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Considering that many macroeconomic time series present changing seasonal behaviour,
there is a need for filters that are robust to such changes. This article proposes a method to
design seasonal filters that address this problem. The design was made in the frequency
domain to estimate seasonal fluctuations that are spread around specific bands of frequencies.
We assessed the generated filters by applying them to artificial data with known seasonal
behaviour based on the ones of the real macroeconomic series, and we compared their
performance with the one of X-13A-S. The results have shown that the designed filters have
superior performance for series with pronounced moving seasonality, being a good alternative
in these cases.
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1. Introduction

Changing seasonality of time series was first noted in the nineteenth century (Gilbart 1852,

quoted in Bell and Hillmer 1984), and is common in macroeconomic data (Canova and

Ghysels 1994; Wells 1997; Franses and Koehler 1998; Van Dijk et al. 2003). Such changes

can be due to variations in seasonal amplitude from year to year or in the proportionality

relationship between the seasonal at each month and the seasonal at each other month (i.e., the

seasonal pattern) (Godfrey and Karreman 1964). We refer to them as ‘moving seasonality’.

Kuznets (1932) was among the first authors to highlight the importance of moving

seasonality. Since then, statistical tests have been created to evaluate the presence of

changing seasonal behaviour (Higginson 1975; Canova and Hansen 1995; Sutradhar and

Dagum 1998) and several seasonal adjustment methods have been suggested to tackle it,

many of them developed in the frequency domain. Among the frequency domain approaches,

we highlight the pioneering work of Hannan (1964), Nerlove (1964), and Nettheim (1964).

X-13ARIMA-SEATS (X-13A-S) is the most recent enhanced version of the ‘X-11

family’ (U.S. Census Bureau 2013). This program contains two seasonal adjustment
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Vicente, 225 - Gávea, Rio de Janeiro, Brazil. 22451-900. Email: reinaldo@ele.puc-rio.br
3 Electrical Engineering Program, Federal University of Rio de Janeiro. C.P. 68504, Rio de Janeiro, Brazil.
21941-972. Email: eduardo@smt.ufrj.br

Journal of Official Statistics, Vol. 33, No. 1, 2017, pp. 155–186, http://dx.doi.org/10.1515/JOS-2017-0009

http://dx.doi.org/10.1515/JOS-2017-0009


modules: the X-11 method and the SEATS. The latter is a seasonal adjustment procedure

that follows the ARIMA model-based signal extraction technique (Gómez and Maravall

1996). The former module is the X-11, or Census X-11, one of the most commonly used

methods for seasonal adjustment of economic time series used by government agencies

and statistical bureaus. This method, based on moving averages, was introduced in 1965

by the U.S. Census Bureau (Shiskin et al. 1967) and further contributions have been added

to the basic version (Dagum 1980; Dagum 1988; Findley et al. 1998). It is important to

mention that these methods are also implemented in JDEMETRAþ , which is the software

officially recommended by Eurostat and the European Central Bank for the seasonal and

calendar adjustment of official statistics in the European Union. The ESS guidelines on

seasonal adjustment (Eurostat 2015) highlight the unstable seasonality problem, warning

that the standard seasonal adjustment cannot be used in this case.

In the literature, there are several works comparing X-11 with other methods of seasonal

adjustment, especially with SEATS (Hood et al. 2000; Findley 2005; Tiller et al. 2007).

The results point to similar performance when the time series presents common seasonal

behaviour. However, in cases of data with moving seasonality, the X-11 method has some

drawbacks (Planas 1998; Kaiser and Maravall 2000; Maravall and Pérez 2011).

Nettheim (1965) listed strategies for dealing with moving seasonality. One of them is

a filter designed to have unit gain around each seasonal frequency and very small gain

elsewhere. As pointed out by the author, a drawback of such a method is that one should

determine in advance how wide the unit gain region should be. A way of circumventing this

problem is to use spectral estimation methods. Examples are the non-ad-hoc methods in

Melnick and Moussourakis (1974) and Geweke (1978). The ARIMA model-based

approach of SEATS (Gómez and Maravall 1996) is another attempt to treat moving

seasonality, but in some cases it is not trivial to find a good-fitting model with a valid

decomposition into components (Tiller et al. 2007). The Structural Models (STM)

(Koopman et al. 2000) can deal with moving seasonality via a sophisticated model-based

approach that requires expert operators. However, the simplicity of the seasonal adjustment

programs is sometimes preferred to seasonally adjusting a large number of series.

In this context, considering that the seasonal adjustment is largely used in the

production of official statistics, we propose a methodology to design seasonal filters to deal

with moving seasonality. The design of such filters, which we refer to as Seasonal-WLS

(S-WLS), is based on least squares criteria in the frequency domain. The design is inspired

by the requirements set forth in Nettheim (1965). We assess the performance of the

proposed S-WLS filters by running them on artificial data derived from the behaviour of

the real macroeconomic time series. Then, we compared its adjustment with the

adjustment of the X-11 method. We make this comparison because, besides the fact that

X-11 tends to misadjust series with highly moving seasonality, it is ad-hoc and has been

one of the most widely used seasonal adjustment methods.

This article is organised as follows. Section 2 briefly describes the theoretical

framework of the X-11 method, as well as the frequency domain representation of its

filters. Section 3 presents the proposed method to design the S-WLS filters for seasonal

adjustment, describing its structure and the parameters’ choice. Section 4 shows the results

of the application of the proposed S-WLS filters, comparing their performance with that of

X-11. Finally, Section 5 summarises and discusses the main findings. Appendix A presents
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the X-11 algorithm in the frequency domain, and Appendix B and C present, respectively,

the details about the selection of the filter parameters and about the signal-to-noise ratio

(SNR) computation.

2. The X-11 Method in the Frequency Domain

The X-13ARIMA-SEATS (X-13A-S) program contains the implemented X-11 seasonal

adjustment method. This method, as well as other programs of the ‘X-11 family’, consists

of a moving average procedure for seasonally adjusting series (it is fully explained in

Findley et al. 1998). The frequency domain properties of the X-11 method have been

discussed in the works of Wallis (1982), Bell and Monsell (1992), Dagum et al. (1996),

Gómez and Maravall (2001), Findley and Martin (2006) and others. Here, the X-11

procedure will be briefly discussed for the purpose of introducing its transfer function,

which will be instrumental in analysing the X-11 behaviour in the presence of moving

seasonality.

The seasonal adjustment filters of X-11 are available in X-13A-S (U.S. Census Bureau

2013), X-12-ARIMA (Findley et al. 1998) and X-11-ARIMA (Dagum 1980). In the

literature, the hybrid name ‘X-11/12-ARIMA filters’ was adopted to designate these filters

(Findley and Martin 2006). In this work, they will be referred to just as ‘X-11 filters’.

The step-by-step application of the X-11 method (default setting) can be summarised in

two stages, for seasonal factor and seasonal adjustment (Findley et al. 1998). In the default

procedure, it specifies a 3 £ 3 seasonal moving average (usually called ‘seasonal filter’),

M3 £ 3, for the initial seasonal factor estimates, and the 3 £ 5 seasonal filter (M3£5)

thereafter. It also prefilters the input series with a 2 £ 12 moving average, (M2£12). The

whole procedure is depicted in Figure 1, considering the additive decomposition of

monthly series, where: Y is the original time series; T is the trend estimate; SI is the

estimate of the seasonal-irregular; Ŝ is the preliminary seasonal factor; S is the seasonal

factor; A is the seasonally adjusted time series. The superscript(1) means the initial estimate

and the superscript(2) refers to the final one. H13 is the 13-term Henderson trend filter.

The coefficients of the seasonal filters present in X-11, as well as the 2 £ 12 moving

average, are listed in Tables 1 and 2.

i. T(1) = M2×12 (Y)
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ii. SI(1) = Y - T(1)

v. A(1) = Y - S(1)

iii. Ŝ(1) = M3×3 (SI
(1))

iv. S(1)=Ŝ(1) - M2×12 (Ŝ(1))

i. T = H13 (A
(1))

ii. SI(2) = Y - T

v. A(2) = Y - S(2)

iii. Ŝ(2) = M3×5 (SI
(2))

iv. S(2)=Ŝ(2) - M2×12 (Ŝ(2))

Fig. 1. X-11 default procedure for seasonal adjustment considering the additive decomposition of monthly

series.
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In the automatic selection procedure, the program may replace the 3 £ 5 seasonal

moving average filter in step (iii) of the ‘final estimates of seasonal factor’ in Figure 1,

by either a 3 £ 3 or a 3 £ 9 seasonal filter (Findley et al. 1998; U.S. Census Bureau

2013). Regarding the Henderson trend filter, the program selects a trend moving average

based on statistical characteristics of the data. For monthly data, either a 9-, 13-, or 23-term

Henderson trend filter can be selected by the automatic procedure.

The procedure used to compute the seasonally adjusted series (A(2)) described in Figure 1

can be expressed in the frequency domain by the following expression:

Að2Þ ¼ YðzÞ{1 2 M3£5ðz
12Þ½1 2 M2£12ðzÞ�½1 2 H13ðzÞ

£ {1 2 ½1 2 M2£12ðzÞ�
2M3£3ðz

12Þ}�}

ð1Þ

where the functions of z are the z-transforms of the corresponding filters. The coefficients

m(n) for each filter are listed in Tables 1 and 2. Detailed explanation about this expression

is given in Appendix A.

The expression in Equation (A.12) provides a useful way to evaluate the transfer

function of the various X-11 filters, both for the default and the optional choices in the

automatic procedure. Figure 2 shows the magnitude of the transfer functions of the X-11

for the three types of seasonal moving average, considering a 13-term Henderson filter and

monthly data.

Figure 2 illustrates the fact that the smaller the size of the seasonal filter, the wider its

passband width is, and the more suitable it is for treating moving seasonality data

(for more details, see Subsection 3.2). However, even the smallest seasonal filter in the

automatic option of the seasonal adjustment (3 £ 3) does not have a large enough

passband in order to deal with moving seasonality. The X-11 method also provides the

possibility of using a three-term moving average filter, although it is not available in the

automatic procedure; in addition, it produces a transfer function with a poor attenuation in

the stopband.

Table 1. Coefficients of the X-11 Seasonal Filters (m(n) ¼ m(2n)): m(n) are the coefficients of filter MPXQ(z)

(see Equation (A.1) in Appendix A).

Seasonal filters m(5) m(4) m(3) m(2) m(1) m(0)

3 £ 9 1/27 2/27 3/27 3/27 3/27 3/27
3 £ 5 1/15 2/15 3/15 3/15
3 £ 3 1/9 2/9 3/9

Table 2. Coefficients of the X-11 Moving Average Filter (m(n) ¼ m(2n)): m(n) are the coefficients of filter

MPXQ(z) (see Equation (A.1) in Appendix A).

Moving average m(6) m(5) m(4) m(3) m(2) m(1) m(0)

2 £ 12 1/24 1/12 1/12 1/12 1/12 1/12 1/12
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In this article we propose a design method that generate filters with bandwidths that are

large enough so that they can deal with the most common seasonality variations, without

compromising the filter attenuation outside the seasonal frequencies. The construction of

this filter will be presented in the next section.

3. The Proposed Seasonal Filter: a Frequency Domain Moving Seasonal

Filter to Deal With Moving Seasonality

To introduce the proposed seasonal filters, we assume that a monthly observable time

series at time t, Y(t), can be represented as follows:

YðtÞ ¼ TðtÞ þ SðtÞ þ IðtÞ; ðt ¼ 1; 2; : : :Þ ð2Þ

where Y(t) is the original time series, T(t), S(t), and I(t) are unobservable trend-cycle

(treated here as ‘trend’), seasonal and irregular components.

From a frequency domain point of view, a filter designed to extract the seasonality

should be able to isolate the movements in the series which occur in the seasonal

frequency and in its harmonics, usually called ‘seasonal frequencies’: (2p/12,

4p/12, : : : ,12p/12). However, when the series has moving seasonality, its spectral

mass is not restricted to the seasonal frequencies, but is spread around their

neighborhoods. Considering this, we want a filter with frequency response equal to one

in the bands around the seasonal frequencies (passbands) and zero in the remaining

frequencies (stopbands). This is one of the filters mentioned by (Nettheim 1965),

illustrated in Figure 3.

This filter has the objective of not disturbing the frequency components around the

harmonics of the seasonal frequency, and to this end its transfer function has a flat shape in

a neighbourhood of width D around these frequencies, as shown in Figure 3. This is

important in the case of moving seasonality. An example that illustrates this situation is

given by the following time series, composed by an irregular component and a seasonal
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Fig. 2. Magnitude of the transfer function of the X-11 for different seasonal filters: monthly series.
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component with nonstationary changes:

YðtÞ ¼
XP

i¼1

1þ b sin 2p
ðt 2 iQÞ

ki

� �� �
sin 2p

t

2

h i
þ IðtÞ ð3Þ

where b ¼ 0.9, Q ¼ 120, ki are samples from a random variable uniformly distributed in

the interval [70, 240] and I(t) is the irregular component, an independent zero-mean

Gaussian process.

The spectrum of this time series is shown in Figure 4. It is possible to note that the

seasonal component has significant energy over a bandwidth of approximately 0.03 around

the frequency 1/12 cycles/month. In order not to attenuate the frequency components that

deviate from the harmonic of the seasonal frequencies, the gain of the filter should be

constant for all the frequencies in the neighbourhood of the seasonal frequencies. This

block shape has been suggested by Nettheim (1965).
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Fig. 4. Spectral density of Y(t) by frequency.
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Fig. 3. Magnitude of the transfer function of the ideal filter.
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Such a filter can be designed to accommodate the different kinds of seasonality

variations. These can be seen as combinations of variations in the seasonal periods as well

as variations in the seasonal amplitude. We should take these into account when

computing the filter parameters. To this end, one can express a seasonal component with

frequency vs and moving seasonality as

sðtÞ ¼ ½1þ aðtÞ�hðtÞ; ð4Þ

where h is a periodic function with period (vs þ Dv) and Dv may vary with time t; a(t)

represents the seasonal amplitude variation.

Considering that the rate of variation of Dv is much smaller than the seasonal period,

h(t) can be expressed by a Fourier series as:

hðtÞ ¼
n

X
cne jn½vsþDvðtÞ�t ð5Þ

From Equation (4), the seasonal signal in the frequency domain can be written as:

SðvÞ ¼
n

X
2pcndðv 2 nvs 2 nDvÞ þ

n

X
2pcnAðv 2 nvs þ nDvÞ ð6Þ

where A(v) is the Fourier transform of a(t) and d(v) is the Dirac delta function.

Equation (6) is depicted in Figure 5, where the arrows indicate the Dirac delta functions

and the bell-shaped functions are repetitions of A(v) centred at the frequencies nvs þ

nDv. From this, since the bandwidth of a(t) is given by B, and considering that one has to

account for up to the nth harmonic component, the width D from each of the filter’s

passbands has to be larger than:

D ¼ 2max{nDvþ B;2nDvþ B} ¼ 2ðnjDvj þ BÞ ð7Þ

Therefore, to perform the seasonal adjustment it is necessary to determine the filter design

parameterD, that is, a function of the seasonal behaviour of the series. In practice, this can be

done, for example, by computing the series spectrogram in order to determinevs,Dv, and B.

Regarding what was discussed in this subsection, we propose a methodology to design

seasonal filters that are able to deal with moving seasonality, that is, with transfer functions

1

S(ω)

ωωs
ωs + Δω nωs + nΔω – B nωs + nΔω

nωs + nΔω + Bnωs

Δ/2 Δ/2 Δ/2 Δ/2

0
B B B B

Fig. 5. Magnitude of the ideal filter transfer function and spectrum of the seasonal signal from Equation (6).
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that approximates the one in Figure 3. We refer to them as S-WLS (Seasonal Weighted

Least Squares) filters. These filters are finite and symmetric, designed in the frequency

domain, and can be applied to a monthly seasonal time series, independent of its

distribution.

Applying the proposed S-WLS filters, the data will be seasonally adjusted by

eliminating the trend component and performing the seasonal extraction using a single

filtering operation. The following subsection presents the design of the S-WLS filters. The

theory used in this section is based on Diniz et al. (2010).

3.1. The Structure of the S-WLS Filters

First of all, to extract the seasonality, it is necessary to also eliminate the trend component

(Hassani 2007; Cleveland et al. 1990; Burman 1980).

With this purpose in mind, the z-transform of the filter frequency response should have

a term of the form (1 2 z21) jþ1, that accounts for eliminating a trend polynomial up to

order j.

Therefore, we can represent the S-WLS filters, to extract the seasonal component, by the

following z-transform:
PðzÞ ¼ ð1 2 z21Þ jþ1GðzÞ ð8Þ

where G(z) is defined as

GðzÞ ¼
XL2p21

t¼2p

gðtÞz2t: ð9Þ

In Equation (9), L is the number of degrees of freedom of the filter, given by the

coefficients g(t) [ R; the filter length is (L þ j þ 1); p gives a shift in the filter output, and

for a filter with zero delay, it should be equal to (L þ j þ 1)/2. The index t represents the

time period (t ¼ 1, 2, : : :).

The coefficients g(t) of G(z) must be optimised so that the frequency response of the

filter can approximate the desired frequency response D(v). In other words, G(z) is

adjusted so that the resulting filter can approximate the one from Nettheim (1965)

(illustrated in Figure 3) with bandwidths around the harmonics of the seasonal frequency

as flat as possible. Besides, to make the filter robust to variations in seasonality, these

coefficients must be optimised to consider the seasonal variation around the harmonics in a

frequency range corresponding to a percentage of the seasonal frequency. Moreover, it

must suppress as much of the irregular component as possible. Thus, in the S-WLS design,

the passbands have a desired frequency response (D(v)) equal to one and the stopbands

have a desired frequency response equal to zero.

In addition, in order to help in the optimisation process, we introduce ‘don’t care’ bands,

where the desired response is not specified, between each adjacent passband and stopband.

Their width is adjusted experimentally so that the obtained frequency response is as close

as possible to the desired one. These design parameters are illustrated in Figure 6, where Ns

indicates the assumed seasonal period, which is twelve for monthly data.

As can be observed in Figure 4, the filter is robust to seasonality variations up to a

fraction (a/2) of the assumed seasonal frequency.
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The filter coefficients are obtained by an optimisation process, which minimises the

Euclidean distance between the desired frequency response D(v) and the filter frequency

response P(eiv ).

Since the frequency response of the filter can be computed from its z-transform by

making z ¼ eiv (Diniz et al. 2010), we have that, from Equation (8), it becomes

Pðe ivÞ ¼ ð1 2 e2ivÞ jþ1Gðe ivÞ ð10Þ

¼ e
2i
�
v

2

�
ð jþ1Þ

2i sin
v

2

� 	jþ1

Gðe ivÞ : ð11Þ

Since G(z) can be written as

GðeivÞ ¼ e2ivð pÞETðvÞg ð12Þ

where EðvÞ¼ 1 e2iv : : : e2ivðL21Þ
h iT

and g¼ gð2pÞ gð2pþ1Þ : : : gðL2p21Þ
h iT

,

the filter frequency response becomes

Pðe ivÞ¼ e
2i
�
v

2

�
ð jþ1Þ2iv ð pÞ

2isin
v

2

� 	jþ1

ETðvÞg
ð13Þ

¼ sðv; j; pÞETðvÞg: ð14Þ

where sðv; j; pÞ¼ e2iv
jþ1

2

� �
þp


 �
2isinv

2

� � jþ1
.

In the optimisation process, we will discretise the frequency variable v in the

passband and in the stopband. Thus, it is relevant to consider the possibility that the errors

in the passbands and in the stopbands have different importance. To allow this in the

optimisation process, we assign a weight W(v) to each frequency. It establishes the

relative importance of the frequency response at each frequency v during the optimisation.

For example, if we assign a higher importance to the error in the passband, the transfer

function would tend to be like the one in Figure 7a. In contrast, if the importance of

attenuation in the stopband is much higher than the one in the passband, we would tend to

have the transfer function like the one in Figure 7b. As can be observed, the transfer

function may change considerably.
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Fig. 6. Magnitude of the transfer function of the proposed S-WLS filter.
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Formally, such frequency response weighting is equivalent to minimising the average of

the weighted squared error below:

jerðvÞj
2
¼ j½PðvÞ2 DðvÞ�WðvÞj

2
ð15Þ

where D(v) is the desired frequency response (see Figure 6).

In order to perform this minimisation we discretise v at the set of frequencies

(v1,v2, : : : ,vn). The number n of frequency samples is equal to 401N, where N is the filter

order. Therefore, each of the functions of v can be represented as a column vector

consisting of the samples of the function at the discrete set of frequencies. For example, we

represent P(v) as

P ¼ Pðv1Þ Pðv2Þ: : : PðvnÞ
h iT

: ð16Þ

Using this notation, Equation (14) is equivalent to:

P ¼ Ug ð17Þ

where P is defined in Equation (16) and the matrix U of dimensions n £ L is defined as

U ¼

ETðv1Þsðv1; j; pÞ

ETðv2Þsðv2; j; pÞ

: : :

ETðvnÞsðvn; j; pÞ

2

666664

3

777775
: ð18Þ

If the samples of error (v) and the desired frequency response D(v) are represented

analogously as column vectors, and we define

W ¼

w1ðv1Þ 0 0 0

0 w2ðv2Þ 0 0

..

. ..
. . .

. ..
.

0 0 : : : wnðvnÞ

2

6666664

3

7777775
; ð19Þ
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Fig. 7. Magnitude of the transfer function of the S-WLS filter when N ¼ 145, a ¼ 1/3, d ¼ 1/30 and (a) w0 ¼ 30.

(b) w0 ¼ 0.05.
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then, from Equation (17) to (19), Equation (15) can be expressed in matrix form as

er ¼W½P 2 D� ¼W½Ug 2 D�: ð20Þ

The sum of squared errors can be written as

kerk
2
2 ¼ ke

T
r erk ¼ ðUg 2 DÞ*TW*TWðUg 2 DÞ ð21Þ

which is minimized by the vector

g ¼ U*TW2
s Uþ UTW2

s U*
� �

21ðUT þ U*TÞW2
s D: ð22Þ

Convolving the vector g with the coefficients of the polynomial (1 2 z21) jþ1 (Equation

(8)), we obtain the vector with the S-WLS filter coefficients. The filtering operation is

accomplished by convolving the vector of the S-WLS coefficients with the time series.

The output of this operation is the extracted seasonal component. The adjusted series is

obtained by subtracting this result from the original series.

The S-WLS filters have five design parameters (see Figure 6):

(i) the parameter a is equivalent to the bandwidth around the seasonal frequencies,

being related to the seasonal stability (it depends on the data characteristics);

(ii) the parameter d is related to the width of the ‘don’t care’ band, helping in the

optimisation process;

(iii) the weight (w0) indicates the importance given to the error minimisation in the

passbands compared with the one in the stopbands – large values of weight (w0)

result in gain close to 1 around the seasonal frequencies, but the attenuation outside

the seasonal frequencies decreases;

(iv) the filter size N, representing the number of coefficients of the filter;

(v) the number of frequency samples used during the optimisation. In the filter

experiments we used 401N because it was shown to be enough to provide a good

approximation.

Considering a fixed value for the parameter N, and to a given a, different d and w0 lead

to considerable changes in the filter transfer function. Figures 8a to 8d show the transfer

function for some values of the parameters d and w0 for a ¼ 1/3 and N ¼ 169.

The designed filters should have as much attenuation as possible in the stopband and as

little ripple as possible in the passband. Analysing the transfer functions in Figures 8a and

8b, we can see that, for a given w0, a larger d (that is, a larger transition, or ‘don’t care’,

band), allows a smaller ripple in the passband, as well as a larger attenuation in the

stopband. On the other hand, more of the irregular component can leak through a larger

transition band, yielding a filter that tends to overadjust the seasonality. Consider now a

given d, the bigger the w0, the smaller the ripple in the passband (see Figures 8a, 8c,

Figure 8b and 8d), but the attenuation in the stopband gets worse.

Being aware that different values of the filter parameters result in distinct transfer

functions, it is important to have a methodology for choosing their values. In this work, we

adopted the strategy of analysing the performance of the filter when applied to artificial

series with behaviour similar to the one of real macroeconomic series. This issue will be

dealt with in the following subsection.
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3.2. The Choice of the S-WLS Filter Parameters

As mentioned at the end of last subsection, we choose the filter parameters by analysing

their performance when filtering simulated series. These artificial series should have

features similar to the ones of real macroeconomic series. Therefore, our first step was to

analyse real macroeconomic data, for the purpose of identifying the behaviour of their

moving seasonality. From 144 monthly macroeconomic time series analysed, 53% showed

changing seasonal behaviour, according to the F-test for moving seasonality implemented

in X-13A-S program, considering a p-value ,5%. Those series are listed in SMT-UFRJ

(2014), and were obtained from the OECD (2014), the U.S. Census Bureau (2014), the U.S.

Bureau of Labour Statistics (2014), the IPEA (2014), and the IBGE (2014).

An example of a time series with moving seasonality is the ‘USA Employment Level’

( p-value ,0.1%), from the U.S. Bureau of Labour Statistics (jan/93 to sep/2013). Its

seasonal component, adjusted using X-13A-S program, is shown in the plot in Figure 9.

As can be observed from Figure 9, this seasonal component changes its amplitude and

shape over the months, confirming the changing seasonality. In order to generate monthly

artificial seasonal components with similar behaviour, we used a sinusoidal series whose

amplitude is modulated by another sine wave, as follows:

SðtÞ ¼ A 1þ b sin 2p
t

k

� 	h i
cos 2p

t

12

� 	h i
ð23Þ

where: A is the seasonal amplitude (A [ R); b is related to the rate of change in the signal

amplitude (b [ (0,1)), k is related to the change in the seasonal pattern, and t is the time

index (t ¼ 1, 2, : : :).
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Fig. 8. Magnitude of the transfer function of the S-WLS filter when N ¼ 169, a ¼ 1/3 and (a) d ¼ 1/10 and

w0 ¼ 1. (b) d ¼ 1/100 and w0 ¼ 1. (c) d ¼ 1/10 and w0 ¼ 0.3. (d) d ¼ 1/100 and w0 ¼ 10.
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A seasonal component represented by Equation (23) is illustrated in the time and

frequency domains in Figures 10a and 10b. Its parameters are: A ¼ 1350, b ¼ 20% and

k ¼ 144. In Figure 10a it is possible to identify the amplitude change of the seasonal

component, and in Figure 10b we notice that the variations in seasonality appear as two

sinusoidal components distant ^2p/k rad/month from the seasonal frequency, that is

2p/12 rad/month. Note that the a parameter of the filter (see Figure 6) must be such that

it can properly deal with seasonal frequency variations, that is

a
2p

Ns

$
4p

k
ð24Þ

where Ns is the the seasonal period, that is twelve for monthly data and four for quarterly

data.

It is important to note that the parameter a of the filter gives an upper bound to the

maximum variation of the seasonal frequency that the filter is able to handle. However,

since the filter design method is deterministic, in a practical application one could perform

a spectral analysis of the time series prior to the seasonal adjustment in order to estimate
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the bandwidth of the seasonal variation. With this estimate, one could design a filter that

would have the a parameter large enough to handle the amount of seasonal variation

present in the time series.

An artificial seasonal signal such as the one in Equation (23) can be used to evaluate the

response of the filter for different levels of variation in seasonality, either in amplitude or

frequency.

To determine the appropriate a for the filter, we analysed the seasonal component of a

wide range of macroeconomic time series with moving seasonality. This analysis led us to

a ¼ 1/3 as a good compromise, that is appropriate for most of the analysed series (in time

domain, a ¼ 1/3 corresponds approximately to a range between ten and 14 months). Note

that, in order to accommodate as much variation on the seasonal component as possible, a

should be as large as possible. However, we cannot increase a too much, because the

larger the a, the larger the leak of the irregular component through the passbands around

the seasonal components, which increases the error in seasonality estimation.

After this, we found a good combination of the parameters d and w0, based on the

seasonal adjustment of artificial data containing moving seasonal behaviour (Equation

(23)), trend and irregular components with the same features of the real time series listed in

the webpage in SMT-UFRJ (2014). As observed in Figure 8, for a given a, we have to vary

d and w0 to find a good compromise between the attenuation in the stopband and the ripple

in the passband. In other words, these parameters are responsible, respectively, for the

error in the seasonality estimation for the noiseless case (no irregular component) and for

the error due to the irregular component, as discussed in Subsection 3.1.

The results showed that a good compromise for the parameters a, d and w0 is given by

a ¼ 1/3, d ¼ 1/30 and w0 ¼ 1. The complete methodology used to find the combination

of the filter parameters is exposed in Appendix B.

Regarding the choice of filter length, it is important to note that one of the aims of this

article is to compare the S-WLS filter performance with the one of X-11, considering the

filters in the automatic option. Therefore, we only compared the performances of S-WLS

and X-11 for the same filter lengths.

Figure 11 shows the transfer function of the S-WLS filter together with the one of the

X-11 filter of the same length (N ¼ 145). The dashed line represents the transfer function
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Fig. 11. Magnitude of the transfer function of the S-WLS filter and X-11 filter.
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of the X-11 filter, and the continuous line represents the transfer function of the proposed

S-WLS filter. As can be seen, the bandwidth of the proposed filter around the seasonal

frequencies is larger than the one of X-11, with just a moderate amount of ripple. This

allows estimating the seasonal component more accurately in the presence of instability

in the seasonal frequency. Yet, the attenuation at the stopband is equivalent to the one of

X-11, thus keeping the leaks of the irregular component at a level similar to the one of X-11.

It is important to highlight that, although in this article we determined the design

parameters based on the behaviour of a large amount of time series, this filter can be

designed according to the characteristics of a specific time series.

The MATLAB program used to implement the S-WLS filter is provided in SMT-UFRJ

(2014). In the next section we will present a summary of the experimental results obtained

with the S-WLS filter.

4. Results: the S-WLS Filter Performance

Since real time series have unobserved components, we decided to use artificial ones in

order to better assess the filter performance. This is so because all the parameters of an

artificial series are known and the estimation errors of the seasonal adjustment method

can be precisely computed.

The artificial time series used were generated with several degrees of moving

seasonality, considering some seasonal behaviours that, in aggregate, characterise the

variety of monthly macroeconomic series (see the data in SMT-UFRJ (2014)). Their

generation procedure is fully described in the next subsection.

To identify in which conditions of moving seasonality the proposed S-WLS filter

performs better than the X-11 method, we applied both S-WLS and X-11 filters to

seasonally adjust the mentioned series.

4.1. Data: Application on Artificial Time Series

To assess the ability of S-WLS filter to provide a satisfactory seasonal adjustment for

series with moving seasonality, as well as to determine the conditions in which this filter

performs better that X-11, we used monthly artificial time series with additive

decomposition. These series were divided into two sets: in the first set the series were

composed of a seasonal component with moving seasonality added to an irregular

component; in the second set of data, a trend component following a cubic polynomial

was added to these series, so that the performance of the proposed filters in the presence of

a trend component could be assessed. We have chosen an order three polynomial to allow

a fair comparison with the X-11 method. This is so because X-11 uses the Henderson

filters, which can handle polynomial trend up to order three.

The seasonal component was generated with three parameters (A, b, k) defined in

Equation (23). The choice of the parameters A, b, k, as well as the standard deviation of the

irregular (s), was based on the characteristics of real monthly series, as mentioned before.

As an example, in Figure 12a we show an artificial series with moving seasonality, where

we have a cubic polynomial trend component added to an irregular component with

parameters b ¼ 40%, k ¼ 120, and A/s ¼ 6 (Equation (23)). In Figure 12b we show this

series without the trend component, and Figure 12c shows just the seasonal component.
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In this analysis we used time series of size 400. It is important to note that it lies outside

the scope of this work to extend the series using forecast and backcast. We have done so to

avoid masking the differences among the analysed filters. Therefore, since the considered

filters (S-WLS and X-11) are symmetric, observations at both ends of the series had to be

discarded. It is also important to note that these series were generated without outliers or

missing values, so we could focus just on the filters, suitability to extract seasonality.

We generated 1,200 time series. Each simulation was replicated 100 times, randomising

the irregular component.

4.2. Criteria for Comparison

To assess the ability of S-WLS filter to provide a satisfactory seasonal adjustment for

series with moving seasonality, as well as to determine the conditions in which this filter

performs better that X-11, we compared the accuracy in seasonality estimation of both

filters when applied to the artificial time series. The procedure used in this performance

comparison is described by the following steps:

(1) initially, the artificial series were seasonally adjusted by X-11 method considering the

seasonal moving averages and Henderson trend filters in the automatic procedure of

X-13A-S program;

(2) the X-11 filter that showed the best SNR for the analysed series was chosen and the

filter length was determined;

(3) after determining the filter length, the proposed S-WLS filter with the same length

was applied to the data.
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Fig. 12. Equation (23) with b ¼ 40%, k ¼ 120, and A/s ¼ 6 (a) trend plus seasonal component and irregular,

(b) seasonal component plus irregular, (c) seasonal component.
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The accuracy of each set of estimates (S-WLS and X-11) was measured by comparing

them to the known seasonal component underlying that series. For this we used the signal-

to-noise ratio (SNR – see details in Appendix C), the Mean Squared Error (MSE) and the

Mean Absolute Deviation (MAD). We define the mean of the MSE and the mean of the

MAD as the average of these statistics over 100 replications of the irregular. A one-sided

t-test was applied to the pairs of means of the MSE statistics obtained for S-WLS and X-11

filters, with the alternative hypothesis mS2WLS , mX211 (negative difference). The same

was done considering the MAD statistic.

4.3. Simulation Results

In order to evaluate the conditions under which the S-WLS filters have a better

performance than X-11, we considered different possibilities for the seasonal component.

These characteristics refer to the parameters b, k, and A (Equation (23)), which were taken

from macroeconomic series.

The parameter b is related to the rate of change in the seasonal amplitude, taking values

in the interval (0,1). In real data the maximum value found for b was 52%.

Table 3 shows a performance comparison for values of b from 10% to 80% considering

A/s ¼ 6 and k ¼ 120. Figure 13a illustrates the relation between the MSE of X-11 and of

the S-WLS filter.

As can be seen, the higher the b value, the better the MSE of the S-WLS filter is

compared to the one of X-11. Note that the MSE of the S-WLS filter does not change

substantially with the variation of b, while the MSE of X-11 significantly changes with b.

The same occurs with the MAD and SNR statistics. Table 3 shows that for smaller values

of b, the performance of X-11 tends to improve relative to the one of S-WLS. It is

important to note that the value of b from which S-WLS starts to perform better than X-11

depends on the values of k and A/s.

In order to evaluate the performance of the filters S-WLS and X-11 based on the

variation of k, we set b ¼ 40% and A/s ¼ 6. As the parameter k is related to the change in

the seasonal pattern, the smaller the k, the more unstable the seasonality. In these cases,

S-WLS tends to perform better than X-11. Table 4 shows numerical figures illustrating

this behaviour.

Figure 13b shows that when k decreases, the MSE of the S-WLS filter remains at the

same level, indicating robustness of this filter, while the MSE of X-11 increases.

Considering that the S-WLS filter uses the parameter a ¼ 1/3 (Subsection 3.2), the

minimum value for k that it is able to deal with is 72.

The ratio between the amplitude of the signal (A) and the standard deviation of the

irregular component (s) has a substantial influence on the MSE of the filters, as can be seen

in Figure 13c. In both filters (X-11 and S-WLS), the MSE drops as the ratio A/s increases,

but in the S-WLS this drop is more pronounced. Figure 13c and Table 5 also show that for

large values of A/s, the S-WLS outperforms the X-11 filter. In typical series, the minimum

value observed of A/s was 2.2 and the maximum was 11.7, and 50% of the monthly series

with additive decomposition showed A/s $ 6.

It is important to mention that for different values of k and b, the ratio A/s in which

the proposed filter outperforms X-11 changes. For k ¼ 120, the minimum A/s for which
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S-WLS overperforms X-11 is five; however, if b ¼ 40% and k ¼ 72, then A/s $ 3 is

enough for the S-WLS filter to perform better that X-11. The complete table with all the

possibilities is available in SMT-UFRJ (2014).

Another way to verify the adequacy of the seasonal adjustment filter is to analyse the

spectrum of the deseasonalised series. In Figures 14a and 14b we show the spectrum of

the series deseasonalised by S-WLS filter and by X-11, respectively. The parameters of the

series were the same as those used in the examples above: b ¼ 40%, k ¼ 120 and A/s ¼ 6.

In Figure 14a it is possible to note that there is a peak in the frequency 1/12 cycles/month,

indicating that some seasonality remains in the series after being deseasonalised by X-11,

while in Figure 14b there is no peak, meaning that the seasonality was removed after

applying the S-WLS filter to the data.

The performances of the S-WLS filter and the X-11 are analysed and compared for

artificial time series based on Equation (3), that simulates a seasonal component with

nonstationary changes. The results are presented in Table 6, showing the MSE and MAD

for all combinations of Henderson filter and seasonal moving average filters.

Analysing the results we note that the proposed method (S-WLS) is able to estimate this

kind of non-stationary seasonality better than X-11.

4.4. Data: Application on Real Time Series

In order to illustrate the S-WLS filter on a real-life time series, we applied it to the Austrian

Consumer Price Index (all items non-food non-energy). This monthly time series was

obtained from the OECD (http://stats.oecd.org/index.aspx?DatasetCode¼MEI, extracted

on April 2016), with a time span of 41 years (from jan/1975 to jan/2016). Besides this,
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we used X-11 (X-13A-S program) to seasonally adjust this time series. Then, we compared

the results.

Note that we do not perform series extrapolation at its extremes because the effects of

the asymmetrical weights could mask the differences that we want to analyse.

The seasonal component extracted by X-11 and S-WLS filters is shown in Figures 15a

and 15b, respectively.

We can see that by 1994 the seasonal component of S-WLS is higher than the one of

X-11, showing that it can capture more seasonality than X-11.

5. Concluding Remarks

In this article we have proposed a seasonal adjustment filter design methodology, in which

the main feature is to be robust to changes in the seasonal behaviour. This filter, named

S-WLS, was designed in the frequency domain, based on least squares criteria, allowing the

specification of an adequate passband width for filtering series with moving seasonality.

Several seasonal adjustment filters have been proposed in the literature. Our con-

tribution is in the fact that this robustness is achieved while preserving its automatic

character (so, it can be used to adjust a large amount of series). In addition, its parameters

were determined based on the seasonal behaviour of typical macroeconomic series.

Table 6. Comparison results of S-WLS and X-11 for different Henderson filters and seasonal moving average

filters.

MSE MAD

Henderson filter Seasonal MA S-WLS X-11 S-WLS X-11

9 3 £ 3 0.021 0.066 0.097 0.198
9 3 £ 5 0.019 0.090 0.091 0.230
9 3 £ 9 0.021 0.148 0.097 0.298
13 3 £ 3 0.019 0.063 0.092 0.193
13 3 £ 5 0.020 0.088 0.094 0.228
13 3 £ 9 0.020 0.149 0.096 0.299
23 3 £ 3 0.019 0.049 0.092 0.167
23 3 £ 5 0.020 0.080 0.094 0.213
23 3 £ 9 0.020 0.151 0.096 0.299
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Fig. 14. Spectrum of the deseasonalised series (a) by X-11. (b) by S-WLS.
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With the aim of assessing the performance of our filter, we compared it to the X-11

method, since this is an ad-hoc filter and has been widely used. In the comparisons we took

care to use the S-WLS filters with the same lengths of X-11 (considering the automatic

procedure in X-13A-S). These comparisons were performed both using time domain

characteristics, based on the statistics MSE and MAD, and frequency domain

characteristics, using the SNR and the inspection of the spectrum of the seasonally

adjusted series. In these comparisons, we used simulated monthly data with changing

seasonal patterns based on the ones of the typical macroeconomic series.

Due to space constraints, this study was limited to monthly additive series. Yet, we have

verified that our filter can be easily extended to quarterly data and other periodicities, and

it also performs well in multiplicative series.

The simulation results show that for series with a very slowly changing seasonal pattern,

our filter tends to overadjust the data in comparison to X-11. On the other hand, as the

degree of moving seasonality increases, X-11 tends to underadjust the series (i.e., not to

remove all the seasonality), while our filter shows a good performance. This occurs thanks

to the larger passband width of the S-WLS filter that allows robustness in cases of moving

seasonality, providing a better quality of adjustment than X-11.

Detailing these findings regarding the characteristics of the seasonal component, we

have that:

(i) if the amplitude of the seasonal component is large when compared to the standard

deviation of the irregular component, the proposed S-WLS filter performs better than

X-11;

(ii) the same occurs when the rate of change in the seasonality amplitude is large enough;

(iii) regarding the period of change in the seasonal pattern, the faster the changes in

seasonal pattern, the better is the performance of S-WLS.

In brief, we recommend the X-11 method – in X-13A-S – if the variations in

seasonality are sufficiently small. In cases of stronger variations, the proposed S-WLS

filter performs better. Interesting further investigation would be to extend the current work

for the case of multivariate series, such as is done in Infante et al. (2015) in the context of

testing common seasonal patterns.
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Fig. 15. Seasonal component of Austrian Consumer Price Index (all items non-food non-energy) (a) extracted

with X-11. (b) extracted with S-WLS.
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Appendix A. The X-11 Algorithm in the Frequency Domain

First of all, we define the P £ Q moving average in the frequency domain, using the

Z-transform, as follows:

MPXQðzÞ¼
z

�pþQ22

2

	

PQ

XP21

n¼0

ðnþ1Þz2nþ
XQ22

n¼P

Pz2nþ
XPþQ21

n¼Q21

ðPþQ212nÞz2n

" #
ðA:1Þ

The standard X-11 algorithm as shown in (Dagum 1988) and in (Findley et al. 1998) is

presented below. For this, we consider a monthly time series and additive decomposition:

yt ¼ tt þ st þ it, where yt is the original series, and tt, st, it are the non-observable

components of trend, seasonality and irregular, respectively. The filtering operations are

presented in the frequency domain, using the Z-transform.

Stage 1 Preliminary Estimates

The first estimate of the trend component is obtained by applying a ‘centered 12-term’

moving average M2X12(z), that is

T ð1ÞðzÞ ¼ YðzÞM2X12ðzÞ: ðA:2Þ

The first estimate of Seasonal and Irregular components (SI) is given by

SI ð1ÞðzÞ ¼ YðzÞ2 T ð1ÞðzÞ: ðA:3Þ

One obtains the preliminary estimate of the Seasonal Factor Ŝ (1)(z) by applying a

weighted five-term moving average (M3X3(z12)) to the SI component,

^
S
ð1Þ
ðzÞ ¼ SI ð1ÞðzÞM3X3ðz

12Þ: ðA:4Þ

Then, the initial Seasonal Factor (S (1)(z)) and the preliminary Seasonal Adjustment

(A(1)(z)) are obtained as

S ð1ÞðzÞ ¼
^
S
ð1Þ
ðzÞ2

^
S
ð1Þ
ðzÞM2X12ðzÞ ðA:5Þ

A ð1ÞðzÞ ¼ YðzÞ2 S ð1ÞðzÞ: ðA:6Þ

Stage 2 Seasonal Factors and Seasonal Adjustment

We then perform the intermediate trend estimate by applying the ‘13’-term Henderson

filter (H13(z)) to the seasonally adjusted series, from Equation (A.6),

T ð2ÞðzÞ ¼ A ð1ÞðzÞH13ðzÞ: ðA:7Þ
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The second estimate of the SI component is then given by

SI ð2ÞðzÞ ¼ YðzÞ2 T ð2ÞðzÞ: ðA:8Þ

We then obtain the second estimate of the Seasonal Factor via a seven-term moving

average (‘3 £ 5’ seasonal moving average):

^
Sð2ÞðzÞ ¼ SI ð2ÞðzÞM3X5ðz

12Þ ðA:9Þ

from which the Seasonal Factor (S (2)(z)) and the Seasonally Adjusted series (A(2)(z)) are

obtained as

S ð2ÞðzÞ ¼
^
S ð2ÞðzÞ2

^
S ð2ÞðzÞM2X12ðzÞ ðA:10Þ

A ð2ÞðzÞ ¼ YðzÞ2 S ð2ÞðzÞ: ðA:11Þ

As the operations presented in Stages 1 and 2 are linear, it is possible to represent them

as an equivalent filter of X-11 method for the seasonal adjustment. This filter, from

Equations (A.2) to (A.11), is

A ð2Þ ¼ YðzÞ{1 2 M3£5ðz
12Þ½1 2 M2£12ðzÞ�½1 2 H13ðzÞ

£ {1 2 ½1 2 M2£12ðzÞ�
2M3£3ðz

12Þ}�}:
ðA:12Þ

Appendix B. The Procedure for Selecting the Values of the S-WLS Filter

Parameters

The procedure for selecting the values of the S-WLS filter parameters is summarised in the

following steps below. For further details, the reader is referred to SMT-UFRJ (2014):

B.1. Experimental Determination of the Values For A, b, k (see Equation (23)), and the

Standard Deviation (s) of the Irregular Component

For each real time series, we used the X-13A-S program (considering the X-11 adjustment

mode) to estimate the seasonal component. The behaviour of the seasonal components

of these real time series with moving seasonality was individually analysed. The

specification of the value of a was based on the values of k, using the relation in Equation

(24) exemplified by Figure (10).

B.2. Choosing the Filter Length

The X-11 filter that best fitted the data was chosen based on the theoretical evaluation

of the SNR, for all the combinations of seasonal moving average filters and Henderson

filters in the automatic mode of X-11. For this we used the values of A, b, k and s from step

A.1 to build artificial seasonal signals and irregular components. Then we searched for the

best X-11 filter for a given combination of these parameters, based on the X-11 SNR

(Equation (C.9)).
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B.3. Searching for the S-WLS Parameters

Based on the filter length defined in Subsection 2, we searched for the combination of d

and w0 with largest ratio between the SNRs of S-WLS and X-11 (see Equations (C.8) and

(C.9)). At this stage, we restricted the choice of the lengths of the S-WLS filter to the

possible lengths of the X-11 filter. The parameter a was fixed at 1/3, while d and w0 values

were varied over a wide range. Then, for several combinations of A, k, b (Equation (23))

and s, we chose the S-WLS filters that were, in general, based on SNR better than X-11.

Since there is no single set of parameters that best fits the data, we worked with the top

eight combinations.

B.4. Determination of the Best Parameters for a Wide Range of the Parameter k

At this stage we performed a simulation by filtering time series with moving seasonality,

cubic trend component, and irregular component following a N(0,s 2). In it, 100 replications

of the irregular component were generated for each series. The artificial seasonal

components were created considering 100 values of k (Equation (23)), drawn randomly

from a set of possible values based on the seasonal behaviour of macroeconomic data.

To search for the S-WLS parameters, we first chose the X-11 filter that had the lowest

MSE for the estimation of the seasonal component of each replication of the series. Setting

the same length of the S-WLS filter as the one of X-11, we searched for the parameters d

and w0 that provided good MSE figures.

The S-WLS parameter combination that obtained, in general, the lowest MSE compared

to the MSE of the X-11, was identified as a ¼ 1/3, d ¼ 1/30 and w0 ¼ 1.

Appendix C. X-11 and S-WLS SNRs

When we filter a time series to extract its irregular component, according to the model in

Equation (2), the errors at its output may have three main causes:

(i) residuals of the trend component;

(ii) irregular component at the output of the filter;

(iii) errors caused by the seasonal component.

In our case, the errors in (i) are automatically eliminated by the filter’s structure

(Equation (8)). In Sections B.1 and B.2, we deal with the errors in (ii) and (iii),

respectively.

C.1. Variance of the Irregular at the Output of the Filter (Noise Power)

When a stochastic process x(t) with power spectral density SX(eiv) is input to a filter with

transfer function H (eiv), the power spectral density of its output y(t) is SX(v)jH (eiv)j2

(Diniz et al. 2010). Since an uncorrelated irregular component with variance, or noise

power, s 2
X has a power spectral density equal to s2

X , then the power spectral density of its

output y(t) is

SY ðe
ivÞ ¼ s2

XjH ðe
ivÞj

2
: ðC:1Þ
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Therefore, the variance of the irregular component, or noise power, of the output of the

filter is

s 2
Y ¼

ðp

2p

SY ðe
ivÞdv ¼

ðp

2p

s2
XjH ðe

ivÞj
2
dv ¼ s2

X

X1

t¼21

jhðtÞj
2
: ðC:2Þ

where the rightmost equality comes from Parseval’s theorem (Diniz et al. 2010), with h(t)

being the filter coefficients. In other words, in the case of an uncorrelated irregular

component, the noise power of the irregular at the output of a filter is proportional to the

sum of the squares of its coefficients.

C.2. Errors Caused by the Seasonal Component

(a) The case of the S-WLS filter

Consider Figure C.16, which illustrates a typical frequency response of the S-WLS

filter at the passband (see also Figures 8a to 8d in Subsection 3.1). There, we highlight

two important deviations from the desired unit gain in the passband. The first one is

given by g0, which is the gain at the fundamental frequency. The second one gives the

maximum deviation from the desired response at the passband. Since the desired

response is 1, and the corresponding gain is g1, the maximum deviation is given by

j1 2 g1j.

For an input time series according to Equation (23), since it is composed of

sinusoidal components, the contribution of the above deviations to the noise power is,
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Fig. C.16. Deviations from the desired passband gain for the S-WLS filter.
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in the worst case,

e1 ¼ ð1 2 g0Þ
2 A2

2
þ ð1 2 g1Þ

2 A2b2

4
: ðC:3Þ

where A is the seasonal amplitude (A [ R), b is related to the rate of change in the

seasonal amplitude (b [ (0,1)), k is related to the change in the seasonal pattern, and

t is the time index (t ¼ 1, 2, : : :).

(b) The case of the X-11 filter

As can be seen from the frequency responses of the X-11 filter in Figure 11,

Subsection 3.2, the typical frequency response of the X-11 filter always has a peak at

the seasonal frequency (1/12 cycles per month, for monthly series, and 1/4 cycles per

quarter, for quarterly series). As you move away from the peak, the response

decreases monotonically. Therefore, the two largest deviations from the ideal unit

gain in the passband are given by the two frequencies at the edges of the passband, as

illustrated in Figure C.17, in which the response function differs from the ‘ideal’ by

(1 2 b1) and (1 2 b2). There, the dashed line represents the spectrum of the X-11

equivalent filter, and the continuous line represents the magnitude of the ideal

frequency response for an allowed seasonal frequency variation of a(2p/Ns) around

the nominal frequency (in this case, 2p/Ns or its harmonics).

Using an argument equivalent to the one that led to Equation (C.3), the

contribution of the above deviations to the noise power is, for the X-11 filter,

e2 ¼
A2b2

4

½ð1 2 b1Þ
2 þ ð1 2 b2Þ

2�

2
ðC:4Þ

(c) Computation of the SNR of the S-WLS and X-11 filters

Therefore, if we refer to the sum of the squares of the coefficients of the S-WLS filter

as SQ and to the one of the X-11 as S, then we have, from Equations (C.3) and (C.4),
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Fig. C.17. Deviations from the desired passband gain for the X-11 filter.
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that the total noise power at the output of S-WLS and X-11 filters is given by:

eS2WLS ¼ ð1 2 g0Þ
2 A2

2
þ ð1 2 g1Þ

2 A2b2

4
þ SQs2 ðC:5Þ

eX211 ¼
A2b2

8
½ð1 2 b1Þ

2 þ ð1 2 b2Þ
2� þ Ss2: ðC:6Þ

Since the seasonal signal in Equation (23) is composed of three sinusoids, its average

squared value is given by

Es ¼ A2 1

2
þ

A2b2

4

1

2
þ

A2b2

4

1

2
¼

A2

2
1þ

b2

2

� �
: ðC:7Þ

Therefore, from Equation (C.5) to (C.7), we have that the SNRs of the S-WLS and X-11

filters are:

SNRS2WLS ¼

A2

2
1þ

b2

2

� �

ð1 2 g0Þ
2 A2

2
þ ð1 2 g1Þ

2 A2b2

4
þ SQs2

ðC:8Þ

SNRX211 ¼

A2

2
1þ

b2

2

� �

A2b2

8
½ð1 2 b1Þ

2 þ ð1 2 b2Þ
2� þ Ss2

: ðC:9Þ
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