c), EBLUPST
CC (d). Legends display

the estimated unemployment rate classes.
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nlme. This package supports various correlation and heteroscedasticity structures for the

variance within.

Concerning the statistical software SAS, (see https://www.sas.com/), apart from the

macro program codes developed by the EURAREA project, no ad hoc SAE software is

available. The SAS procedure MIXED can fit a variety of LMMs. It performs model

estimation that provides both fixed and random effects estimates, and variance

components estimates.

Table 5 compares, in terms of computation times, the performances of the most used

SAS and R functions to fit LMMs with the space.time.eblup function. Only the procedure

MIXED in SAS allows us to handle the whole set of data used in the case study of the

Italian LFS. However, when spatial and temporal correlation is introduced, it can only

process much smaller data sets. The R functions tested to fit LMMs were not able to

process the whole set of data, but only a subset including about 3,000,000 records related

to the first 18 survey occasions. Furthermore, similarly to the SAS procedure MIXED, lme

and lmer can fit models with correlated random effects only for very small sets of data. For

this reason, the only comparison framework that can be set up is restricted to the 18 survey

occasions sets of data, and without taking into account any type of correlation structure.

Moreover, the space.time.eblup function is a complete SAE tool providing computation of

(a), (b), and (c).

All the performances of R and SAS codes were run on an Intel CoreTM i7-3770K

3.50 GHz processor with 8 GB RAM on a 64 bit Windows 7 personal computer.

7. Conclusions

Since the most important surveys carried by national statistical institutes are repeated

surveys, it is important to carefully consider SAE problems within this broad and relevant

survey framework. Standard small area models usually take into account cross-sectional

Table 5. Comparison of performances, in terms of computer time, for R and SAS functions fitting unit-level

LMMs and space.time.eblup R function for Italian LFS data, complete and reduced.

Package Complete data set Restricted data set

PROC MIXED(*) 30 sec 12 sec
lme(*) – 3 min 00 sec
lmer(*) – 2 min 21 sec
space.time.eblup 4 min 54 sec 2 min 18 sec
(*)Elaboration times are related to independent area and time random effects.

Table 4. Description of SAE software based on unit-level LMMs produced by projects on small area estimation.

Project Enviroment Area random effects Time random effects

EURAREA SAS Correlated No
BIAS R Uncorrelated No
SAMPLE R Uncorrelated Nested, Correlated
AMELI R Uncorrelated No
ESSnet SAE R Correlated No
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estimation. Nonetheless, in the context of repeated surveys, more realistic and efficient

models can be considered by adding a temporal random effect for exploiting previous

survey occasions data. It potentially allows us to increase the efficiency of results by using

more realistic SAE models that can better capture the real variability of the phenomena

under study. Furthermore, unit-level models have potentially more predictive power than

area-level models, and they are able to exploit the individual correlations between target

variable and fixed effects covariates.

As a consequence, large amount of data have to be processed and computational

problems may occur. The empirical test, conducted on Italian LFS quarterly data,

displayed good statistical performance, outperforming the other estimators. Furthermore,

the new formulation was shown to be effective when dealing with extremely large

amounts of data. As a matter of fact, the function space.time.eblup, implementing the new

expressions was able to process 7,200,000 survey records from the 44 LFS quarterly

samples from 2004 to 2014 in about five minutes. Therefore, the new formulation allows

us to manage very large amounts of data, overcoming the computational limits underlying

the software currently available. Moreover, it can provide a valuable starting point for

building more sophisticated models.

Currently, only the R function is available for use. However, an R package will be

produced and made available as soon as possible.
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