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Generalized regression (GREG) estimation uses a model that assumes that the values of the
variable of interest are not correlated. An extension of the GREG estimator to the case where
the vector of interest has a positive definite covariance structure is presented in this article.
This extension can be translated to the calibration estimators. The key to this extension lies in
a generalization of the Horvitz-Thompson estimator which, in some sense, also assumes that
the values of the variable of interest are not correlated. The Godambe-Joshi lower bound is
another result which assumes a model with no correlation. This is also generalized to a vector
of interest with a positive definite covariance structure, and it is shown that the generalized
calibration estimator asymptotically attains this generalized lower bound. Properties of the
new estimators are given, and they are compared with the Horvitz-Thompson estimator and
the usual calibration estimator. The new estimators are applied to the Canadian Reverse
Record Check survey and to the problem of variance estimation.
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1. Introduction

Let s be a sample drawn from a population of size N according to a sampling plan p, let

y ¼ ( y1, y2, : : : , yN)0 be a vector of interest, and let c ¼ (c1, c2, : : : , cN)0 be a vector of

known constants. The parameter to estimate is u ¼ y0c. A commonly used estimator is that

of Horvitz and Thompson (1952). This estimator can be written ûHT ¼ y 0Ws HT c, where

Ws HT ¼ DsðEðDsÞÞ
21 with Ds [ RN£N the diagonal matrix of the dk, k ¼ 1, 2, : : : , N,

with dk equal to 1 if unit k [ s and 0 otherwise (it is assumed that

EðdkÞ ¼ pk . 0; k ¼ 1; 2; : : : ;N). The weight matrix Ws HT is diagonal. Even in the

absence of auxiliary data, other useful estimators exist. An estimator of the form y0Wsc,

where Ws is not necessarily diagonal, will be proposed. An unbiased estimator is wanted,

thus E(Ws) ¼ IN will be required, where IN is the identity matrix of order N. Not requiring

the weight matrix Ws to be diagonal could prove useful if the variance matrix of y is not

diagonal. For example, from the frame, it could be known that units 1 and 2 are twins, that

y1 ¼ y2 ¼ ytwin, without knowing the value ytwin. Noting pkl ¼ E(dkdl), an alternative to

the Horvitz-Thompson estimator
PN

k¼1
dkyk

pk
for the population total, is the unbiased

estimator 2ytwinðd1þd22d1d2Þ
p1þp22p12

þ
PN

k¼3
dkyk

pk
. That is, if either unit 1 or unit 2 are sampled, the
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value 2ytwin is given a weight equal to the inverse of the probability of selecting either of

the two units. The number of twins in the sample being random, this will add to the

variance of this estimator. However, if both this new estimator and the Horvitz-Thompson

estimator are calibrated so that the sum of their weights equals the population size, then the

calibrated new estimator is superior to the similarly calibrated Horvitz-Thompson

estimator, because it makes use of the information that units 1 and 2 are twins by

acknowledging that observing one of the two units is equivalent to observing both. This

article will suggest estimators that can improve on the Horvitz-Thompson estimator if

some of the ys are simply correlated, without necessarily being equal. For example,

because of the increased risk of transmission, the incidence of the flu in two individuals

from the same household are two correlated events. Depending on the variable of interest,

other examples may occur for workers clustered by establishment.

In the next section, what is meant by “the variance matrix of y” is made more precise

through the asymptotic setup. With the help of the Moore-Penrose inverse, a

generalization of the Horvitz-Thompson estimator, ûGHT , is presented in Section 3. The

generalized Horvitz-Thompson estimator will depend on an estimate of the variance

matrix of y and will reduce to the usual Horvitz-Thompson estimator when that variance

matrix estimate is diagonal. Godambe and Joshi (1965) gave a lower bound applicable to

unbiased estimators under the assumption that the variance matrix of y is diagonal. In

Section 4, their result is also generalized to a positive definite variance matrix. In Section 5,

the calibration problem, as stated in Deville and Särndal (1992) and in Théberge (1999), is

generalized; the desired weights should be close to those of ûGHT rather than those of ûHT .

The solution to that problem will lead to generalized calibration estimators. Generalized

calibration estimators are shown to be optimal in the sense that they asymptotically attain

the generalized Godambe-Joshi lower bound. In Section 6, the problem of computing the

weights of the generalized estimators is examined with an example where the variance

matrix of y is block diagonal. Modified versions of the generalized estimators are

described in Section 7. The new estimators are compared to that of Horvitz-Thompson and

to the calibration estimator in Section 8. Applications to the Canadian Reverse Record

Check Survey and to the problem of variance estimation are given in Sections 9 and 10

respectively. Finally, concluding remarks are found in Section 11.

2. Asymptotic Setup

In order to discuss the large sample properties of an estimator û, an asymptotic setup will

be needed. Such setups have been described by Brewer (1979) and by Isaki and Fuller

(1982). The setup shall serve two main purposes: (1) to establish a link between the setup

and the variance matrix of the variable of interest, (2) to establish three results that will be

useful for deriving the asymptotic properties of ûGHT and calibrated estimators. The setup

described here is one that serves those purposes.

Given an auxiliary information matrix X [ RN£q assumed to be of full rank, a sequence

of increasingly large populations and samples is generated with the help of an N-

dimensional distribution j of mean Xb, b [ Rq, and variance S, with S positive definite,

and the sampling plan p. The sequence starts with the original population and the original

sample. The tth population, of size tN, is obtained by adding N units to the (t 2 1)th
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population. With respect to the auxiliary information, those added units are identical to

the original population. The vector of interest of the added units is generated with the

distribution j. From the added units, a sample of units is selected using the plan p, and

together with the units of the (t 2 1)th sample, they will form the tth sample of expected

size nt ¼ tn, where n is the expected size of the original sample.

More precisely, if 1a£b [ Ra£b is a matrix of ones and Ia [ Ra£a is the identity matrix

of dimension a, then define Xt [ RtN£q equal to 1t£1 ^ X, the auxiliary information matrix

of the tth population. Set ct ¼ t 21ð1t£1 ^ cÞ for estimating a mean, that is, if c ¼ N 211N£1,

but set ct ¼ ð1t£1 ^ cÞ for estimating a total, that is, if c ¼ 1N£1. More generally, set

ct ¼ t g21ð1t£1 ^ cÞ if u ¼ y 0c ¼ OpðN
gÞ. Define yt ¼ y

0

½1� y
0

½2�: : :y
0

½t�

� � 0
and ut ¼ y 0 tct,

where the subscript [i ] is used to denote the N units that belong to population i, but not to

population (i 2 1), Dt ¼

D½1� 0

. .
.

0 D½t�

0

B
B
B
@

1

C
C
C
A

is the diagonal matrix of the dk, where dk is

equal to 1 if unit k is sampled and 0 if not (to ease the notation, in this section, the subscript

s denoting the sample will be omitted from D). With this setup, EjðytÞ ¼ Xtb and

VjðytÞ ¼ It ^S.

Before presenting the asymptotic results of this section, for any matrix F, let F† denote

the Moore-Penrose inverse, and if F is positive definite, then define

QF ¼ ðEpððDFDÞ†ÞÞ21, where D ¼ D½1�. It will be shown in the following section that

QF is well defined if and only if pk . 0; k ¼ 1; 2; : : : ;N.

Let T [ Rq£q and U [ RN£N be symmetric positive definite matrices, Ut ¼ It ^ U and

b̂t 5 T1=2 T1=2X 0 tðDtUtDtÞ
†XtT

1=2
� �†

T1=2X 0 tðDtUtDtÞ
†yt: ð1Þ

With this asymptotic setup, the following three results hold.

RESULT 1. If the sampling plan is noninformative (see, for example Cassel et al. 1977),

then b̂t ! b in probability.

The next two results apply to a positive definite estimator, Ŝ, of VjðyÞ ¼ S. One must first

define a block diagonal matrix Ŝt ¼

Ŝ½1� 0

. .
.

0 Ŝ½t�

0

B
B
B
B
@

1

C
C
C
C
A

where Ŝ½i� is the estimator of S

based on the sample represented by D[i ] and then define Q
Ŝ t
¼ Ep DtŜtDt

� �†
� �� �21

.

RESULT 2. For a positive definite estimator Ŝ, the difference X 0 t DtŜtDt

� �†

Q
Ŝ t

ct 2

X0 tct is Opðt
g21=2Þ.

RESULT 3. For a positive definite estimator Ŝ such that Ŝ ! S in probability, the

difference X 0 t
�
DtŜtDt

�†
Q

Ŝ t
ct 2 X 0 tðDtStDtÞ

†QS t
ct is opðt

g21=2Þ.
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Since nt ¼ tn and Nt ¼ tN, what, for example, is Opðt
g21=2Þ, is also Op n

g21=2
t

� �
and

Op N
g21=2
t

� �
. The proofs of these three results can be found in Appendix A. This

asymptotic setup incorporates the superpopulation model j; a separate superpopulation

model is not needed. This avoids possible inconsistencies between the asymptotic setup’s

model and that of a superpopulation.

3. A Generalization of the Horvitz-Thompson Estimator

In this section and the next section, an auxiliary data matrix is not needed, or at least, it

need not be known. Only a positive definite estimate, Ŝ, of the variance matrix implied by

the setup, VjðyÞ ¼ S, will be needed. In the absence of auxiliary data, the Horvitz-

Thompson estimator, ûHT ¼ y 0DsðEpðDsÞÞ
21c, is an estimator that is often used. In order to

generalize the Horvitz-Thompson estimator, it will first be proven that Ep DsŜDs

� �†
� �

is

nonsingular if and only if pk . 0; k ¼ 1; 2; : : : ;N, where F† denotes the Moore-Penrose

inverse of the matrix F.

LEMMA 1. If Fi [ RN£N i ¼ 1; 2; : : : ; K are symmetric positive semi-definite

matrices, then the null space of F ¼
PK

i¼1 Fi, noted NðFÞ, equals >K
i¼1 NðFiÞ.

The proof of Lemma 1 is given in Appendix A. From Ben-Israel and Greville (2002,

Exercise 2.38), N DsŜDs

� �†
� �

¼N DsŜDs

� �
¼NðDsÞ. Applying Lemma 1, the

matrix sum Ep DsŜDs

� �†
� �

is invertible if and only if
all samples s

> NðDsÞ ¼ 0, that is,

pk . 0; k ¼ 1; 2; : : : ;N.

Note Q
Ŝ
¼ Ep DsŜDs

� �†
� �� �21

and define

ûGHT ¼ y0 DsŜDs

� �†

Q
Ŝ

c

¼ y0Ws GHT c:

ð2Þ

It is readily seen that regardless of the choice of Ŝ, ûGHT is unbiased for estimating

u ¼ y 0c. Also, although ûGHT depends on Ŝ, it does not depend on auxiliary data. As

required of an estimator, the rows of Ws GHT corresponding to nonsampled units are all 0,

that is, Ws GHT ¼ DsWs GHT . This follows from the following lemma, also proven in

Appendix A, and the fact that D s is an orthogonal projection, that is, D s is symmetric and

D2
s ¼ Ds.

LEMMA 2. Let P [ RN£N be an orthogonal projection;

(a) If F [ Rq£N , then ðFPÞ† ¼ PðFPÞ†.

(b) If F [ RN£q, then ðPFÞ† ¼ ðPFÞ†P.

(c) If F [ RN£N , then ðPFPÞ† ¼ PðPFPÞ†P.
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Thus, if W½s�GHT [ Rn£N and y½s� [ Rn are the submatrices of Ws GHT and y

respectively, with rows corresponding to the sampled units, then

ûGHT ¼ y 0 ½s�W½s�GHT c: ð3Þ

It will be shown in Section 4 that among linear unbiased estimators û, ûGHT minimizes

EpVj û
� �

.

If Ŝ is a diagonal matrix, then ûGHT reduces to the Horvitz-Thompson estimator.

Because, for diagonal matrices F1; F2 [ RN£N , ðF1F2Þ
† ¼ F†

1F†
2, diagonal matrices

permute, D†
s ¼ Ds, D

2
s ¼ Ds, and because Ŝ† ¼ Ŝ21, it follows that

ûGHT ¼ y 0 DsŜDs

� �†

Ep DsŜDs

� �†
� �21

c

¼ y 0DsŜ
21ŜðEpðDsÞÞ

21c

¼ y 0DsðEpðDsÞÞ
21c

¼ ûHT :

ð4Þ

Somewhat more generally, if for every possible sample s, DsŜDs is diagonal, then ûGHT

will also reduce to the Horvitz-Thompson estimator.

Note that the Horvitz-Thompson estimator, which uses a diagonal Ŝ, is unbiased, even

if a more appropriate estimate of S would have a more complex structure; ûGHT is just as

forgiving.

When Ŝ is diagonal, so is Ws GHT . The weights on the diagonal, the Horvitz-Thompson

weights, are often referred to as the design weights. If Ŝ is not diagonal, then the weight

matrix Ws GHT and the vector Ws GHT c depend on both the sampling design and on Ŝ.

It may not be appropriate to refer to Ws GHT or Ws GHT c as design weights.

The following is a simple consequence of Result 3 and will be needed before discussing

the variance of ûGHT .

RESULT 4. If Ŝ is a positive definite estimator and Ŝ ! S in probability, then ûGHT ¼

y 0
�
DsŜDs

�†
Q

Ŝ
c and u

*

GHT ¼ y 0 DsSDs

� �†
QSc are asymptotically equivalent.

Under the conditions of the preceding result, one has

Vp ûGHT

� �
8 Vpðy

0

ðDsSDsÞ
†QScÞ

¼ Vpðvecðy
0

ðDsSDsÞ
†QScÞÞ

¼ ðQSc ^ yÞ
0

VpðvecððDsSDsÞ
†ÞÞðQSc ^ yÞ

¼ kQSc ^ yjj
2
VpðvecððDsSDsÞ

†ÞÞ;

ð5Þ

where vec(F) denotes the vector obtained by stacking the successive columns of the

matrix F.

In practice, S is unknown. The statistician will simply assume that a matrix S of a

certain structure reflects the correlations among the population units. The matrix may, or
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may not, depend on certain parameters that need to be estimated. For example, in the

concluding section, S is a block diagonal matrix where each block equals 12 £ 2; there are

no parameters to estimate. In Section 9, the correlation between persons of a same

household is estimated; however, in that particular example, the estimated correlation is

not used directly; a compromise that works for two important variables of interest is

chosen. The computation of ûGHT also requires the computation of Q
Ŝ

. Although it can be

difficult to find a closed form expression for Q
Ŝ
¼ Ep DsŜDs

� �†
� �� �21

, its value can

be approximated by repeatedly sampling the population using the sampling plan p,

computing the average over the samples of
�
DsŜDs

�†
, and inverting that average. If Ŝ

varies with the sample s, then it would not be possible to compute
�
DsŜDs

�†
for all the

samples. The alternative is to fix Ŝ to the estimate obtained for the sample effectively

drawn, then ûGHT will be biased, but still asymptotically unbiased. In the case of a two-

stage sampling plan, the Horvitz-Thompson weights would likely be applied to the

primary sampling units and the methods of this article, including the method just described

to compute Q
Ŝ

, would apply to the secondary sampling units. For that purpose, the

population consists of the secondary sampling units that belong to the primary sampling

units selected in the first stage. For that “population”, S would typically be block diagonal

with each block corresponding to a selected primary sampling unit.

4. A Generalization of the Godambe and Joshi Lower Bound

Although it wasn’t in the context of an asymptotic setup and although it was assumed that

Vj ðyÞ ¼ S was diagonal, for any unbiased estimator û of u, Godambe and Joshi (1965)

have given a lower bound for the value of EjVp û
� �

. The derivation of that lower bound

used the following identity:

EjVp û
� �
¼ EpVj û

� �
þ Ep Ej û 2 u

� �� 	2
2VjðuÞ: ð6Þ

Also, for any linear unbiased estimator û of u

EpVj û
� �
¼ EpVj u*

GHT þ û 2 u*
GHT

� �� �

¼ EpVj u*
GHT

� �
þ EpVj û 2 u*

GHT

� �
þ 2 EpCovj u*

GHT ; û 2 u*
GHT

� �� �

$ EpVj u*
GHT

� �
þ 2 EpCovj u*

GHT ; û 2 u*
GHT

� �� �

¼ EpVj u*
GHT

� �
;

ð7Þ

because for any linear unbiased estimator 0̂ of 0, EpCovj u
*

GHT ; 0̂
� �

¼ 0. To show this, let 0̂

be written y 0Dsl0s þ ks, with l0s [ RN and ks independent of y, may depend on the

sample s. Setting y ¼ 0 yields EpðksÞ ¼ 0. The following derivation uses Lemma 2
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as well as Ben-Israel and Greville (2002, Exercise 2.21):

EpCovj u
*

GHT ; 0̂
� �

¼ EpCovj ðy
0ðDsSDsÞ

†QSc; y 0Dsl0sÞ

¼ Epðc
0QSðDsSDsÞ

†Covj ðy; yÞDsl0sÞ

¼ Epðc
0QSDsðDsSDsÞ

†DsSDsl0sÞ

¼ Epðc
0QSDsl0s þ ksÞ

¼ 0;

ð8Þ

because c 0QSDsl0s þ ks is the unbiased estimator 0̂ with y ¼ QSc as the vector of

interest.

The inequality (7) is what makes u
*

GHT , and ûGHT , special. Taken together with (6) it

shows that for any linear unbiased estimator, û,

EjVp û
� �

$ EpVj u
*

GHT

� �
2 VjðuÞ: ð9Þ

Knowing that VjðuÞ ¼ c 0Sc ¼ kck
2
S and that

EpVj u
*

GHT

� �
¼ Ep c 0QSðDsSDsÞ

†SðDsSDsÞ
†QSc

� �

¼ c0QSEpððDsSDsÞ
†DsSDsðDsSDsÞ

†ÞQSc

¼ c0QSEpðDsSDsÞ
†QSc

¼ c0QSc

¼ kck
2
QS
;

ð10Þ

allows the following generalization to a positive definite matrix, S, of a lower bound given

in Godambe and Joshi (1965).

RESULT 5. For any linear unbiased estimator, û of u ¼ y0c, if Vj ðyÞ ¼ S is positive

definite, then

EjVp û
� �

$ kcjj
2
QS2S: ð11Þ

If S is a diagonal matrix equal to diag s2
k

� �
k¼1;2; : : : ;N

, then (11) reduces to

EjVpðûÞ $ kck
2
ðEpðDsÞ

212IN ÞS
¼

k

P
1
pk

2 1
� �

s2
kc2

k , which is the Godambe and Joshi lower

bound, usually given for a total, that is, for c ¼ 1N£1. If c ¼ 1N£1, then the generalized

lower bound equals the sum of all entries in the matrix QS 2 S. It should be noted that

Godambe and Joshi (1965) had proven that, if S is diagonal, the lower bound holds for the

class of all unbiased estimators, not only for the class of linear unbiased estimators. What

if S is allowed not to be diagonal? Does the generalized Godambe-Joshi lower bound

apply to all unbiased estimators? The answer is no, and a nonlinear counter-example is

given in Appendix B.
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When the variance matrix S is diagonal, it is known that the calibration estimator

introduced by Deville and Särndal (1992), or the equivalent generalized regression

estimator, asymptotically attains the Godambe and Joshi lower bound (see, for example

Särndal et al. 1992). In the next section, the calibration estimator will be generalized to the

case of a positive definite variance matrix S. It will then be shown that this generalized

calibration estimator asymptotically attains the lower bound given in (11).

5. A Generalization of the Calibration Estimator

Define 1 0N£1Ws GHT c to be the effective sample weight for estimating u ¼ y 0c. The

variance of the effective sample weight will often be larger if Ŝ is nondiagonal, and this

variance will negatively affect the estimator ûGHT . This source of variance can be

eliminated with the use of a weight vector ws that satisfies the calibration equation

1 0N£1ws ¼ 1 0N£1c. In this section, to estimate u ¼ y 0c, an estimator ûGCAL ¼ y0ws GCAL

will be derived through calibration using an auxiliary variable matrix X assumed to be of

full rank. More precisely, noting ws GHT ¼Ws GHTc, the following problem is addressed:

Calibration Problem: Among the weight vectors ws in the range of Ds, RðDs),

(nonsampled units should have a weight of 0) which minimize kX0ws 2 X 0ckT, that is,

which best satisfy the calibration equations, seek one that minimizes kws 2 ws GHTkU,

that is, a weight vector as close as possible to the generalized Horvitz-Thompson weights,

where T [ Rq£q and U [ RN£N are positive semi-definite matrices.

Weights, ws, that satisfy the calibration equations, X 0ws ¼ X 0c, do not always exist,

especially if the number of equations, q, is high relative to the sample size. To prepare for

this eventuality, the matrix T is at the statistician’s disposal for specifying the relative

importance of the q calibration equations.

This formulation of the calibration problem generalizes that of Théberge (1999), where

T and U were diagonal matrices and the Horvitz-Thompson weights were used instead of

the generalized Horvitz-Thompson weights.

Setting v ¼ ws 2 ws GHT , a minimum-norm least-squares solution is sought. A helpful

theorem is given in Rao and Mitra (1971).

THEOREM 1. Let T [ Rq£q and U [ RN£N be symmetric positive semi-definite

matrices, also let A [ Rq£N and b [ Rq. There is a matrix G [ RN£q such that Gb

minimizes kvkU among the vectors v [ RN which minimize kAv 2 bkT, if and only if

TAGA ¼ TA UGAG ¼ UG TAG ¼ ðTAGÞ0 UGA ¼ ðUGAÞ0: ð12Þ

Choices for G are

G ¼ ðIN 2 ðPNðA 0TAÞUPNðA 0TAÞÞ
†UÞðA 0TAÞ†A 0T;

¼ U21A 0T1=2ðT1=2AU21A 0T1=2Þ†T1=2 if U is positive definite;
ð13Þ

where T1=2 is the symmetric positive semi-definite square root of T and PS is the

orthogonal projection on S, a subspace of RN .

The first part of the theorem is proven in Rao and Mitra (1971), where other choices for

G are given. It is shown in Appendix C that (13) does satisfy (12). To compute PNðA 0TAÞ,

the identity PNðFÞ ¼ I 2 F†F can be used.
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The first choice of G given in (13) is derived from Ben-Israel and Greville (2002,

Corollary 8.2) which is itself a consequence of the generalized Gauss-Markov theorem,

see Zyskind and Martin (1969) and Albert (1973). The second choice of G given in (13) is

derived from Théberge (1999).

If U is positive definite, there are two other possible forms for G, namely

G ¼ U21=2ðT1=2AU21=2Þ†T1=2 ð14Þ

and

G ¼ U21=2ðU21=2A 0TAU21=2Þ†U21=2A 0T; ð15Þ

where U1/2 is the symmetric positive semi-definite square root of U. Applying the identity

F† ¼ F 0ðFF 0Þ† to the Moore-Penrose inverse on the right-hand side of (14) yields the

second part of (13); applying the identity F† ¼ ðF 0FÞ†F 0 to the Moore-Penrose inverse on

the right-hand side of (14) yields (15). Both of those identities are found in Ben-Israel and

Greville (2002, Exercise 1.18).

The theorem must be modified to take into account that v is constrained to RðD s), a

subspace S of RN . This is done by applying the method of Ben-Israel and Greville (2002,

sec. 2.9) and minimizing kvkU ¼ kPSzkU ¼ kzkPSUPS
among the vectors which minimize

kAPSz 2 bkT. Using the preceding theorem to find the optimal z, gives the constrained

analog:

THEOREM 2. Let T [ Rq£q and U [ RN£N be symmetric positive semi-definite

matrices, A [ Rq£N , b [ Rq and PS be the orthogonal projection on S a subspace of RN.

There is a matrix G [ RN£q such that Gb minimizes kvkU among the vectors v [ S which

minimize kAv 2 bkT, if and only if

TAPSGAPS ¼ TAPS PSUPSGAPSG ¼ PSUPSG

TAPSG ¼ ðTAPSGÞ0 PSUPSGAPS ¼ ðPSUPSGAPSÞ
0

:

ð16Þ

Choices for G are

G¼ ðIN 2 ðPNðPSA 0TAPSÞPSUPSPNðPSA 0TAPSÞÞ
†PSUPSÞðPSA 0TAPSÞ

†A 0T;

¼ ðPSUPSÞ
†A 0T1=2ðT1=2AðPSUPSÞ

†A 0T1=2Þ†T1=2 if U is positive definite:

ð17Þ

Applying this to our calibration problem stated at the beginning of this section means

setting PS ¼ D s, b ¼ X 0c 2 X 0ws GHT and A ¼ X 0. This gives the generalized calibration

weight vector

ws GCAL ¼ ws GHT þGðX 0c 2 X 0ws GHT Þ; ð18Þ

and the calibration estimator becomes

ûGCAL ¼ y 0ws GCAL

¼ ŷ 0cþ ðy 2 ŷÞ0 ws GHT ;
ð19Þ

where ŷ ¼ Xb̂, b̂ ¼ G0y and G is given by (17) with PS ¼ Ds and A ¼ X 0.
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It should be noted that the weight vector wsGCAL can be written in the form Ws GCALc

with Ws GCAL [ RN£N . For (18) to hold true for any vector c, one must have

WsGCAL ¼WsGHT þGðX 0 2 X 0WsGHT Þ.

In the remainder of this section, it will be assumed that U is positive definite and the

second choice for G given in (17) will be used. Then, one can write

ŷ ¼ Xb̂

¼ XT1=2ðT1=2X 0ðDsUDsÞ
†XT1=2Þ†T1=2X 0ðDsUDsÞ

†y

ð20Þ

and

ws GCAL ¼ ws GHT þ ðDsUDsÞ
†XT1=2ðT1=2X 0ðDsUDsÞ

†XT1=2Þ†T1=2

£ ðX 0c 2 X 0ws GHT Þ:
ð21Þ

If one notes w½s�GCAL [ Rn, w½s�GHT [ Rn, U½ss� [ Rn£n and X½s� [ Rn£q, the

subvectors and submatrices with lines corresponding to the sampled units, then using

Lemma 2,

w½s� GCAL ¼ w½s� GHT þ U21
½ss�X½s�T

1=2
�
T1=2X 0 ½s�U

21
½ss�X½s�T

1=2
�†

T1=2

£ ðX 0c 2 X 0 ½s�w½s� GHT Þ;

ð22Þ

because the weights of nonsampled units are zero. Thus, ûGCAL ¼ y 0 ½s�w½s� GCAL. This

shows that for computing ûGCAL the population parameter X 0c must be known, but the

individual rows of X need only be known for those corresponding to sampled units. It is

seen that the weights given by (22) could be interpreted as those from a GREG estimator,

see Cassel et al. (1977), except that the Horvitz-Thompson weights are replaced with those

of the generalized Horvitz-Thompson estimator, a matrix T has been introduced in case

X½s� is not of full rank and the matrix U would be set equal to Q
Ŝ

in a GREG estimator.

For Ŝ diagonal, Q
Ŝ

reduces to ŜðEpðDsÞÞ
21. Equation (20) with U ¼ Q

Ŝ
is thus a

generalization of the value of ŷ for a GREG estimator when Ŝ, the estimated variance

matrix of y under the model, is not necessarily diagonal.

If U1=2 is the unique positive definite square root of U, then defining Z½s� ¼ U
21=2
½ss� X½s�

yields

ûGCAL ¼ y0 ½s�w½s�GCAL

¼ y0 ½s�w½s�GHT þ U
21=2
½ss� y½s�

� � 0
Z½s�T

1=2 T1=2Z 0 ½s�Z½s�T
1=2

� �†

£ T1=2 X 0c 2 X 0 ½s�w½s� GHT

� �
:

ð23Þ

If T is also positive definite and if X½s� is of full rank, then (23) simplifies to

ûGCAL ¼ y 0 ½s�w½s�GHT þ U
21=2
½ss� y½s�

� � 0
Z½s� Z 0 ½s�Z½s�
� �21

X 0c 2 X 0 ½s�w½s�GHT

� �
: ð24Þ
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In this form, a parallel can be drawn with the use of “instrumental variables”, as for

example, in Estevao and Särndal (2003).

Replacing b̂ by b in ûGCAL and noting y* ¼ Xb gives the random variable

u
*

GCAL ¼ ðy
*Þ
0

cþ ðy 2 y*Þ
0

ws GHT . The bias of u
*

GCAL is zero. Also, ûGCAL and u
*

GCAL are

asymptotically equivalent. Indeed,

t 1=22g ûGCAL t 2 u
*

GCAL t

� �
¼ t 1=22g y

*

t 2 ŷt

� � 0
DtŜtDt

� �†

Q
Ŝ t

ct 2 ct

� �

¼ t 1=22g b 2 b̂t

� � 0
X 0 t DtŜtDt

� �†

Q
Ŝ t

ct 2 X 0 tct


 � ð25Þ

tends to 0 in probability since, from the results of Section 2, X 0 t DtŜtDt

� �†

Q
Ŝ t

ct 2 X 0 tct

is Opðt
g21=2Þ and b̂t ! b in probability. This leads to the following result.

RESULT 6. For any positive definite matrix U, if the calibration equations can be

satisfied, EjVp u
*

GCAL

� �
attains the lower bound given in (11).

To prove this, use (6) with û ¼ u
*

GCAL while noting that Ej u
*

GCAL 2 u
� �

¼ 0, that

VjðuÞ ¼ kck
2
S, and that EpVj u

*

GCAL

� �
¼ EpVj ûGHT

� �
8 EpVj u

*

GHT

� �
¼ kck

2
QS

. It should

be noted that generally, ûGHT does not attain the lower bound; calibration is required.

For the generalized calibration estimator to asymptotically attain the lower bound, it is

important for the generalized Horvitz-Thompson weights, ws GHT , to be calculated with a

matrix Ŝ that satisfies the conditions of Result 3. Also, the same auxiliary variables as

appear in the model are to be used for the calibration, so that b̂ ! b. Note that b̂ ! b

whatever the choice of the positive definite matrix U, and the choice has no impact on

whether or not the generalized calibration estimator asymptotically attains the lower

bound. The case of a variance matrix S which is not diagonal has been examined before,

see, for example, Montanari and Ranalli (2002). The focus is usually on the choice of the

estimator b̂, or more precisely on the choice of the matrix U. Result 6 puts the importance

of U in perspective.

It was seen in Section 3 that if Ŝ is diagonal, then ws GHT reduces to the usual Horvitz-

Thompson weights. If the matrices U and T are also chosen to be diagonal, then the

generalized calibration estimator reduces to the usual calibration estimator as given in

Théberge (1999).

Assuming that Ŝ satisfies the conditions of Result 3, the variance of the generalized

calibration estimator is

Vp ûGCAL

� �
8 Vp u

*

GCAL

� �

¼ Vpððy 2 y*Þ0ws GHT Þ

8 kQSc ^ ðy 2 y*Þk
2
VpðvecððDsSDsÞ

†ÞÞ:

ð26Þ
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Theorem 1 may also be used to find an optimal vector b; one which minimizes the

variance. Among the vectors b which minimize

Vp ûGCAL

� �
8 kQSc ^ ðy 2 y*Þk

2
VpðvecððDsSDsÞ

†ÞÞ

¼ kðQSc ^ XÞb 2 QSc ^ yk
2
VpðvecððDsSDsÞ

†ÞÞ;

ð27Þ

the one that minimizes kbk
2
U can be found by applying Theorem 1 with A ¼ QSc ^ X,

b ¼ QSc ^ y, T ¼ VpðvecððDsSDsÞ
†ÞÞ and by using G given by (15). This gives

bopt ¼ U21=2½U21=2ðQSc ^ XÞ
0

VpðvecððDsSDsÞ
†ÞÞðQSc ^ XÞU21=2�†U21=2

£ ðQSc ^ XÞ
0

VpðvecððDsSDsÞ
†ÞÞðQSc ^ yÞ:

ð28Þ

If S is diagonal, then Vp ûGCAL

� �
8 kdiagðcÞðy 2 y*Þk

2
APA21N£N

¼ kdiagðcÞXb2

diagðcÞyk
2
APA21N£N

, where diag (v) denotes the diagonal matrix formed from the vector

v, P is the matrix of the second-order inclusion probabilities and A ¼ ðEðDsÞÞ
21.

Applying Theorem 1, again with G given by (15), to find the optimal b will give

bopt ¼ U21=2½U21=2X
0

diagðcÞðAPA 2 1N£NÞdiagðcÞXU21=2�†U21=2

£ X
0

diagðcÞðAPA 2 1N£NÞdiagðcÞy;

ð29Þ

a result similar to that found in Montanari (1998), if one sets U ¼ I and c ¼ 1N£1.

The variance Vp ûGCAL

� �
is an unbiased estimator, under j, of EjVp ûGCAL

� �
8 kck

2
QS2S.

It is then possible for Vp ûGCAL

� �
to be smaller than the lower bound

EjVp ûGCAL

� �
8 kck

2
QS2S. Also, for any other linear unbiased estimator, û, the variance

Vp û
� �

is an unbiased estimator, under j, of EjVp û
� �

$ kck
2
QS2S. The fact that Vp ûGCAL

� �

is an unbiased estimator of a parameter not greater than the parameter estimated by Vp û
� �

is not a guarantee that Vp ûGCAL

� �
is not greater than Vp û

� �
, but it is a point in favor

of ûGCAL.

For a population parameter, V, one could use the asymptotic setup to define
U!U1

limV ¼

EjðVÞ: For example, with U [ RN£N a symmetric positive definite matrix, a population

regression parameter B ¼ X0Q21
U X

� �21
X 0Q21

U y can be defined; by definition, one

has
U!U1

lim B ¼ EjðBÞ, which in this case is b. In that sense,
U!U1

lim Vp ûGCAL

� �� �
#

U!U1

lim Vp û
� �� �

for any linear unbiased estimator û.

6. Example

The computation of ûGHT and of ûGCAL requires the computation of Q
Ŝ

. An iterative

method of computation was described at the end of Section 3. In this section, an example is

examined where it is possible to obtain a closed form expression for Q
Ŝ

. It will be

assumed that Ŝ is a block diagonal matrix. Units of a same block could be persons of a

same household, workers of a same establishment, children of a same school, or similar
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groupings. Let us say that there are F blocks, then

Ŝ ¼

Ŝ1 0 0

0 . .
.

0

0 0 ŜF

0

B
B
B
@

1

C
C
C
A
: ð30Þ

In this example, it will be assumed that units belonging to the same block have the same

variance and the same covariance. Note that multiplying Ŝf f ¼ 1; : : : ;F by a scalar

leaves Ws GHT unchanged, even if the scalar varies with f. More precisely, if Nf is the

size of block f, it will be assumed that Ŝf ¼ INf
þ rf ð1Nf £Nf

2 INf
Þ f ¼ 1; : : : ;F with

21
Nf 21

, rf , 1.

With Ŝ of this form, it is possible to find a closed form expression for the block diagonal

matrix

Q
Ŝ
¼

Q
Ŝ1

0 0

0 . .
.

0

0 0 Q
ŜF

0

B
B
B
B
@

1

C
C
C
C
A
: ð31Þ

For block f, Q21

Ŝ f
¼ Ep

��
Dsf

ŜfDsf

�†�
, where Dsf

is the Nf £ Nf submatrix of Ds that

corresponds to block f. Conditioning on the number of units of the block that are sampled,

Sf, one obtains

Q21

Ŝ f
¼
XNf

nf¼1

PðSf ¼ nf ÞEp Dsf
ŜfDsf

� �†

jSf ¼ nf

� �

: ð32Þ

The probabilities, PðSf ¼ nf Þ, can be expressed as a function of the inclusion

probabilities. If one writes

PðSf ¼ nf Þ ¼
XNf

i¼nf

kði Þ
block f

X
p ½i�

0

@

1

A 1 # nf # Nf ð33Þ

with
block f

P
p ½i� being the sum of all probabilities of inclusion of order i, where all i units are

in block f, then the application of the inclusion-exclusion principle will yield the

recurrence relation

kði Þ ¼ 2
Xi2nf

j¼1

i

j

 !

kði 2 jÞ nf þ 1 # i # Nf ð34Þ

with k(nf) ¼ 1. An example with Nf ¼ 5 is given in Appendix D.

Note that Ep

��
Dsf

ŜfDsf

�†

jSf ¼ 1
�
¼ EpðDsf

jSf ¼ 1Þ, which is the diagonal matrix of

the first order conditional (on Sf ¼ 1) inclusion probabilities. Finally, for nf $ 2,
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Ep

��
Dsf

ŜfDsf

�†

jSf ¼ nf

�
¼ EpðDsf

MfDsf
jSf ¼ nf Þ ¼ Pnf

+ Mf , where the diagonal

elements of Mf [ RNf £Nf are equal to
2ðnf 22Þrf 21

ðnf 21Þr2
f
2ðnf 22Þrf 21

, whereas the offdiagonal

elements are equal to
rf

ðnf 21Þr2
f
2ðnf 22Þrf 21

, Pnf
is the matrix of second order conditional

(on Sf ¼ nf) probabilities of inclusion, and + denotes the Hadamard product, that is,

element-wise multiplication. The value of the elements of M f come from inverting an

nf £ nf submatrix of Ŝf .

7. A Modification to the Generalized Estimators

Note that ðS21 +PÞ is positive definite. Indeed, for any non-zero vector z [ RN ,

EpðVjðz
0DsS

21yÞÞ ¼ z 0ðS21 +PÞz . 0. If S is known, instead of ûGHT ¼ u
*

GHT ¼

y
0

ðDsSDsÞ
†ðEpððDsSDsÞ

†ÞÞ21c, one could use

ûMGHT ¼ y
0

DsS
21DsðEpðDsS

21DsÞÞ
21c

¼ y
0

DsS
21DsðS

21 +PÞ21c:

ð35Þ

If S must be estimated, it can be shown that an asymptotically equivalent estimator

could be obtained by replacing S with Ŝ in (35), if Ŝ satisfies the conditions of Result 3.

Contrary to ûGHT , which relies on the computation of QS, ûMGHT is readily given by a

closed-form formula. It is seen that ûMGHT is an estimator; it does not depend on

unobserved values of y. Knowledge of P is required, thus two-phase sampling for

example, may be problematic. If S is diagonal, then ûMGHT ¼ ûGHT ¼ ûHT . Like ûGHT ,

ûMGHT is unbiased. Also, a closed-form formula can be given for its variance:

Vp ûMGHT

� �
¼ kðS21 +PÞ21c ^ yjj

2
VpðvecðDsS21DsÞÞ

¼ kðS21 +PÞ21c ^ yjj
2
Vp diagðvecðS21ÞÞDð2Þs 1

N 2£1ð Þ

¼ kdiagðvecðS21ÞÞððS21 +PÞ21c ^ yÞjj
2

P ð4Þ2vecðPÞðvecðPÞÞ
0 ;

ð36Þ

where Dð2Þs ¼ diagðvecðDs1N£NDsÞÞ, and P (4) ¼ E Dð2Þs 1N 2£N 2Dð2Þs

� �
is a matrix of fourth-

order inclusion probabilities.

Noting ûMGHT ¼ y
0

ws MGHT , the calibration problem could now be changed in order to

find weights as close as possible to ws MGHT , instead of ws GHT . The resulting estimator

would be

ûMGCAL ¼ y 0ws MGCAL

¼ ŷ 0cþ ðy 2 ŷÞ
0

ws MGHT :

ð37Þ

The estimator ûMGCAL is asymptotically unbiased and

Vp ûMGCAL

� �
8 kdiagðvecðS21ÞÞððS21 + PÞ21c ^ ðy 2 y*ÞÞjj

2
Pð4Þ2vecðPÞðvecðPÞÞ0 : ð38Þ
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Of course, it is not expected that ûMGCAL will attain the lower bound given in (11).

However, it does not rely on generalized inverses, and does not require the computation

of QS.

8. Estimator Comparison

In this section, six estimators are compared: the Horvitz-Thompson estimator, the

calibration estimator, the generalized Horvitz-Thompson estimator, the generalized

calibration estimator, and the modified versions of the latter two as described in Section 7.

All estimators are, at least asymptotically, unbiased. For comparing their variance, a

population of 1,000 units, 200 clusters of five units each, was used. The variable of interest

was generated from a normal distribution with mean 10 and variance 2. This was done in

such a way that units from the same cluster have a covariance of one, whereas units from

different clusters are independent. The parameter to be estimated is the population mean.

The variance, or asymptotic variance, of the generalized estimators and of the modified

generalized estimators was computed with a block diagonal matrix S, with each 5 £ 5

block having the value 2 on the diagonal and 1 offdiagonal, thus reflecting the distribution

used to generate the population. The variances were computed under two sampling plans:

simple random sampling, and Poisson sampling with the five units from a block being

selected with probability (0.15, 0.15, 0.2, 0.2, 0.3). It was assumed that X ¼ 1N£1 for

computing the asymptotic variances of the calibration estimator, the generalized

calibration estimator, and the modified generalized calibration estimator. That is, the only

calibration equation is the one specifying that the sum of the weights should equal the

population size – the trivial calibration equation. The value of VpðvecððDsSDsÞ
†ÞÞ, needed

to compute (5) and (26), was approximated by computing ðDsSDsÞ
† for 10,000 different

samples, all drawn according to the appropriate sampling plan: simple random sampling or

Poisson sampling. With the covariance matrix used for generating the population, the

lower bound given in (11) equals 0.0070 under simple random sampling, and 0.0075 under

Poisson sampling.

Table 1 gives the variances of the estimators, or their asymptotic variances in the case of

calibrated estimators, under the sampling plan. The table shows that, for simple random

sampling, the generalized Horvitz-Thompson estimator is much less precise than the

regular Horvitz-Thompson estimator. The explanation for this was given at the beginning

of Section 5. The generalized Horvitz-Thompson estimator was not meant to be optimal;

its interest lies in relation (7). In contrast, the generalized calibration estimator

outperforms the Horvitz-Thompson estimator. Note that under simple random sampling

with X ¼ 1N£1, the calibration estimator is equal to the Horvitz-Thompson estimator. The

asymptotic variance under the sampling plan, Vp ûGCAL

� �
, is very close to the generalized

Godambe-Joshi lower bound for EjVp û
� �

, which for this S and sampling plan is equal to

0.0070. The performance of the modified generalized Horvitz-Thompson estimator can be

significantly different from that of the generalized Horvitz-Thompson estimator. It cannot

be seen as a good approximation of the generalized Horvitz-Thompson estimator.

Nevertheless, the modified generalized calibration estimator performs better than the

Horvitz-Thompson estimator and practically as well as the generalized calibration

estimator for both simple random sampling and the Poisson sampling plan.

Théberge: Estimation when Covariance is Positive Definite 289



With the Poisson sample being of random size, it is not surprising that the noncalibrated

estimators (Horvitz-Thompson, generalized Horvitz-Thompson, and modified generalized

Horvitz-Thompson) are performing poorly with this sampling plan. The generalized

calibration estimator outperforms the calibration estimator. Its asymptotic variance is

comparable to the generalized Godambe-Joshi lower bound for EjVp û
� �

, which for this S

and sampling plan is equal to 0.0075.

Since the calibration estimator is the generalized calibration estimator computed with a

diagonal matrix S, the asymptotic variance for the calibration estimator in Table 1 shows

what can happen if the generalized version is used with a matrix S different from the true

variance matrix, VjðyÞ, : : : the generalized calibration estimator could become the

ordinary calibration estimator.

9. Application to the Canadian Reverse Record Check Survey

The Reverse Record Check (RRC) is a Canadian postcensal undercoverage survey used in

conjunction with the Census of Population and a postcensal overcoverage study to arrive at

population estimates; see Statistics Canada (2015). In this section, the estimates and the

methodology used for the Canadian Territory of Yukon for the 2011 RRC are examined,

and the generalized estimates are compared to the current one. A list frame of persons is

sampled with stratified random sampling. There is one large take-all stratum, where all

units are enumerated by the Census, and take-some strata comprising units that are either

enumerated by the Census, missed by the Census, or out of scope for the Census. The main

objective of the RRC is to estimate the number of missed persons. Information on the

frame is available to group persons by household. Because of the Census methodology, the

variable “missed”, which takes the value 1 if the person is missed and 0 if not, is highly

correlated for persons belonging to the same household. If the Census enumerated (or

missed) someone, it likely enumerated (or missed) the other members of that household.

With the current RRC methodology, the Horvitz-Thompson weight of responding units is

multiplied by a factor to account for nonresponse and a factor to account for frame

undercoverage. The latter factor is such that the estimate of persons enumerated coincides

with the equivalent Census number. In this application, the Horvitz-Thompson weights are

replaced with the generalized weights. For the generalized calibrated weights, the

calibration equation simply ensured that the sum of the calibrated weights equalled the

Table 1. Variances of six estimators of the mean.

Estimator
Simple random

sampling
Poisson

sampling

Horvitz-Thompson 0.0077 0.4458
Calibration – 0.0084
Generalized Horvitz-Thompson 0.0477 0.2848
Generalized calibration 0.0069 0.0073
Modified generalized Horvitz-Thompson 0.0361 0.3237
Modified generalized calibration 0.0070 0.0076

Generalized Godambe-Joshi lower bound 0.0070 0.0075
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number of units in the stratum. The same nonresponse adjustment factors were used, and

the frame undercoverage adjustment factors were all computed so that the estimates of

persons enumerated coincides with the equivalent Census number: 29,982. The

generalized weights were computed assuming that the correlation structure is block

diagonal, each block representing the persons of a same household, according to the frame

information. All offdiagonal elements of each block are set to 0.95. This is because the

estimates of the correlations within households are 0.956 for the variable “missed” and

0.947 for the variable “enumerated”. The correlations are less than one because the Census

sometimes partly enumerates or partly misses a household, and because the frame

household may differ from the census household.

The estimates obtained along with the corresponding variance estimates are given in

Table 2. The Horvitz-Thompson estimates are those currently used by the survey. The

variance estimate of the generalized Horvitz-Thompson estimator is lower than that of the

Horvitz-Thompson estimator, in spite of having an additional source of variance, as

discussed at the beginning of Section 5. This is because, for all estimators, the last step in

computing the estimates is a calibration on the number of persons enumerated. The

variance estimates of the generalized calibration estimator and the modified generalized

calibration estimator, those that would be used in practice, are lower than that of the

Horvitz-Thompson estimator. The advantage of the modified generalized estimator is that

its computation did not require calculating the matrix QS, although it was easy to

approximate this matrix by repeatedly sampling the frame one million times, and using the

method described at the beginning of Section 6. The estimates of missed persons are not

significantly different from one another.

10. Variance Estimation

Statisticians are better at estimating totals or weighted totals than they are at estimating

variances. Why not write variances in the form of weighted totals? A variance can be written

in the form u var ¼ y0Vy ¼ ðy ^ yÞ0vecðVÞ, with V [ RN£N . Such parameters have been

estimated in Sections 3, 5, and 7. There are N 2 units, each corresponding to a pair of units

of the original population, with a vector of interest equal to y ^ y and c ¼ vec(V).

The methods of this article apply here, because in general, Covð yiyj; ykylÞ – 0 for

(i, j ) – (k, l ). Whatever the asymptotic setup, Vjðy ^ yÞ ¼ S2 will not be a positive

definite matrix. For example, the row of S2 which corresponds to unit (i, j ) i – j is equal to

the row which corresponds to unit ( j, i ). In fact, the event (i, j ) [ s is identical to the event

( j, i ) [ s. Thus, from the N 2 units, only the N(N þ 1)/2 with j $ i need to be kept. The

Table 2. RRC estimates of missed persons.

Estimator Estimate Variance estimate

Horvitz-Thompson 5,272 91,727
Generalized Horvitz-Thompson 5,150 82,920
Generalized calibration 5,137 82,505
Modified generalized Horvitz-Thompson 5,194 86,945
Modified generalized calibration 5,173 85,999
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estimators suggested in this article would require the inversion of a matrix of order

N(N þ 1)/2.

The variance matrix will be diagonal, Covð yiyj; ykylÞ ¼ 0 for (i, j ) – (k, l ), if Vj (y) is

diagonal and if Ej ðyÞ ¼ 0. The last assumption is reasonable if y is a vector of residues, as

would be the case if one is estimating the variance of a calibration estimator (regular,

generalized, or modified). With Covð yiyj; ykylÞ ¼ 0 for (i, j ) – (k, l ), the regular

calibration estimator will suffice to estimate the variance of a calibrated estimator. A

choice of calibration equations must still be made. The findings made in Théberge (1999)

remain valid; namely, to use an auxiliary variables matrix in a block diagonal form with

two blocks: a trivial model for the cross products terms of u var ¼ y 0Vy, that is, y 0ðV 2

ðV + IÞÞy (this will yield a Horvitz-Thompson estimator in the case of fixed-size sampling

plans) and a nontrivial model to estimate the squared terms of u var ¼ y 0Vy, that is,

y 0ðV + IÞy. In the examples examined in Théberge (1999), the nontrivial model used for

estimating the squared terms of the variance was the one corresponding to a ratio estimator.

Whatever the models are, it is important to use an auxiliary variables matrix in a block

diagonal form with two blocks. For example, the intercept used to estimate the cross-

product terms has nothing to do with a possible intercept to estimate the squared terms.

Therefore there should not be an auxiliary variable taking the value one for all ði; jÞ j $ i. It

is preferable to have an auxiliary variable taking the value one for all ði; jÞ j . i and zero

otherwise, and another auxiliary variable taking the value one for (i, i ) i ¼ 1, 2, : : : , N and

zero otherwise.

11. Conclusion

An asymptotic setup is necessary to discuss the asymptotic properties of the estimators.

The setup used here integrates a superpopulation model. There is no need for a

superpopulation model separate from the asymptotic setup. The setup’s model does not

assume that the units are uncorrelated.

Even the Horvitz-Thompson estimator can be viewed as relying on a model. The

generalized Horvitz-Thompson estimator, like the Horvitz-Thompson estimator, is

unbiased. Both estimators, but especially the former, can be affected by the variance in the

effective sample weight. Even without auxiliary data, it is possible to calibrate the weights

so their total equals the population size. If this is done, then the generalized estimator will

have a lower asymptotic variance than the ordinary estimator.

The calibration estimator was generalized in two ways: firstly, one is seeking weights

close to the generalized Horvitz-Thompson weights; secondly, the matrices T and U, used

in measuring distances, need no longer be diagonal.

A somewhat easier way to compute the modified generalized calibration estimator was

shown to perform practically as well as the generalized calibration estimator in the

examples given in this article.

The Godambe-Joshi lower bound can be generalized to the case where the units are

correlated. The asymptotic variance of the generalized calibration estimators attains the

generalized Godambe-Joshi lower bound, if the model is correct, that is, if Ŝ ! S in

probability and the matrix X used by the generalized calibration estimator agrees with that

of the asymptotic setup. This is regardless of the choice for the matrix U, used in
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measuring the distance between the calibrated weights and the generalized Horvitz-

Thompson weights.

By viewing variances as weighted totals, the theory developed here provides a

framework for variance estimation. The general case would require the inversion of very

large matrices, but there are simplifications to be made if one is estimating the variance of

a calibration estimator. Those simplifications will often result in what was called the

“hybrid estimator” in Théberge (1999).

Even though there are workarounds, such as dropping variables or using the limit of a

positive definite matrix, it would be interesting to generalize the results of this article to the

case of S positive semi-definite. This strategy of using the methods of this article with a

positive definite covariance matrix that differs only infinitesimally from a block diagonal

matrix where each block equals 12£2 will allow concluding by revisiting the example

in the introduction. The assumption that the correlation between y2i21 and y2i i ¼

1; 2; : : : ;N=2 is 1, is weaker than the assumption that the two units are equal, as was done

in the introduction. The resulting generalized Horvitz-Thompson estimator of the total is
PN=2

i¼1 2y2i21d2i21 þ 2y2id2i 2 ð y2i21 þ y2iÞ d2i21d2i þ ð y2i21 2 y2iÞ d2i21d2iðp2i 2 p2i21Þ/

p2i21 þ p2i 2 p2i21 2i. Setting y1 ¼ y2 will yield the term given in the introduction.

For example, for N spouses grouped into N/2 couples, the variable of interest may be the

place of residence (very high correlation), or education level (significant correlation).

Using a calibrated version of this estimator to ensure that the sum of the weights equals

the population size, will be preferable to using a similarly calibrated version of the

Horvitz-Thompson estimator, if the correlation is somewhat close to 1. Using an estimator

optimized for a correlation of 1 will often be preferable to using an estimator optimized for

a correlation of 0. Note that two samples drawn with the same sampling plan made up of

individuals from the same couples will have the same effective sample weight, regardless

of how many of the spouses, one or two, are sampled from each observed couple.

Appendix A: Proofs of Results of Section 2 and Lemmas of Section 3

Proof of Result 1:

Note that

b̂t ¼ T1=2 T1=2X 0 tðDtUtDtÞ
†XtT

1=2
� �†

T1=2X 0 tðDtUtDtÞ
†yt

¼ T1=2 T1=2
Xt

i¼1

X 0 D½i�UD½i�
� �†

XT1=2

 !†

T1=2
Xt

i¼1

X 0 D½i�UD½i�
� �†

y½i�

¼ T1=2 T1=2X 0t 21
Xt

i¼1

ðD½i�UD½i�Þ
†XT1=2

 !†

T1=2X 0t 21
Xt

i¼1

ðD½i�UD½i�Þ
†y½i�:

The D [i ] being independent and identically distributed, from the weak law of large

numbers, t 21
Pt

i¼1 ðD½i�UD½i�Þ
† tends in probability to Q21

U ¼ EpððD½i�UD½i�Þ
†Þ. Since the

sampling plan is noninformative, t 21
Pt

i¼1 ðD½i�UD½i�Þ
†y½i� tends in probability to Q21

U Xb.
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Thus,

b̂t ! T1=2 T1=2X 0Q21
U XT1=2

� �†

T1=2X 0Q21
U Xb

¼ T1=2 T1=2X 0Q21
U XT1=2

� �21

T1=2X 0Q21
U XT1=2T21=2b

¼ b

in probability.

Proof of Result 2:

Note that

X0t DtŜtDt

� �†

Q
Ŝ t

ct 2 X 0tct¼ t gX 0 t 21
Xt

i¼1

D½i�Ŝ½i�D½i�

� �†

 !

Q
Ŝ

2 IN

 !

c: ðA:39Þ

The expectation, under the plan p, of
�
D½i�Ŝ½i�D½i�

�†
is equal to Q21

Ŝ
. Also, the variance

of the vector X0
�
D½i�Ŝ½i�D½i�

�†
Q

Ŝ
c is finite. Indeed, there is a finite number of possible

values for D [i ], and for any D [i ],
�
D½i�Ŝ½i�D½i�

�†
exists. According to the central limit

theorem, X 0 t 21
Pt

i¼1 D½i�Ŝ½i�D½i�

� �†
� �

Q
Ŝ

c 2 X 0c

� �

t 1=2 converges to a normal

distribution with mean 0q£1 and finite variance. Since

X0 t 21
Pt

i¼1 D½i�Ŝ½i�D½i�

� �†
� �

Q
Ŝ

c 2 X 0c

� �

t 1=2 is Op(1), from (A.39) it follows that

X0t
�
DtŜtDt

�†
Q

Ŝ t
ct 2 X 0 tct is Opðt

g21=2Þ.

Proof of Result 3:

The difference can be written as a sum of differences

t gX 0 t 21
Pt

i¼1 D½i�Ŝ½i�D½i�

� �†

Q
Ŝ

2 ðD½i�S½i�D½i�Þ
†QS

� �� �

c: The differences under the

summation sign tend to 0 in probability and the central limit theorem yields the result.

Note that the condition of Ŝt being positive definite is needed to ensure the Moore-Penrose

inverse is continuous at St (see Ben-Israel and Greville 2002, 212).

Proof of Lemma 1:

It is obvious that NðFÞ $ >K
i¼1 NðFiÞ. To show that NðFÞ # >K

i¼1 NðFiÞ, let

v [ NðFÞ, then v 0Fv ¼
PK

i¼1 v 0Fiv ¼ 0. The matrices Fi being positive semi-definite, one

must have v 0Fiv ¼ 0 i ¼ 1; 2; : : : ;K. With Fi also being symmetric, there exists a

symmetric positive semi-definite matrix Ki such that Fi ¼ K2
i . Therefore v 0Fiv ¼ 0

implies v 0K 0 iKiv ¼ 0 and one must have v [ NðFiÞ.
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Proof of Lemma 2:

WritingRðFÞ for the range of a matrix F, from Ben-Israel and Greville (2002, Exercise

2.38) it is known that RððFPÞ†Þ ¼ RðPF 0Þ # RðPÞ, which proves a). The proof of b) is

obtained by taking the transpose of each side of the identity in a). Finally, from using a) and

b) in succession it follows that ðPFPÞ† ¼ PðPFPÞ† ¼ PðPFPÞ†P.

Appendix B: Counter-example

To estimate a population total (c ¼ 1), an estimator û ¼ ûGCAL þ 0̂, where 0̂ is a nonlinear

unbiased estimator of 0, will be used. The computation of ûGCAL will use Ŝ ¼ S. It will be

shown that for the asymptotically equivalent random variable u* ¼ u
*

GCAL þ 0̂, one has

EjVp u*
� �

, EjVp u
*

GCAL

� �
¼ GGJLB, where GGJLB is the generalized Godambe-Joshi

lower bound.

Starting with Equation (9)

EjVpðu
*Þ¼EpVjðu

*ÞþEpðEjðu
* 2uÞÞ2 2VjðuÞ

¼EpVj u
*

GCAL

� �
þEpVj 0̂

� �
þ2EpCovj u

*

GCAL; 0̂
� �

þEpðEjðu
* 2uÞÞ2 2VjðuÞ

¼EpVj ûGHT

� �
2VjðuÞþEpVj 0̂

� �
þ2EpCovj u

*

GCAL; 0̂
� �

þEp Ej 0̂
� �� �2

¼GGJLBþEpVj 0̂
� �
þ2EpCovj u

*

GCAL; 0̂
� �

þEp Ej 0̂
� �� �2

:

In this example, the population U ¼ {1, 2, 3}. Under the sampling plan, the samples

s1 ¼ {1, 2} and s2 ¼ {2, 3} can each be selected with probability 0.5. The vector u [ R3

is composed of independent and identically distributed variables taking the values 1 or 21

each with probability 0.5. Under the model j, the vector of interest is y ¼ S1=2u,

with S1=2 ¼

2 0:5 0

0:5 1 0

0 0 1

0

B
B
@

1

C
C
A. Thus, with this model, EjðyÞ ¼ 0, VjðyÞ ¼

S ¼

4:25 1:5 0

1:5 1:25 0

0 0 1

0

B
B
@

1

C
C
A, QS ¼

6:7 1:5 0

1:5 1:25 0

0 0 2

0

B
B
@

1

C
C
A.

A nonlinear unbiased, under the sampling plan, estimator of 0 is 0̂ ¼ 2½y2� if s1 is

selected and 0̂ ¼ ½y2� if s2 is selected, where [y2] represents the integer part of y2.

Under those conditions, GGJLB ¼ c 0ðQS 2 SÞc ¼ 3:45, EpVj 0̂
� �
¼ 0:5, Ej 0̂

� �
¼ 0,

Covjðy; ½y2�Þ ¼

1:25

0:75

0

0

B
B
@

1

C
C
A,

EpCovj u
*

GCAL; 0̂
� �

¼ 0:5 £ c 0QSððDs2
SDs2

Þ† 2 ðDs1
SDs1

Þ†ÞCovjðy; ½y2�Þ ¼ 20:35 and
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EjVpðu
*Þ ¼ GGJLBþ EpVj 0̂

� �
þ 2EpCovj u

*

GCAL; 0̂
� �

þ Ep Ej 0̂
� �� �2

¼ 3:45þ 0:5 2 0:7þ 0

¼ 3:25

, GGJLB:

Thus, asymptotically, EjVp ûGCAL þ 0̂
� �

, EjVp ûGCAL

� �
¼ GGJLB. With N ¼ 3, the

asymptotic properties are not very meaningful. However the example could be expanded

to include a large number of strata of size 3, each with the model and sampling plan

described above.

Appendix C: Proof that (13) Satisfies (12)

To simplify, PNðA 0TAÞ will be denoted by P. First, using the first part of (13), set

G ¼ ðIN 2 ðPUPÞ†UÞðA 0TAÞ†A 0T.

Because for an arbitrary real square matrix M, NðMM 0Þ ¼NðMÞ ¼NðM 0Þ, it

follows that

UGA ¼ UðIN 2 ðPUPÞ†UÞ ðA 0TAÞ†A 0TA

¼ UðIN 2 ðPUPÞ†UÞðIN 2 PÞ

¼ U 2 UðPUPÞ†U 2 UPþ UPðPUPÞ†ðPUPÞ

¼ U 2 UðPUPÞ†U 2 UPþ UPðIN 2 PNðPUPÞÞ

¼ U 2 UðPUPÞ†U 2 UPPNðPUPÞ

¼ U 2 UðPUPÞ†U;

ðC:1Þ

which is symmetrical. Also symmetrical, is

TAG ¼ TAðIN 2 ðPUPÞ†UÞðA 0TAÞ†A 0T

¼ ðTA 2 TAPðPUPÞ†UÞðA 0TAÞ†A 0T

¼ TAðA 0TAÞ†A 0T;

ðC:2Þ

because TAP ¼ 0. From (C.2),

TAGA ¼ TAðA 0TAÞ†A 0TA

¼ TAðIN 2 PÞ

¼ TA:

ðC:3Þ
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Finally, from (C.1),

UGAG ¼ ðU 2 UðPUPÞ†UÞG

¼ UG 2 UðPUPÞ†UðIN 2 ðPUPÞ†UÞðA 0TAÞ†A 0T

¼ UG 2 ½UðPUPÞ†U 2 UðPUPÞ†PUPðPUPÞ†U�ðA 0TAÞ†A 0T

¼ UG:

ðC:4Þ

If G ¼ U21A 0T1=2ðT1=2AU21A 0T1=2Þ†T1=2 with U positive definite, then

UGA ¼ A 0T1=2ðT1=2AU21A 0T1=2Þ†T1=2A ðC:5Þ

is a symmetrical matrix. Also,

TAG ¼ T1=2ðT1=2AU21A 0T1=2ÞðT1=2AU21A 0T1=2Þ†T1=2

¼ T1=2PRðT1=2AU21A 0T1=2ÞT
1=2

ðC:6Þ

is symmetrical, since an orthogonal projection matrix is symmetrical. From the properties

of the Moore-Penrose inverse,

UGAG ¼ A 0T1=2ðT1=2AU21A 0T1=2Þ†T1=2AU21A 0T1=2ðT1=2AU21A 0T1=2Þ†T1=2

¼ A 0T1=2ðT1=2AU21A 0T1=2Þ†T1=2

¼ UG:

ðC:7Þ

Finally, because for an arbitrary real matrix M, RðMM 0Þ ¼ RðMÞ and because U is

positive definite, it follows that

TAGA ¼ T1=2ðT1=2AU21A 0T1=2ÞðT1=2AU21A 0T1=2Þ†T1=2A

¼ T1=2PRðT1=2AU21A 0T1=2ÞT
1=2A

¼ T1=2PRðT1=2AÞT
1=2A

¼ TA:

ðC:8Þ

Appendix D: Example of Computing PðSf 5 nf Þ with a Block of Size 5

PðSf ¼ 5Þ ¼ p ½5�

PðSf ¼ 4Þ ¼
block

X
p ½4� 2 5p ½5�

PðSf ¼ 3Þ ¼
block

X
p ½3� 2 4

block

X
p ½4� þ 10p ½5�
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PðSf ¼ 2Þ ¼
block

X
p ½2� 2 3

block

X
p ½3� þ 6

block

X
p ½4� 2 10p ½5�

PðSf ¼ 1Þ ¼
block

X
p ½1� 2 2

block

X
p ½2� þ 3

block

X
p ½3� 2 4

block

X
p ½4� þ 5p ½5�

PðSf ¼ 0Þ ¼ 1 2
X5

nf¼1

PðSf ¼ nf Þ
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