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In this article we propose a simple and versatile method for limiting disclosure in continuous
microdata based on Principal Component Analysis (PCA). Instead of perturbing the original
variables, we propose to alter the principal components, as they contain the same information
but are uncorrelated, which permits working on each component separately, reducing
processing times. The number and weight of the perturbed components determine the level of
protection and distortion of the masked data. The method provides preservation of the mean
vector and the variance-covariance matrix. Furthermore, depending on the technique chosen
to perturb the principal components, the proposed method can provide masked, hybrid or fully
synthetic data sets. Some examples of application and comparison with other methods
previously proposed in the literature (in terms of disclosure risk and data utility) are also
included.
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method; propensity score.

1. Introduction and Motivation

Limiting disclosure risk is a very important and hard task that agencies that publish

collected data must deal with. The objective is to prevent users from being able to learn

personal information about a certain individual (data can refer to people, enterprises, etc.)

from any published data product. Statistical Disclosure Control (SDC) methods provide

means of protecting the providers’ confidential data, and approaches range from the

simplest methods such as noise addition (see Brand (2002) for a survey and comparison of

different SDC methods based on noise addition) to more complex ones such as synthetic

data generation based on multiple imputation (see Rubin 1993).

Roughly speaking, SDC methods can be divided into three main categories: masking

methods, (fully or partially) synthetic data generators, and hybrid data generators (for a full

review on SDC methods see Hundepool et al. 2012). Masking refers to the process of

producing a modified safe data set from the original, whereas synthetic data generators

replace the original data for all or some variables with modeled (synthetic) data designed to
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preserve specified properties of the original data. Finally, hybrid data generators combine

original and synthetic data in order to obtain protected data sets closer to the original one.

Regarding masking methods, Duncan and Pearson (1991) showed that many of them,

such as noise addition or microaggregation, fall into the broader category of “matrix

masking”, which consists of masking a matrix X as: ~X ¼ M1XM2 þM3, where ~X is the

masked matrix, M1 is a record-transforming mask, M2 is a variable-transforming mask,

and M3 is a displacing mask. For instance, simple noise addition is a particular case of

matrix masking where M1 and M2 are identity matrices and M3 is a matrix containing

realizations of a specific random vector. Another example of matrix masking is

microaggregation (which groups similar records together and releases the average record

of each group), where M2 and M3 are the identity and zero matrices, respectively, and M1 is

a block diagonal matrix such that the elements in a block can be considered similar and,

therefore, are aggregated together.

An interesting method that is worth mentioning, and which does not belong to the

previous category, is data swapping, which consists of swapping the values of the records

univariately. So as to maintain the variance-covariance matrix as close as possible to the

original one, rank swapping, a particular case of data swapping proposed by Moore (1996),

limits the range of swapping values to the ones whose rank does not differ more than a

prespecified threshold. As noted by Muralidhar et al. (2014), data swapping has a high

level of user acceptance, as the values themselves do not suffer any modification and the

unidimensional distributions are preserved.

As for synthetic data generators, the first and simplest method in this category was

proposed by Liew et al. (1985) and consists of releasing a random sample from the

statistical distribution underlying the original data set. However, it is not always possible

to find the underlying distribution. Alternatively, Rubin (1993) proposed to generate

synthetic data sets by means of the multiple imputation methodology, considering the

records to be protected as missing and imputing them. Although this method provides data

sets with very high utility, it is quite complex (see Raghunathan et al. (2003) or Drechsler

(2011) for more information on multiple imputation-based SDC methods). Therefore,

simpler alternatives to generate synthetic data have been explored, such as the Information

Preserving Statistical Obfuscation (IPSO) proposed by Burridge (2003). The IPSO method

basically sustitutes the original confidential variables with draws from a multivariate

normal distribution with parameters obtained conditional on the non-confidential

variables. Another alternative includes the synthetic data by bootstrap in Fienberg (1994),

which has some similarities with the methods in Liew et al. (1985) and Rubin (1993), and

consists of releasing a random draw from the smoothed empirical cumulative distribution

function of the original data.

When this kind of SDC methods are applied, it is possible to release only synthetic

variables (fully synthetic data) or to replace only the most sensitive or identifying

variables with synthetic ones and release the remaining original ones (partially synthetic

data). The main advantage of synthetic data is that, at first glance, no respondent re-

identification seems possible as the data are artificial. However, this is not always true, as

synthetic values can be very close to original ones if overfitting takes place. Nevertheless,

as stated by Hundepool et al. (2012), the intruder never knows if a unit in the released data

was actually in the original data set.
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Some authors, as noted in Muralidhar and Sarathy (2008), argue that the utility of

synthetic data sets is limited to the properties initially selected by the generating method.

For this reason, and as an attempt to obtain synthetic data sets closer to the original ones,

hybrid data generators have been proposed. Hybrid data methods combine original and

synthetic data and, depending on how the combination is computed, they can lead to data

closer to the original data or to the synthetic data (the definition of “combination” is

different depending on the author). Interesting references of this kind of methods are

Muralidhar and Sarathy (2008) and Domingo-Ferrer and González-Nicolás (2010), both of

whom proposed methods that exactly preserve the mean vector and the covariance matrix

of the original data and use the IPSO method in Burridge (2003) as a special case.

The method in Muralidhar and Sarathy (2008) (named MS in the sequel) essentially

proposes to substitute the confidential variables by a convex linear combination of the

original variables and the synthetic ones given by the IPSO method. Regarding the method

in Domingo-Ferrer and González-Nicolás (2010), which is known as MicroHybrid (MH),

the idea is to obtain the same groups as with the classical microaggregation but, instead of

releasing an aggregated value of the records in the group, they propose to apply the IPSO

method independently in each group and release the resulting synthetic values. Note that,

for both cases, the extreme cases imply releasing the original data set or a partially

synthetic one (as only the confidential variables are protected when applying these

methods).

The quality of an SDC method depends on the data utility and the disclosure risk of the

output data set. However, no general measure exists to evaluate those features as,

depending on the posterior use, preservation of some data characteristics may be more or

less important (see, for example, Sarathy and Krishnamurty 2002). Mateo-Sanz et al.

(2005) proposed the probabilistic information loss index in order to measure the

preservation of certain statistics, such as the mean or the variance. Similarly, Woo et al.

(2009) proposed to use propensity scores as a measure of global data utility. From the

disclosure risk perspective, a very common measure is distance-based record linkage,

which was first proposed in Pagliuca and Seri (1999). All these methods will be further

explainedand used in Section 4.

In this article we propose a simple method for limiting disclosure in continuous

microdata based on Principal Component Analysis (PCA). The use of PCA is not new in

the SDC literature. Banu and Nagaveni (2009) proposed a privacy-preserving clustering

method that released masked data obtained from projecting the original data onto a

transformation matrix built from the principal component loading matrix (which is

obtained from a subset of the original data). However, the utility of this method is limited

to cluster analysis, as it permits obtaining similar clusters but does not preserve any other

statistic.

Instead of perturbing the original variables directly, the proposed method alters the

principal components, as they contain the same information but are uncorrelated, which

permits working on each component separately. Due to this last fact, the computation cost

can be reduced, as it is less computationally intensive to work univariately than

multivariately. However, it is important to highlight that the method is only applicable to

continuous data, as it makes use of the classic PCA, which also requires continuous

variables. Extending the methodology to categorical variables is still an open question.
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The main advantages of the proposed method are:

1. Along the lines of the IPSO method in Burridge (2003) and the one proposed by

Muralidhar and Sarathy (2008), the proposed method aims to preserve the mean

vector and covariance matrix, as they are sufficient statistics for the multivariate

normal distribution. Moreover, even in the absence of normality, many parametric

statistical analyses (such as linear regression) will lead to the same result if those

statistics are preserved.

2. The proposed method is very flexible, as it permits choosing any (univariate or

multivariate) SDC method on the principal components as long as they preserve (at

least asymptotically) the mean and variance of the principal components. In this

sense, the method can provide masked, hybrid, or fully synthetic data sets depending

on the choice of method. This is a great advantage as it gives the user the freedom to

choose the kind of data set they need.

3. The proposed method is also fast, as the protection can be applied univariately, thus

reducing computation times and making the protection process easier and more

effective.

4. If one of the variables is a linear combination of the others, the number of

components is less than the number of the variables and this variable is not involved

in the protection process. This, however, does not represent a problem, because a

protected version of this variable can still be obtained by adding the corresponding

protected variables.

5. Some of the methods proposed in the literature (such as the IPSO method proposed

by Burridge 2003) impose the same level of perturbation in all the variables of the

data set. The proposed method, on the other hand, allows a choice of different levels

of perturbation by means of the weights of the original variables in the principal

components.

6. The proposed method is very simple and, therefore, more accessible to the public

than more complex alternatives. Nevertheless, it still leads to a good balance between

data utility and disclosure risk, as will be shown in Section 4. Finally, its

computational effort is linear in the number of records, making it suitable for large

data sets (see Subsection 3.4).

The article is organized as follows. In Section 2, we provide background on Principal

Components Analysis, including specific details on procedures. Section 3 is devoted to the

proposed model and analysis of its characteristics. Some examples of application and

comparison with other methods previously proposed in the literature (in terms of

disclosure risk and data utility) are shown in Section 4. Section 5 includes some guidelines

for the application of the proposed method. Finally, in Section 6 we give some conclusions

and future research lines.

2. Principal Component Analysis

In this section, we review PCA and how it is performed. PCA is a classic statistical

technique designed to identify the causes of data variability and to order them by

importance. PCA builds a linear transformation that chooses a new orthogonal coordinate

Journal of Official Statistics18



system and changes the data coordinates such that the largest variance is captured by the

first axis, the second largest by the second, and so on. For a more comprehensive

description of PCA, see Jolliffe (2002).

Mathematically speaking, the principal components are found as follows. Let X be the

n £ m matrix containing n observations of m random variables with column-wise zero

empirical mean. PCA seeks to find a linear transformation of X as

Y ¼ XW; ð1Þ

where Y is the transformed data and W is the transforming matrix, whose columns (wi) are

the unit loading vectors.

The variance of the first principal component (y1) is given by:

y1 ¼ w 01X 0Xw1: ð2Þ

As we look for the most informative component, w1 must lead to a vector y1 with maximum

variance, that is,

w1 ¼ arg
t=ktk¼1
max {t0X 0Xt} ¼ arg

t
max

t 0X 0Xt

t0t

� �
: ð3Þ

Note that the right-most quotient corresponds to the renowned Rayleigh quotient, which

reaches its maximum value lmax (the highest eigenvalue of X 0X) when t is the

corresponding eigenvector. Therefore, y1 has maximum variance when w1 equals the

eigenvector associated with the highest eigenvalue of X 0X.

Following the same idea, it can be shown that the remaining loading vectors are given

by the remaining eigenvectors of X 0X sorted by importance (variability) according to its

corresponding eigenvalue.

To sum up, the principal components of an n £ m matrix X are given by the columns of

Y ¼ XW such that the columns of W are the eigenvectors of X 0X.

It is important to highlight the fact that the variables need to be standardized prior to

applying PCA, if they are not in the same unit (i.e., height and weight) or if, although being

in the same unit, they have greatly varying sizes (i.e., state level population and number of

employed persons), as the components are obtained as sums of the original variables.

3. Proposed Method

The proposed method consists of obtaining the principal components of the original data,

to later perturb them. The reason to choose to work with the principal components is

twofold: first, they are uncorrelated, which permits modifying them independently without

perturbing the variance-covariance structure; and second, the components can be sorted

by importance, which permits us to choose what components to alter, based on this

information. Furthermore, the components are obtained by linear combinations of the

original variables and, therefore, when perturbing a certain component, we are perturbing

mainly the original variables with corresponding higher weights. There might be cases

where the data owner is interested in perturbing a very sensitive variable more than others.

In that case, we can analyze the scores (or weights) of the original variables on the
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components and decide to perturb only those with highest weights for the sensitive

variable.

By using this method, all the variables in the data set need to be considered as,

otherwise, the correlation structure with other variables could be destroyed. However, as

mentioned above, it is possible to alter the sensitive variables more than the nonsensitive

ones by means of a careful selection of the components to be altered. Note that it is not

possible to leave any variables unchanged (unless no correlation exists between the

confidential and nonconfidential variables).

3.1. Illustrative Example

In this section we show an example of the PCA-based method, in order to better illustrate

the following sections. Consider the data set in Table 1, which consists of three continuous

variables X, Y, and Z, such that X and Y are highly correlated, and Z is negatively correlated

with both X and Y. Table 1 also contains the principal components (PCs) of the data set.

The weights of the variables on the principal components are:

As already stated, the basis of the method is to perturb the principal components. This

perturbation can be made univariately because of the uncorrelation of the principal

components (note that the correlation matrix of the PCs in Table 1 is the identity matrix).

In order to illustrate the method, we apply data swapping to the first components (the one

with highest variance) and undo the transformation given by the matrix in Equation (4).

The data swapping process consists of randomly sorting the observations, which is done by

generating a random vector whose elements range from 1 to n and by rearranging the

observations according to this new order.

The results are shown in Table 2, where the perturbed components are on the left and the

resulting variables are on the right.

As can be seen, compared with Table 1, the preservation of means is exact, while

standard deviations and correlations are very close to the original values. Regarding

protection, there are two records that remain unchanged, while the remaining ones get very

different values. The reason why two records have remained unchanged is that there are

only ten records altogether and, therefore, the swapping can lead to no changes with a

relatively high probability taking into account that we have perturbed only the first

component. If more components are perturbed, this probability decreases, as the

probability of not swapping an observation equals 1
n
.

Table 3 shows the results obtained if PC1 and PC2 are swapped and when all the three

components are swapped. Note that in both cases the level of protection and data utility is

high. Moreover, no record is left unchanged and the contribution of PC3 is minimal as it

contains less than four percent of the total variability (the records in the right table are not

very different from those in the left one).
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3.2. Mathematical Formulation

Let X be the n £ m matrix containing the n observations of the m random variables such

that m and s are the X’s mean and standard deviation vectors, respectively.

In order to correctly apply PCA, we first need to standardize X. In matrix form this is

equivalent to:

X1 ¼ ðX 2 MÞS; ð5Þ

where X1 is the standardized data set, M is an n £ m matrix with rows equal to m and S is a

m-diagonal matrix with non-zero elements equal to sjj ¼ 1=sj.

Next, we obtain the scores X2 of the observations on the principal components as:

X2 ¼ X1A; ð6Þ

where A is a matrix whose columns are the normalized (to unit vectors) eigenvectors of

X 01X1.

As already stated, instead of perturbing the data directly, the basis of the proposed

method consists of perturbing the scores X2. Mathematically speaking, the perturbation

process can be written as:

X3 ¼ X2Bþ e; ð7Þ

where B is an m £ m diagonal matrix with ones in the rows corresponding to the mc

components left unchanged and zeros otherwise and e is an n £ m matrix with mc columns

equal to zero and the remaining (mr) ones contain the variables that are replacing the

original principal components.

Finally, we obtain the masked data ~X by undoing the PCA transformation and

recovering the original means, variances and covariances:

~X ¼ ðX3A 0S21Þ þM; ð8Þ

where A0 is the transpose of A and S21 is the inverse of S. Recall that matrix A is composed

of normalized eigenvectors and, therefore, its inverse equals its transpose.

It is important to highlight that any SDC method can be applied as long as it preserves

the properties of the original principal components, that is, the mean vector is equal to zero

and it has the same diagonal variance-covariance matrix (note that the preservation of

higher moments in the perturbed components leads to a better data utility of the final data

set). The “protected” components obtained when applying the SDC method form matrix e

in Equation (7). Some examples of possible SDC methods are random scores, noise

addition, and swapping.

An interesting feature of this method is that depending on the method chosen to perturb

the principal components, we can get masked, hybrid or fully synthetic data. In particular,

if a masking method is chosen to alter the principal components, such as data swapping

(Moore 1996), the resulting data set is masked, as the original values have been modified

but not substituted. Similarly, if the components are substituted by random vectors (by

means of the methodology in Liew et al. (1985) or Fienberg (1994)), we get fully synthetic

data sets if no component is left unchanged and hybrid data sets, otherwise.
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As previously noted, the principal components can be sorted by importance based on

quantity of variability and, therefore, perturbing the first component does not lead to the

same level of protection and data utility of the output data as perturbing the last

component. The larger the total weight of altered components, the lower the data utility

and disclosure risk.

Note that one remarkable difference with regard to this method compared to others

previously suggested is that the level of perturbation is fixed, in the sense that we can only

modify a certain number of components between 1 and m, whereas in other methods, such

as noise addition, any quantity of noise can be added. It is important to take into account

that, although the level of perturbation of the components is not limited, the effect on the

final data set is, as the weight of the components is fixed. In other words, if only the “last”

component is perturbed, even if the protected component has no resemblance to the

original one, the effect on the final data set will be small, as only a small portion of the

original variability has been changed.

3.3. Verifying the Preservation of the Mean Vector and the Variance-Covariance Matrix

Preserving the mean vector and the variance-covariance matrix of the original data is a

very important feature of a masking method which is very common in the SDC literature.

For this reason, we will now show that the proposed method preserves both the mean

vector m and the variance-covariance matrix SX .

So as to facilitate the computations, we first show the direct relation between X and ~X,

following from (5)-(8):

~X ¼ ½ðX 2 MÞ SABþ e�A 0S21 þM ¼ ðX 2 MÞ SABA 0S21 þ eA 0S21 þM: ð9Þ

First, we deal with the mathematical expectation of the masked data set ~X:

E½ ~X� ¼ E½ðX 2 MÞ SABA 0S21 þ eA 0S21 þM�

¼ ðE½X�2 E½M�Þ SABA 0S21 þ E½e�A 0S21 þ E½M�

¼ ðm 2 mÞ SABA 0S21 þ 0 A 0S21 þ m ¼ m:

ð10Þ

Next, we focus on the variance of ~X. From now on, SX refers to the variance-covariance of

data set X.

S ~X ¼ ðSABA 0S21Þ0SXðSABA 0S21Þ þ ðA 0S21Þ0SeðA
0S21Þ þ 0

¼ ðS21Þ0AS1A 0S21 þ ðS21Þ0ASeA
0S21

¼ ðS21Þ0AðS1 þ SeÞA
0S21:

ð11Þ

where S1 ¼ B 0A 0S 0SXSAB ¼ B 0SX2
B.

Without loss of generality, we assume that the components have been sorted in such a

way that the ones that remain unaltered are the first ones and the altered ones are the

last ones. Note that S1 and Sehave a special block structure as shown below. This is due to

the fact that S1 is obtained by multiplying and premultiplying SX2
, which is a diagonal
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matrix as it refers to the variance-covariance matrix of the principal components,

by matrix B, which is a diagonal matrix with zeros in the rows associated to altered

components. On the other hand, e has been defined to be an n £ m matrix with mc columns

equal to zero and the remaining (mr) ones replacing the original principal components.

Therefore, the variance and covariance associated with the “zero” columns are also zero

and we have forced the altered components to maintain the variances of the original

principal components. Then,

,

,

where, abusing notation, we have defined SX2
½mc� and SX2

½mc� to be the submatrices

associated to the mc unaltered components and mr to the altered components, respectively.

Taking (12) and (13) into account, we have

,

and, thus,

S ~X ¼ ðS
21Þ0ASX2

A 0S21 ¼ SX: ð15Þ

The perturbing method chosen for the principal components determines whether the first

and second moments are exactly or asymptotically preserved. For example, if we choose to

substitute component i with a realization of a random variable with expectation and

variance equal to mi and s2
i , respectively, it is very unlikely that the observed mean and

variance equals mi and s2
i . In that case, the original mean vector and variance-covariance

matrix are asymptotically (but not exactly) preserved. On the other hand if we choose

swapping – as the values are the same – the mean is preserved exactly. However, this is

not the case with the variance-covariance matrix, as the covariance of the perturbed

principal components is not numerically zero.

Although, as previously stated, many perturbing methods are valid, we suggest using

data swapping and random draws from the smoothed empirical cumulative distribution

functions (see Fienberg 1994) for masking and hybrid/synthetic data sets, respectively, as

they permit maintaining not only the first and second moments but the whole distribution

on the univariate components. Note that rank swapping is not necessary here, as the

components are uncorrelated and, therefore, the covariance structure does not need to be

preserved. This, in turn, helps to preserve the distribution of the original data. Moreover,

note that when the number of altered components is high, the resulting records do not

clearly represent any of the original records. These are obtained by means of the

components’ scores of other records, selected randomly and, thus (although the resulting

data set is not strictly synthetic), it does bear some similarity to the synthetic data

generation philosophy.
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3.3.1. On the Preservation of the Third Moment

In this section we deal with the preservation of the third moment (m3), which is related to

the symmetry of the variables. We remind the reader that the third moment is given by:

m3ðXÞ ¼ E½ðX 2 EðXÞÞ3�; ð16Þ

and, if X ¼ Y þ Z, then it holds that:

m3ðXÞ ¼ m3ðYÞ þ m3ðZÞ2 6CovðY;ZÞðEðYÞ þ EðZÞÞ

þ 3ðCovðY;Z2Þ þ CovðY2;ZÞÞ:
ð17Þ

The proposed method essentially decomposes the original variables into some

uncorrelated ones and then undoes the decomposition. Without loss of generality, let’s

assume that we want to preserve the third moment of an original variable X, whose

principal components are Y and Z. As the principal components are uncorrelated, it holds

that:

m3ðXÞ ¼ m3ðYÞ þ m3ðZÞ þ 3 ðCovðY;Z2Þ þ CovðY2;ZÞÞ; ð18Þ

and, therefore, the third moment of X is preserved as long as the addends on the right-hand

side are preserved. If a perturbation method is chosen such that the third moment of Y and

Z are preserved (as univariate data swapping), then the preservation of m3ðXÞ depends on

the preservation of CovðY;Z2Þ and CovðY2;ZÞ, which, in turn, depends on the number and

weight of the perturbed components.

It is important to highlight that, if the principal components are independent (and not

only uncorrelated), it holds that:

m3ðXÞ ¼ m3ðYÞ þ m3ðZÞ; ð19Þ

and, in that case, the preservation of the third moment of the original variables can be

ensured, as the perturbed principal components are also independent. If multivariate

normality holds, the principal components are also normal (as a consequence of the infinite

divisibility of the normal distribution) and, in that case, uncorrelation implies

independence. However, although generally uncorrelation does not imply independence,

multivariate normality is not the only case.

To sum up, the preservation of the third moment depends on the preservation of the third

moment of the perturbed principal components, as well as on the independence of the

principal components.

3.4. Computational Effort

As has been shown, the proposed method essentially consists of obtaining the eigenvectors

of the correlation matrix (or equivalently the variance-covariance matrix of the

standardized data set) and then applying products and/or sums to the original matrix data

X and the transformation matrix A. Finally, there might be a random number generation

phase associated with the altering components phase. Therefore, the running time of the

method is O(nm2), where n is the number of records and m is the number of variables.
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Generally, the number of records is much larger than the number of variables and,

therefore, the proposed method is suitable for large data sets.

4. Empirical Results

In this section a simulation study for the PCA-based method is shown. In particular, we

evaluate its performance in terms of data utility and disclosure risk in two scenarios:

a) when it is applied to get a masked data set that protects all the variables in the data set, and

b) when only a subset of variables needs to be protected and the output is a hybrid data set.

The results have been obtained using R project (R Core Team 2014) and, more speci-

fically, package sdcMicro (Templ 2008) when possible. Some ad hoc functions and programs

also needed to be developed. Data sets Tarragona and Census have also been provided

by this package. Regarding computation times, anonymizing a data set (of up to 55,000

records and 35 variables) by means of the proposed method takes less than one second on a

Toshiba satellite L50-B-11W laptop, Intel Core i7-870 1.8GHz, 4MB, RAM: 8GB.

4.1. Fully Masked Data Set

In this case, the proposed method is applied to the Tarragona data set in Brand et al.

(2002). It consists of 13 quantitative variables associated to 832 real companies in the

province of Tarragona in 1995.

For the sake of completeness, we compare the results derived from the proposed method

with two well-known masking methods that have been identified as well-performing in

terms of data utility and disclosure risk: rank swapping (see Domingo-Ferrer and Torra

(2001) or Jiménez et al. (2014)) and microaggregation plus noise addition (see Oganian

and Karr (2006), or Woo et al. (2009)).

Following the ideas of Domingo-Ferrer and Torra (2001) or Jiménez et al. (2014), we

compute a score as the mean average of disclosure risk and data utility in order to be able

to compare the three methods. The disclosure risk and data utility measures also consist of

a score made of the mean average of two different criteria. In particular, disclosure risk

is evaluated by means of distance-based record linkage and interval disclosure (see

Domingo-Ferrer and Torra 2004), while data utility is computed based on the Probabilistic

Information Loss (PIL) measure proposed by Mateo-Sanz et al. (2005) and the propensity

scores proposed by Woo et al. (2009). In the following we briefly described these four

measures:

. Distance-based record linkage (DBRL): DBRL is one of the most common methods

for evaluating the disclosure risk of a masked data set. It consists of obtaining the

closest masked record (in terms of normalized euclidean distance) to all original

records and determining how many of them were generated by the corresponding

original record. As noted in Domingo-Ferrer and Torra (2004), variables should be

standardized when using distance-based record linkage in order to avoid scaling

problems. This index can take values between zero percent (no record linkage) and

100% (total record linkage).

. Interval disclosure (ID): It consists of determining the proportion of original records

that lay in an interval whose center is the corresponding masked record. The extremes
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of the interval are given by the two masked values whose ranks differ ^ p percent of

the total number of records. The measure associated with ID is obtained by averaging

this proportion for p, taking values from one percent to ten percent with one percent

increments. In the simulation study that follows, we have substituted the

corresponding masked record by the closest record in order to be able to analyze

the attribute disclosure, that is, how much the intruder can learn if re-identification

takes place. Moreover, as noted previously, when the number of altered components

is large, masked records have a very weak connection with the corresponding original

ones (this also happens for microaggregation plus noise addition when the parameter

is large). In this way, we can work with an homogeneous measure independently

of the parameters of the method. This index also takes values between zero percent

(no attribute disclosure) and 100% (total attribute disclosure).

. Probabilistic Information Loss (PIL): It consists of evaluating, from a

probabilistically point of view, the information loss suffered from the masking

processes based on the observed difference between some statistics obtained from the

original and the masked data set. Given a certain parameter u and its masked value û,

the probabilistic information loss can be measured as the standardized sample

discrepancy as follows:

pilðuÞ ¼ 2�P 0 # Nð0; 1Þ #
ju 2 ûjffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðûÞ
p

 !
; ð20Þ

where N(0,1) is a standardized normal distribution. The variances of the considered

statistics are given in Mateo-Sanz et al. (2005). The final PIL measure is given by

the mean average of the pil associated with the means, variances, covariances,

Pearson’scorrelation coefficients and quantiles. The pil given by Equation (20) takes

values between 0 (no information loss) and 1 (total information loss) and, therefore,

the total PIL also takes values in that range.

. Propensity scores (PS): Propensity scores were adopted from the statistical literature

by Woo et al. (2009) in an attempt to define new global measures of data utility. In the

observational study literature, propensity scores are the probabilities of being

assigned to a treatment, given other variables (covariates). When two large groups

have the same distributions of propensity scores, the groups should have similar

distributions on the covariates. Therefore, one can consider the masked data as the

treatment and estimate the probability of being assigned to the treatment (the

propensity scores) for both the masked and the original data sets. If the distributions

of the propensity scores of both sets are similar, we can conclude that the distributions

of the original and masked data are also similar and, therefore, the data utility should

be relatively high. Woo et al. (2009) propose to evaluate the similarity of the

propensity scores using the following formula:

PS ¼
1

N

XN

i¼1

ðp̂i 2 0:5Þ2; ð21Þ

where N ¼ 2n and p̂i is the propensity score for unit i. Note that when the original and

the masked data sets have similar distributions, it is difficult to distinguish them and,
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therefore, the propensity scores are close to 0.5 and PS equals 0. On the other hand,

if the distributions are very different, they are perfectly distinguishable and the

propensity scores for the original and masked data take approximately value 0 and 1,

respectively. In that case, PS is close to 0.25. The main disadvantage of this method

is that it relies on the choice of the model used to estimate the propensity scores.

Nevertheless, the authors suggest to use a logistic regression using a second-order

polynomial in all the variables, as well as in their interactions. In this article, we have

considered the model suggested by the authors as well as a logistic regression with

third-order polynomials in all the variables, and the same interactions.

It is important to highlight that we are considering all the variables at the same time in

the disclosure risk phase, which is equivalent to assuming that the intruder has infor-

mation about all the variables in the data set. Therefore, as this is rarely the case, the

disclosure indexes should be taken as worst case ones. However, this is done with all

the three methods and, thus, this fact will not affect the conclusions derived from the

comparison.

On the other hand, all the indexes, except for the propensity scores, lay between 0 and 1

and, thus, when computing their mean average we get a score that also lies between 0

and 1. To overcome the inconvenience of the propensity score, we multiply it by a factor of

four, thus obtaining an index that takes values between 0 and 1. Finally, note that the larger

the score is, the worse the method is, as it has higher disclosure risk and less data utility.

We have decided to rely on several data utility and disclosure risk indexes, as each of

them measures a different concept and permits obtaining a global score. Table 4 shows the

results, including the four indexes explained previously (the propensity score is shown

with its two variants) and the resulting score (two different scores arise because of the

propensity score), of a simulation study performed in order to be able to evaluate the

results of our method and compare it with microaggregation plus noise and rank swapping.

As the three methods depend on random values in one way or another, and thus, very good

or bad results can be obtained by chance and mask the real behavior of the method, we

have to resort to a simulation study, which takes into account several realizations.

In order to be able to determine the better performance of a method, comparing the

mean values of the score is not enough. For this reason, we have computed the confidence

interval (CI) of the scores of the methods along with the mean average, based on 100

realizations. As the score does not belong to any known distribution, we resort to bootstrap

techniques, in particular to the Percentile Bootstrap CI. The bootstrap method, which is

one of a broader class of resampling methods, uses Monte Carlo sampling to generate an

empirical sampling distribution of the estimate (see Efron and Tibshirani (1993) for more

details on bootstrap methods).

For the PCA-based method, parms refers to the number of components that have been

swapped starting by the one with more variance. The total proportion of altered variance is

also shown in parentheses. With respect to microaggregation plus noise, parms refers to

the number of records grouped together in the microaggregation phase. Finally, parms

refers to the maximum relative rank difference allowed in rank swapping.

The skewness and kurtosis relative bias has been calculated as well, and, in addition, the

mean average for all the variables and all the realizations is shown in Table 4.
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The smallest score for each of the methods has been boldfaced. It can be seen that,

independently of the chosen propensity score, the smallest scores are taken by the

“microaggregation plus noise” and the proposed methods. Rank swapping, which has been

recognized as a very well-performing technique by Domingo-Ferrer and Torra (2004)

among others, leads to worse results, as its scores are higher and its confidence intervals

do not overlap with those of the other methods (this is due to the fact that the variance-

covariance matrix is not very well preserved). However, rank swapping is the only method

that leads to zero bias on the skewness and kurtosis of the variables.

Regarding second-degree propensity scores, we see that the best results are around 0.17

for both the “microaggregation plus noise” and the proposed methods. For the PCA-based

method, the best balance between data utility and disclosure risk is taken for a high number

of altered components, in which case the DBRL gets very low values because of the

“synthetic” aspect of the resulting masked data set. Furthermore, the data utility from the

PS perspective does not decrease dramatically with increasing numbers of swapped

components. However, the CIs of Score2 almost coincide for more than 94% of the

variability perturbed. This is due to the fact that the utility remains almost constant and the

risk, although it decreases with the number of components, is already very small.

As for microaggregation plus noise, which has been recognized as a very well-performing

method in Woo et al. (2009), the lowest score takes place for parms ¼ 5, although the

results are not statistically different up to parms ¼ 10, as can be deduced from the CIs. It

can be seen that this method provides better attribute disclosure protection, but worse

record linkage compared with the PCA-based method, and that it has a slightly bigger score.

As regards third-degree propensity scores, we can see that the utility is worse, as both

“microaggregation plus noise” and the PCA-based methods fail at preserving third

moments. Note that the relative bias is similar for both methods for the best parameters and

increases with the number of perturbed components and the size of the groups. For this

reason, the proposed method now reaches its best value for parms ¼ 3, as the bias is

smaller. Nevertheless, it can be seen that very similar results (in fact, they are not

statistically different) are obtained for any number of components larger than three.

Again, the best results are reached for small parameters for the “microaggregation plus

noise” method. Its CI overlaps with those of the proposed method, meaning that the

balance between data utility and risk disclosure achieved is similar for both methods.

All in all, the proposed method has led to statistically similar results to “microaggregation

plus noise”. In spite of that, microaggregation techniques are usually slower than the proposed

method and, thus, the proposed method is preferable as it can provide data sets with similar

quality, but faster. For the computer specified above, the “microaggregation plus noise”

method (using the “mdav” algorithm for the microaggregation phase), took between 5 and 30

times longer than the proposed method, depending on the data set.

4.2. Hybrid Data for Partial Protection

As stated in Section 3, the proposed method also permits perturbing some variables more

than others by selecting the components more related to the target variables and just

modifying them. This is an interesting feature, as it also allows preserving the whole

original correlation structure.

Journal of Official Statistics32



We now show how to do it in the Census data set in Brand et al. (2002), which contains

1,080 records and 13 variables and has been previously used in Domingo-Ferrer and Torra

(2004), Domingo-Ferrer and González-Nicolás (2010) or Jiménez et al. (2014). It is

important to highlight that one of the 13 variables is a linear combination of other variables

and, therefore, it is omitted from the analysis. However, after the masking is performed on

the remaining variables, one can directly obtain its protected version by simply adding the

corresponding protected variables.

In this example, we assume that only the first variable needs special protection. In order

to proceed, we first need to obtain the weights of the first variable on the twelve components.

The left plot in Figure 1 shows these weights. It can be seen that this variable has very little

influence on many components, as their weights are close to zero, but has a great influence

on the third component (represented by a gray circle). In fact, the weight of the third

component on the first variable represents 59.91% of the total components’ weights.

Therefore, to protect the first variable, perturbing the third component is enough.

In order to check how the remaining variables can be affected with the perturbation of

the third component, we can analyze the weights of the original variables on this

component (shown in the middle plot of Figure 1). Note that the only significant weights

are those associated with variables 1 and 8 (represented by a gray circle) and, therefore,

only those variables will be significatively affected. Finally, looking at the weights of the

eighth variable on all the components (see the right plot in Figure 1), we can observe that

the third component is not the one with the highest weight and, thus, the effect of

perturbing it will not be significant, as most of the information (around 87%) of this

variable will be left unchanged.

As already stated, with this example we aim to show how to obtain hybrid data sets. For

this reason, instead of using swapping to alter the components, we substitute them with a

random draw from its smoothed empirical cumulative distribution function (see Fienberg

1994). Furthermore, we compare the results with the ones obtained using the methods

proposed in Muralidhar and Sarathy (2008) and Domingo-Ferrer and González-Nicolás

(2010) (as previously noted, we will refer to them as MS and MH, respectively). Both

12
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Fig. 1. Illustrative example: representation of the weights of the first and eighth variables on all the components

(left and right plots, respectively) and of the third component on all the variables (middle plot).
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methods provide very good results and require some sensitive and some nonsensitive

variables. In our example, we assume that the first variable in the census data set is the

sensitive one. Moreover, for the MS method we show the results associated with the

following selected parameters:

. a equal to 0: In this case, the MS method equals the IPSO method in Burridge (2003).

. a equal to 0.4: In order to perform a fair comparison between the methods, we have

selected this parameter as it leads to a result that takes 40% of the information from

the original record, as it is the case with the PCA method, where we are only

perturbing the third component and it represents almost 40% of the total variability of

the first variable.

. a equal to 0.9: a case where the result is highly dependent on the original record.

Regarding MH, we show the results for group sizes of 54, 180, and 540, which

correspond to 20, 6, and 2 microaggregated groups, respectively. Note that for the ease of

brevity we only show a subset of the results obtained when comparing the methods.

After applying the method, we can analyze the characteristics of the resulting data set.

In particular, Table 5 shows Pearson’s correlation coefficients of the original and resulting

variables after applying the PCA-based method. It can be seen that the coefficients are

larger than 0.99 for all the variables except for the first one, which is low as a result of the

masking process, and the eighth one, as we predicted. However, it is still higher than 0.9,

so it has only suffered a mild perturbation. As for the MS and MH methods, the

nonsensitive variables remain unchanged and Pearson’s correlation coefficients of the

original and resulting first variable are 0.0331, 0.4199, and 0.9033 for a equal to 0, 0.4, and

0.9 after applying the MS method, respectively, and 0.6528, 0.3877, and 0.0512 for k equal

to 54, 180, and 540, respectively.

With regard to the preservation of the original Pearson’s correlation coefficients,

Table 6 contains the original and resulting Pearson’s correlation coefficients of the first

and third variables for the proposed method (for the ease of brevity we do not show all

variables, but the results are similar to those of the third variable). It can be seen that the

coefficients are similar for the masked variable (the absolute difference is around four

percent) and almost coincide for the remaining ones. We did not show these coefficients

for the MS and MH methods, as both exactly preserve means, variances and covariances.

Furthermore, we have analyzed how close the original records are to the masked ones by

means of the classic rank interval disclosure, defined in the previous subsection. We remind

that it computes the proportion of records that lie in a narrow interval around its masked

value. Again, we have obtained 1,000 hybrid data sets and we have computed this proportion.

Table 7 shows the mean value of this index for the sensitive variable. Moreover, the centered

95% percentile bootstrap confidence interval of the proportion has been obtained.

Table 5. Pearson’s correlation coefficient between the original and the protected variables applying the PCA-

based method.

Variable

1 2 3 4 5 6 7 8 9 10 11 12

0.1736 0.9986 0.9970 0.9968 0.9989 0.9945 0.9978 0.9181 0.9984 0.9983 0.9988 0.9988
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Based on the mean and CI disclosure risk values, it can be seen that the proposed

method, the IPSO method (MS a ¼ 0 and MH k ¼ 1,080) and MH (k ¼ 540) lead to very

similar levels of protection. However, this is not the case for large and small values of a

and k, respectively, as their mean values are larger and their CIs do not overlap with the

one associated with the PCA-based method.

Finally, although it is clear that the MS method preserves better the sufficient statistics

(mean and variance-covariance matrix), the PCA-based method also provides good

approximations. For this reason, it would be interesting to compare the results based on

other indexes that take into account different features of the data sets, such as the

propensity score. Table 7 shows the mean propensity score of 1,000 hybrid data sets, as

well as its centered 95% bootstrap confidence interval.

As expected, for the MS method, the larger a is, the larger data utility is obtained with

the MS method. It can be seen that the PCA-based method leads to more useful data sets if

the parameter a is smaller than 0.4, as its mean propensity score is smaller than the others,

and the CIs for a equal to 0 and 0.4 do not overlap with the PCA-based one. Similar

conclusions can be drawn for the MH method: large values of k lead to data sets with lower

utility. Moreover, the MH method leads to worse, similar and better utility levels than the

PCA-based method for k equal to 540, 180, and 54, respectively.

However, in this case, we can conclude that the PCA-based method outperforms the MS

and the MH methods in Muralidhar and Sarathy (2008) and Domingo-Ferrer and

González-Nicolás (2010), respectively, as it provides data sets with a better balance

between data utility and disclosure risk (as neither MS nor MH provide at the same time

better disclosure risk and data utility than the proposed method).

It is important to highlight that the good or bad performance of the proposed method in

the case of partial protection is data-dependent in the sense that depending on the

correlation structure, more or fewer variables will be affected by the protection process.

For example, if the confidential variables to be protected show low-medium correlation

with the non confidential ones, the principal components with high weights on the

confidential ones will then tend to show low weights on the nonconfidential ones and, thus,

the perturbation process will affect them mildly. On the other hand, if the confidential

variables are highly correlated with the nonconfidential ones, the perturbed principal

components with high weights on the confidential variables will also have high weights on

the nonconfidential one, and, therefore the nonconfidential variables will be highly

affected. The example showed in this subsection is of the first type. Better results than in

the proposed method are expected for the MS and MH methods for the second type of

situation, as the nonconfidential variables are not perturbed and that leads to better overall

utility (although similar levels of protection).

5. Final Considerations

In light of the previous examples, we can give some guidelines on how to apply the

proposed method:

. The proposed method is expected to lead to better results than other proposed

methods where all variables need protection. If there is only a subset of confidential

variables, the performance of the method depends on the correlation structure of
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the confidential and nonconfidential variables. If this correlation is low, then the

proposed method outperforms other methods previously proposed in the literature.

Otherwise, it is preferable to resort to other methods.

. If all variables need protection, selection of the components to be perturbed depends

on the desired results. If third or higher moments are not critical, then it is

recommended to alter all of them, as the utility achieved is similar to that obtained

with fewer components, but the record linkage gets reduced.

. On the other hand, if third or higher moments are critical, we recommend starting

perturbing the first components (those with higher variance) until the desired

protection level has been reached.

. If all variables need some kind of protection but we wish to perturb some more than

the others, then the matrix of weights needs to be analyzed for a careful selection of

the components.

. Perturbing only a few of the “last” components leads to very little protection, as its

corresponding variance is very small.

The proposed method cannot guarantee that the protected variables lie in a predefined

interval. For those cases, we suggest applying one of the methods proposed in Kim et al. (2015).

6. Conclusions and Future Work

In this article we have presented a simple and versatile method for limiting disclosure in

continuous microdata based on PCA that preserves the mean vector and the variance-

covariance matrix. The versatility of the method comes from the fact that it can provide

masked, hybrid or fully synthetic protected data sets and it can be used to protect all or

only some of the variables in a data set.

The method is very simple and, thus, does not require complex or very powerful

software. We have not compared the method with more sophisticated techniques, such as

multiple imputation, as we aim to provide an easy and efficient tool, in terms of good and

fast results that can be widely applicable.

Some simulation studies have been performed to compare the proposed method with

other well-performing techniques in terms of data utility and disclosure risk. Regarding the

application of the proposed method to protect all variables at the same time, it has been

shown that the PCA-based method offers a very good balance between data utility and

disclosure risk and provides much better results than rank swapping and similar ones

compared to “microaggregation plus noise”.

As for what we call hybrid data for partial protection, the PCA-based method has

provided better data sets than the methods proposed in Muralidhar and Sarathy (2008) and

Domingo-Ferrer and González-Nicolás (2010), in the sense that, when comparing

protected data sets with these three methods with similar data utility in terms of disclosure

risk, the proposed method leads to safer data sets and the same happens with data sets with

similar disclosure risk. As it has been already highlighted, the PCA-based method

outperforms the MS and the MH method only if the confidential variables are not highly

correlated with with the nonconfidential ones.

Regarding future work, the method could be extended to categorical variables by means

of Categorical Principal Components Analysis. Moreover, other types of orthogonal
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transformations, such as the Independent Component Analysis, are to be explored in the

future to check if they can lead to better results. Finally, in order to improve the usage of the

method in the case of partial protection, we plan to use Factor Analysis instead of PCA, as it

is possible to rotate the factors obtained, isolating the effect of the variables on the factors.
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