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Bell (2012) catalogued unit root factors contained in linear filters used in seasonal adjustment
(model-based or from the X-11 method) but noted that, for model-based seasonal adjustment,
special cases could arise where filters could contain more unit root factors than was indicated
by the general results. This article reviews some special cases that occur with canonical
ARIMA model based adjustment in which, with some commonly used ARIMA models, the
symmetric seasonal filters contain two extra nonseasonal differences (i.e., they include an
extra (1 2 B)(1 2 F)). This increases by two the degree of polynomials in time that are
annihilated by the seasonal filter and reproduced by the seasonal adjustment filter. Other
results for canonical ARIMA adjustment that are reported in Bell (2012), including properties
of the trend and irregular filters, and properties of the asymmetric and finite filters, are
unaltered in these special cases. Special cases for seasonal adjustment with structural ARIMA
component models are also briefly discussed.

Key words: time series; linear filter; ARIMA model-based seasonal adjustment; canonical
decomposition.

1. Introduction

Linear filters used in seasonal adjustment contain various unit root factors. Seasonal unit

root factors are those of the seasonal summation operator UsðBÞ ¼ 1þ Bþ · · ·þ Bs21,

where B is the backshift operator (Byt ¼ yt21 for any time series yt) and s is the seasonal

period. A filter that contains Us(B) will annihilate fixed seasonal effects, a desirable

property for seasonal adjustment, trend, and irregular filters. The other unit root factors of

interest are powers of the differencing operator 1 2 B. A filter that contains (1 2 B)d for

d . 0 will annihilate polynomials in t up to degree d 2 1. This is generally the case for

seasonal and irregular filters, and it implies that the corresponding seasonal adjustment and

trend filters will reproduce polynomials up to degree d 2 1. This property has been of

significant interest historically, as many empirical trend filters were explicitly designed to

reproduce polynomials of a certain degree. For example, the symmetric Henderson trend

filters will reproduce cubic polynomials (Kenny and Durbin 1982).
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Bell (2012) gave general results on unit root factors contained in linear filters used in

model-based and X-11 seasonal adjustment. It was noted there that special cases could

arise for model-based adjustment where the filters contain more unit root factors than is

obvious from the general results. The present article focuses on this point, examining some

special cases for canonical ARIMA model-based adjustment (Hillmer and Tiao 1982;

Burman 1980; Gomez and Maravall 1996) where the symmetric seasonal filters include

two extra differencing operators, written as (1 2 B)(1 2 F), where F ¼ B 21 is the

forward shift operator (Fyt ¼ ytþ1). In these cases the symmetric seasonal adjustment

filters will reproduce polynomials of two degrees higher than is indicated by the general

results given in Bell (2012).

Section 2 defines notation and the framework used for linear model-based seasonal

adjustment. Sections 3 and 4 provide results showing when the extra (1 2 B)(1 2 F)

factor occurs in two models considered explicitly by Hillmer and Tiao (1982), which we

hereafter cite as HT: the ARIMA(0,0,1)(0,1,1)s model and the ARIMA(0,1,1)(0,1,1)s

(airline) model. Values considered for the seasonal period s are 2 (biannual), 4 (quarterly),

and 12 (monthly). Section 5 discusses some additional related results for canonical

ARIMA model-based adjustment, while Section 6 briefly considers special cases for

structural component models. Technical details of the derivations in Sections 3 and 4 are

reserved to two Appendices.

2. Notation and Framework for Model-Based Seasonal Adjustment

The additive decomposition used in seasonal adjustment is:

yt ¼ St þ Tt þ It ð1Þ

where yt is the observed time series (possibly after transformation, e.g., taking logarithms),

and St, Tt, and It are the seasonal, trend, and irregular components. We also let Nt ¼

Tt þ It ¼ yt 2 St denote the nonseasonal component, the estimate of which is known as

the seasonally adjusted series. Many of the models proposed for model-based seasonal

adjustment use component models that can be written in the following form:

UsðBÞSt ¼ ut

ð1 2 BÞdTt ¼ vt ð2Þ

It , i:i:d:Nð0;s 2
I Þ

where ut and vt are stationary time series that are independent of each other and of It. Often

ut and vt are assumed to follow stationary autoregressive-moving average models (Box and

Jenkins 1970), in which case yt follows an ARIMA (autoregressive-integrated-moving

average) model that can be written:

fðBÞð1 2 BÞd21ð1 2 BsÞyt ¼ uðBÞat ð3Þ

where fðBÞ ¼ 1 2 f1B 2 · · · 2 fpBp is the AR operator, uðBÞ ¼ 1 2 u1B 2 · · · 2 uqBq

is the MA operator, and at is white noise, independent and identically distributed Nð0;s 2
a Þ.

The operators f(B) and u(B), which may be products of nonseasonal and seasonal
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polynomials in B, are assumed to have all their zeros outside the unit circle. The

expression of the model as presented in (3) requires d $ 1, which is standard in seasonal

adjustment practice. Note that 1 2 Bs ¼ ð1 2 BÞUsðBÞ so ð1 2 BÞd21ð1 2 BsÞ ¼

ð1 2 BÞdUsðBÞ.

This model framework covers the ARIMA model-based approach to seasonal

adjustment as developed in HT and Burman (1980), and implemented in the TRAMO-

SEATS software of Gomez and Maravall (1996) and in the X-13-ARIMA-SEATS

program (Monsell 2007). It also covers the structural components models of Harvey

(1989), Durbin and Koopman (2001), and Kitagawa and Gersch (1984). Though Harvey

did not formulate all his component models in ARIMA form, they can generally be written

this way – see Bell (2004).

Let wt ¼ ð1 2 BÞdUsðBÞyt be the differenced observed series. From (1) and (2),

wt ¼ ð1 2 BÞdut þ UsðBÞvt þ ð1 2 BÞdUsðBÞIt: ð4Þ

Let gwðkÞ ¼ Covðwt;wtþkÞ and let gw(B) be the autocovariance generating function

(ACGF) of wt, defined as gwðBÞ ;
P1

k¼21gwðkÞB
k, where we treat B for this purpose as a

complex variable. Given the ARMA model fðBÞwt ¼ uðBÞat, and the orthogonality of the

components in (4), it follows that (Box and Jenkins 1970, 49)

gwðBÞ ¼s 2
a uðBÞuðFÞ=fðBÞfðFÞ ð5Þ

¼ ð1 2 BÞdð1 2 FÞdguðBÞþUsðBÞUsðFÞgvðBÞþð1 2 BÞdð1 2 FÞdUsðBÞUsðFÞs
2
I : ð6Þ

Given ARMA models for ut and vt, analogous expressions to (5) can be given for their

ACGFs, gu(B) and gv(B). From wt¼ ð1 2 BÞdUsðBÞyt, the pseudo ACGF of yt is defined

as gyðBÞ ¼ gwðBÞ=½ð1 2 BÞdð1 2 FÞdUsðBÞUsðFÞ�: We also define zt¼ ð1 2 BÞdNt ¼ vtþ

ð1 2 BÞdIt with ACGF gzðBÞ ¼ gvðBÞþ ð1 2 BÞdð1 2 FÞds2
I .

Bell (1984 and 2012, 445) notes that the minimum mean squared error (MMSE)

linear signal extraction estimate of St, given the full doubly infinite realization of the

series {yt}, is

Ŝt ¼ vSðBÞyt where vSðBÞ ¼
guðBÞ

gwðBÞ
ð1 2 BÞdð1 2 FÞd: ð7Þ

Analogous to (7), the linear filters for the MMSE estimates of Nt, Tt, and It are

vNðBÞ ¼
gzðBÞ

gwðBÞ
UsðBÞUsðFÞ ð8Þ

vT ðBÞ ¼
gvðBÞ

gwðBÞ
UsðBÞUsðFÞ ð9Þ

vIðBÞ ¼
s2

I

gwðBÞ
UsðBÞUsðFÞð1 2 BÞdð1 2 FÞd: ð10Þ

Note also that since N̂t ¼ yt 2 Ŝt and T̂t ¼ N̂t 2 Ît, it follows that vNðBÞ ¼ 1 2 vSðBÞ and

vT ðBÞ ¼ 1 2 vSðBÞ2 vIðBÞ.

Bell: Unit Root Properties of Filters: Special Cases 3



Simple inspection of (7)–(10) led to the results reported in Bell (2012) for unit root

factors contained in these symmetric filters. The specific result of interest here is that vS(B)

contains (1 2 B)d(1 2 F)d, implying that vS (B) annihilates, and vN(B) thus reproduces,

polynomials up to degree 2d 2 1. The models most commonly used in seasonal

adjustment have d ¼ 2, in which case the symmetric seasonal adjustment filter must

reproduce cubic polynomials in t. Less commonly used models have d ¼ 1, in which case

the symmetric seasonal adjustment filter must reproduce linear polynomials in t. Values of

d other than 1 or 2 are uncommon in practice.

Bell (2012, 446–447) also noted that:

Something not clear from [(7)–(10)] is whether these filters contain additional unit root

factors beyond those obvious from inspection. Bell (2010) notes that vI(B) will not

include additional unit root factors, while for vS (B), vN (B), and vT (B), additional unit

root factors are possible if they appear in the MA polynomials of the ARIMA models for

St, Nt, or Tt. For example, Hillmer and Tiao (1982, p. 67) examine a model for which

the canonical trend component has a factor of (1 þ B) in its MA polynomial. While

potential additional unit root factors in the filters considered can obviously be examined

for any particular model, general results are difficult to give.

The polynomial factors in the MA operator of any ARMA model, such as u(B) in (3),

correspond to double factors in the numerator of the autocovariance generating function –

note u(B)u(F) in Equation (5). So 1 2 B is a factor of the MA polynomial of the model for

ut if and only if the numerator of gu(B) contains (1 2 B)(1 2 F).

Sections 3 and 4 examine special cases that occur with canonical ARIMA model-based

seasonal adjustment where, for two commonly used models, and depending on the

seasonal period s and on the model parameter values, gu(B) indeed contains a factor of

(1 2 B)(1 2 F). From (7), this implies that vS (B) contains an extra (1 2 B)(1 2 F) so it

will annihilate, and vN (B) will reproduce, polynomials in t up to degree 2d þ 1, which is

two degrees higher than would otherwise be the case. For the common cases of d ¼ 1 or 2,

the extra (1 2 B)(1 2 F) means that the seasonal adjustment filter will reproduce cubic

and quintic polynomials, respectively, instead of just linear and cubic polynomials. This

property will not be shared by the corresponding trend filter vT (B) ¼ 1 2 vS(B) 2 vI(B)

because, as noted in the quotation above, the corresponding canonical irregular filter will

not include the extra (1 2 B)(1 2 F ) factor.

3. Results for the ARIMA(0,0,1)(0,1,1)s Model

The ARIMA(0,0,1)(0,1,1)s model is

ð1 2 BsÞyt ¼ ð1 2 u1BÞð1 2 u2BsÞat: ð11Þ

The nonseasonal and seasonal MA parameters u1 and u2 are both restricted to lie in the

interval (21, 1), though for seasonal adjustment interest focuses on the case of u2 $ 0, for

which the existence of the canonical decomposition is assured (HT, 68). Without loss of

generality for the derivations and results presented here, we assume that Var(at) ¼ 1.

HT’s canonical decomposition starts with a partial fractions decomposition of the

ACGF for yt. For the Model (11), HT (p. 68) observe that the seasonal part of this partial
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fractions decomposition can be expressed as Q*
s ðBÞ=UsðBÞUsðFÞ, where

Q*
s ðBÞ ¼

ð1 2 u2Þ
2ð1 2 u1BÞð1 2 u1FÞ

ð1 2 BÞð1 2 FÞ
1 2

1

s2
UsðBÞUsðFÞ

� �

: ð12Þ

Appendix A observes that 1 2 1
s 2 UsðBÞUsðFÞ contains (1 2 B)(1 2 F), and so can be

expressed as (1 2 B)(1 2 F)as(B), where as(B) is a symmetric polynomial in B and F.

Appendix A also gives as(B) for the cases of s ¼ 2, 4, and 12. Cancelling the

(1 2 B)(1 2 F) factors in the numerator and denominator, Q*
s ðBÞ simplifies to

(1 2 u2)2(1 2 u1B)(1 2 u1F)as(B). The spectrum of the canonical seasonal is then

(2p)21 times f sðlÞ ¼ Q*
s ðe

ilÞ=jUsðe
ilÞj

2
2 e s, where

e s ¼
l[½0;p�
min

Q*
s ðe

ilÞ

jUsðe ilÞj
2
¼
l[½0;p�
min

ð1 2 u2Þ
2½ð1þ u2

1Þ2 2u1cosðlÞ�asðe
ilÞ

jUsðe ilÞj
2

: ð13Þ

The value es becomes part of the canonical irregular variance. If the minimum value es

occurs at l ¼ 0, then the resulting canonical seasonal spectrum (2p)21fs(l) will be zero at

l ¼ 0, and the pseudo-ACGF of St, which is gu(B)/Us(B)Us(F), must include a 1 2 B

factor in gu(B) (so that gu(ei0) ¼ gu(1) ¼ 0). By symmetry of gu(B), it must then also

include a 1 2 F factor, and so in such cases the canonical seasonal filter vS(B) given by (7)

will include an extra (1 2 B)(1 2 F) in its numerator. In these cases, the canonical vS(B)

for the (0,0,1)(0,1,1)s model includes in total (1 2 B)2(1 2 F)2. Then vS(B) will

annihilate, and vN(B) will reproduce, cubic polynomials in t, not just linear polynomials

(the standard result for this model, which has d ¼ 1).

For given values of the nonseasonal MA parameter u1, the value of l that minimizes

fs(l) was determined through inspection by computing fs(l) over a detailed grid of l

values (from 0 to p in increments of .01) and picking off the minimizing value of l.

Examining the results for a detailed set of u1 values revealed those values of u1 for which

the minimum of fs(l) occurs at l ¼ 0, so that vS(B) from the (0,0,1)(0,1,1)s model contains

(1 2 B)2(1 2 F)2 and not just (1 2 B)(1 2 F). Table 1 gives the results. Note that for

s ¼ 2, vS(B) contains (1 2 B)2(1 2 F)2 for any value of u1, while for s ¼ 4 and s ¼ 12,

vS(B) contains (1 2 B)2(1 2 F)2 only for limited intervals of u1. In fact, the result for

s ¼ 2 can be established analytically, since it is easy to show that f2(l) is increasing in l

over [0,p ] for any value of u1. Another point worth noting is that, for u1 . 0, the

ð1þ u2
1Þ2 2u1cosðlÞ factor in (13), which does not depend on s, is an increasing function

of l on [0,p ], while as(e
il)/jUs(e

il)j2, which does not depend on u1, has a global minimum

at l ¼ 0. Hence, for each s and for all u1 . 0, the minimum of fs(l) occurs at l ¼ 0.

Finally, note that the results of Table 1 are not affected by the value of u2.

To provide further insight into the results of Table 1, Figure 1 shows plots of fs(l) (but

omits the (1 2 u2)2 factor, since it does not depend on l) for both the quarterly and

Table 1. Range of values of u1 for which the canonical seasonal filter vS(B) from (7) for the

ARIMA(0,0,1)(0,1,1)s model (11) includes (1 2 B)2(1 2 F)2, not just (1 2 B)(1 2 F).

Seasonal period s 2 4 12

Range of values of u1 all u1 [ (21,1) 2 .35 , u1 , 1 2 .28 , u1 , 1
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monthly cases, for three values of u1: 2 .2, 2 .3, and 2 .4. Features common to these plots,

and to plots of fs(l) for other values of u1, include: a local minimum at l ¼ 0; infinite

peaks at the seasonal frequencies; and, necessarily, dips between the seasonal frequencies.

The plots also show, consistent with Table 1, that (i ) for u1 ¼ 2 .2, fs(l) is minimized at

l ¼ 0 for both the quarterly and monthly cases, (ii ) for u1 ¼ 2 .3, this occurs for the

quarterly but not the monthly cases, and (iii ) for u1 ¼ 2 .4, this occurs for neither the

quarterly nor the monthly cases. In fact, as u1 decreases from 1 towards 21, the dips in
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Fig. 1. Plots of the (rescaled) canonical seasonal component spectrum, fs(l)/(1 2 u2)2, for the

ARIMA(0,0,1)(0,1,1)s model. Plots are given for both the quarterly (left) and monthly (right) cases, for three

values of u1: 2 .2, 2 .3, and 2 .4. When the minimum of fs(l) occurs at frequency zero, the canonical symmetric

seasonal filter includes (1 2 B)2(1 2 F)2. When the minimum occurs at a nonzero frequency, the canonical

symmetric seasonal filter includes only (1 2 B)(1 2 F ).
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fs(l) between the seasonal frequencies decrease relative to the local minimum at l ¼ 0.

Eventually, a u1 value is reached beyond which the global minimum of fs(l) occurs at the

dip between the last two seasonal frequencies, rather than at l ¼ 0. These u1 values define

the lower limits of the ranges given by Table 1.

4. Results for the ARIMA(0,1,1)(0,1,1)s (Airline) Model

The ARIMA(0,1,1)(0,1,1)s (airline) model is (Box and Jenkins 1970, sec. 9.2)

ð1 2 BÞð1 2 BsÞyt ¼ ð1 2 u1BÞð1 2 u2BsÞat: ð14Þ

As with the (0,0,1)(0,1,1)s model, the nonseasonal and seasonal MA parameters u1 and u2

are restricted to lie in the interval (21,1), though again interest focuses on the case of

u2 $ 0, for which existence of the canonical decomposition is assured. We again assume

without loss of generality that Var(at) ¼ 1.

HT (p. 67) observe that, for yt following Model (14) with u2 $ 0, the seasonal part of the

partial fractions decomposition ofgy(B) can be expressed as Q*
s ðBÞ=UsðBÞUsðFÞ, where now

Q*
s ðBÞ ¼

ð1 2 u2Þ
2

ð1 2 BÞ2ð1 2 FÞ2

£
ð1 2 u1Þ

2

4
ð1þ BÞð1þ FÞ 1 2

1

s2
UsðBÞUsðFÞ2

s2 2 1

12s2
ð1 2 BsÞð1 2 F sÞ

� ��

þ
ð1þ u1Þ

2

4
ð1 2 BÞð1 2 FÞ 1 2

1

4s2
UsðBÞUsðFÞð1þ BÞð1þ FÞ

� ��

:

ð15Þ

Appendix B simplifies the expression in braces in (15), showing that both of its terms

contain (1 2 B)2(1 2 F)2, so that after cancellation with the (1 2 B)2(1 2 F)2 of the

denominator, Q*
s ðBÞ simplifies to

Q*
s ðBÞ ¼ ð1 2 u2Þ

2 ð1 2 u1Þ
2

4
ð1þ BÞð1þ FÞms1ðBÞ þ

ð1þ u1Þ
2

4
ms2ðBÞ

� �

where ms1(B) and ms2(B) are symmetric polynomials given in Appendix B. The spectrum of

the canonical seasonal is then (2p)21 times f sðlÞ ¼ Q*
s ðe

ilÞ=jUsðe
ilÞj

2
2 e s, where now

e s ¼
l[½0;p�
min

ð1 2 u2Þ
2

jUsðe ilÞj
2

ð1 2 u1Þ
2

4
2½1þ cosðlÞ�ms1ðe

ilÞ þ
ð1þ u1Þ

2

4
ms2ðe

ilÞ

� �

:

For s ¼ 2, 4, and 12, and for a detailed set of values of u1, the minima es were again

determined by inspection, noting cases when the minimum occurs at l ¼ 0, so gu(B)

contains (1 2 B)(1 2 F), implying that vS(B) contains (1 2 B)3(1 2 F)3 and not just

(1 2 B)2(1 2 F)2. Table 2 gives the results which, as for Table 1, are unaffected by the value

of u2. Analogously to Table 1, we see that, for s ¼ 2, vS(B) contains (1 2 B)3(1 2 F)3 for

any value of u1, while for s ¼ 4 and s ¼ 12, this occurs only for limited intervals of u1. This

is unsurprising, since plots of fs(l) (not shown) reveal broadly similar patterns to the plots of

Figure 1. However, the limited intervals for s ¼ 4 and s ¼ 12 given in Table 2 are much
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smaller than the corresponding intervals given in Table 1, and they exclude some positive

values of u1.

To illustrate the results of Table 2, the symmetric seasonal filter vS(B) from the

canonical decomposition of the quarterly airline model was applied to polynomials of

the form pðkÞt ¼ 100 £ ðt 2 1Þk=30k for k ¼ 4 and k ¼ 5. These two polynomials both

take the values 0 at t ¼ 1 and 100 at t ¼ 31, while at t ¼ 61, the last time point used, they

take the values 1,600 (for k ¼ 4) and 3,200 (for k ¼ 5). Figure 2 plots the resulting values

of vSðBÞp
ð4Þ
t for t ¼ 31 against the value of the airline model parameter u1, for values of u1

covering the interval 2 .5 # u1 # .5. The parameter u2 was set to zero to minimize the

effective length of vS(B), so that its application at the mid-point of the series (t ¼ 31)

would be negligibly affected by the absence of data prior to t ¼ 1 and after t ¼ 61.

Computations were done with the X-13-ARIMA-SEATS program.

Table 2 says that the values vSðBÞp
ð4Þ
t should be zero for u1 . .11, which is indeed the

case in Figure 2. For u1 , .11, the values are positive, and they increase as u1 decreases

further and further below .11. However, considering that the value of pð4Þt is 100 at t ¼ 31,

and increases as t increases past 31, the seasonally filtered values seem quite small. The

analogous plot of vSðBÞp
ð5Þ
t (not shown) is visually identical to Figure 2, but the values of

vSðBÞp
ð5Þ
t are about twice those of vSðBÞp

ð4Þ
t , so they are still small. Thus, even for

u1 , .11, the symmetric quarterly canonical seasonal filter comes close to reproducing

these fourth and fifth degree polynomials.

−0.4 −0.2 0.0 0.2 0.4

0.0000

0.0010

0.0020

θ1

Fig. 2. Canonical decomposition of quarterly airline model for various values of u1: Results from applying the

symmetric seasonal filter to a fourth degree polynomial, pð4Þt , in t. The solid curve shows the values of vSðBÞp
ð4Þ
t at

time point 31 (where pð4Þ31 ¼100), plotted against the value of u1 from the airline model. The dotted vertical line is

at u1 ¼ .11. See text for further details.

Table 2. Range of values of u1 for which the canonical seasonal filter vS(B) from (7) for the

ARIMA(0,1,1)(0,1,1)s (airline) model (14) includes (1 2 B)3(1 2 F)3, not just (1 2 B)2(1 2 F)2.

Seasonal period s 2 4 12

Range of values of u1 all u1 [ (21,1) .11 , u1 , 1 .58 , u1 , 1
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5. Additional Results for Canonical ARIMA Model-Based Seasonal Adjustment

For any particular seasonal ARIMA model for which the canonical decomposition exists,

one can obviously check for the presence of additional unit root factors in the various

filters by examining the component models from the canonical decomposition. The

computations can be done with the original SEATS program (Gomez and Maravall 1996)

or the X-13-ARIMA-SEATS program (Monsell 2007), either of which will provide output

tables giving the roots of the AR and MA polynomials of the component models. This

approach was applied to the (1,1,0)(0,1,1)12 model (1 2 fB) (1 2 B)(1 2 B 12)yt ¼

(1 2 uB 12)at, for a range of values of f and specific values of u. This revealed that for

u ¼ .7, vS(B) contains an extra (1 2 B)(1 2 F) factor for f , 2 .6, while for u ¼ .8 this

occurs for f # 2 .5. The dependence of these results on the seasonal MA parameter is in

contrast to the results of Tables 1 and 2.

As noted earlier, for models of the form of (2) with s 2
I . 0, extra unit root factors are

not present in the symmetric canonical irregular filter, and so the symmetric canonical

trend filter will reproduce only polynomials up to degree 2d 2 1, not degree 2d þ 1.

For models with d ¼ 2 and when vS(B) does contain the extra (1 2 B)(1 2 F), vS(B)

then contains (1 2 B)3(1 2 F)3 while vI(B) contains only (1 2 B)2(1 2 F)2, so vN(B)

reproduces quintic polynomials in t while vT(B) reproduces only cubic polynomials. This

matches analogous results for X-11 symmetric filters reported in Bell (2012, 449).

The quotation in Section 2 noted that HT considered a model for which the canonical

trend model had a 1 þ B factor in its MA polynomial. This implies that gv(B) contains

(1 þ B)(1 þ F), so that vT (B) given by (9) has this extra (1 þ B)(1 þ F). In fact, HT’s

derivations for the (0,0,1)(0,1,1)s and the (0,1,1)(0,1,1)s models (the latter with u2 $ 0)

show that the canonical trend spectrum is minimized at l ¼ p. Thus, for both these

models, gv(B) contains (1 þ B)(1 þ F), so that vT (B) contains Us(B)Us(F)(1 þ B)

(1 þ F), which includes (1 þ B)2(1 þ F)2.

Extra 1 2 B factors will not be present in asymmetric seasonal filters because

application of such filters is equivalent to application of the corresponding symmetric

seasonal filter vS(B) after forecast and backcast extension of the time series. Since the

forecast and backcast extension will reproduce polynomials only up to degree d 2 1, this

becomes the limiting factor in the degree of polynomials reproduced by the asymmetric

seasonal adjustment and trend filters (Bell 2012, 447). The same argument applies to

seasonal unit root factors contained in the asymmetric seasonal adjustment, trend,

and irregular filters. For example, though we noted above that, for the models examined

by HT, gv(B) contains (1 þ B)(1 þ F) so that vT (B) includes (1 þ B)2(1 þ F)2 instead

of just (1 þ B)(1 þ F), the asymmetric trend filters will include only the single 1 þ B

factor.

The symmetric finite filters (the filters applied at t ¼ m þ 1 for a time series of length

2m þ 1) provide some further exceptions to the results for both canonical ARIMA and

structural component models. For the case of d ¼ 1, all the finite seasonal and irregular

filters will include 1 2 B, so all will annihilate constants, which are then reproduced by the

corresponding finite seasonal adjustment and trend filters (Bell 2012, Table 1). However,

the finite symmetric seasonal and irregular filters must, by symmetry, then include

(1 2 B)(1 2 F), so they will annihilate linear polynomials in t, which are then what is

Bell: Unit Root Properties of Filters: Special Cases 9



reproduced by the symmetric finite seasonal adjustment and trend filters. The symmetry

argument extends to odd values of d . 1, though values of d $ 3 are seldom used in

practice. Finally, since all the finite trend filters include Us(B), which includes the factor

1 þ B, the symmetric finite trend filters must include (1 þ B)(1 þ F) (Findley and

Martin 2006, 29).

6. Special Cases for Structural Component Models

Special case results for the structural models proposed by the references cited in Section 2

differ from the special case results presented for canonical ARIMA seasonal adjustment.

For the structural models, a zero in the spectrum of a component will, in most cases, arise

only if model fitting estimates zero for the variance of the component’s stationary part –

ut, vt, or It in (2). If that happens, the component becomes deterministic, not stochastic. If

ŝ2
I ¼ 0, then It ¼ 0, so it can be dropped from the model, and Nt ¼ Tt. Assuming no other

components have variance zero, the previous results on unit root factors in the seasonal

and seasonal adjustment filters still apply.

If var(vt) is estimated to be zero, the fitted model then has (1 2 B)dTt ¼ 0, implying that

Tt is a polynomial in t of degree d 2 1. We cannot leave the component model as

(1 2 B)dTt ¼ vt with var(vt) ¼ 0 and apply the infinite filter signal extraction formulas

(7)–(10) since, from (6), setting gv(B) ¼ 0 will produce a factor of (1 2 B)d(1 2 F)d

in gw(B), violating an assumption that underlies these formulas. Instead, we replace

the stochastic component Tt in the model by a polynomial regression function b0 þ b1t

þ · · · þ bd21t d21. If this form of signal extraction estimation (including regression

estimation of the bjs) is applied to a time series yt that is exactly a polynomial in t of degree

d 2 1 or less, the polynomial will be reproduced in T̂t, and thus also in

N̂t ¼ T̂t þ vIðBÞ½yt 2 T̂t�. This contrasts with the symmetric infinite filter estimates for

seasonal adjustment and trend estimation that apply with var(vt) . 0, which reproduce

polynomials of degree 2d 2 1. For related discussion on treatment of trend constants, see

Bell (2010, 5–6), including the proof given of Theorem 2.

Having var(vt) ¼ 0 is acceptable for finite sample signal extraction, but will produce the

same results as modeling Tt as a d 2 1 degree polynomial regression function. Analogous

results to those just described hold if ut is estimated to have zero variance so St becomes

fixed seasonal effects. See Harvey (1981) and Bell (1987) for discussion related to these

two points.

Special case results are more involved for the local linear trend model of Harvey (1989,

37), which is

ð1 2 BÞTt ¼ bt þ 11t where ð1 2 BÞbt ¼ 12t

with 11t and 12t independent white noise series with variances s2
11

and s2
12

. To summarize

the results, if s 2
12

. 0, then vN(B) and vT(B) in (8) and (9) reproduce cubics, while if

s2
12
¼ 0, then signal extraction estimation of Nt and Tt reproduces only linear functions of

t. Note that estimating s2
12
¼ 0 but s 2

11 . 0 occurs frequently in practice (Bell and Pugh

1990; Shephard 1993). For further discussion, see Bell (2015).
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Appendix A: Derivation Details for the ARIMA(0,0,1)(0,1,1)s Model

We consider (12):

Q*
s ðBÞ ¼

ð1 2 u2Þ
2ð1 2 u1BÞð1 2 u1FÞ

ð1 2 BÞð1 2 FÞ
1 2

1

s2
UsðBÞUsðFÞ

� �

:

Applying Us(B) or Us(F) to a constant k yields s £ k. Thus, applying 1 2 1
s 2 UsðBÞUsðFÞ to 1

yields 0, showing that 1 2 1
s 2 UsðBÞUsðFÞ contains a factor (1 2 B). Since 1 2 1

s 2 UsðBÞUsðFÞ

has symmetric coefficients, it must also contain (1 2 F), and so can be expressed as

(1 2 B)(1 2 F)as(B), where the polynomialas(B), which is of degree s 2 2 in B and F, also

has symmetric coefficients. Cancelling the (1 2 B)(1 2 F) factors in the numerator and

denominator of Q*
s ðBÞ then simplifies it to ð1 2 u2Þ

2ð1 2 u1BÞð1 2 u1FÞasðBÞ.

The coefficients of as(B) can be obtained using the following easily verified Lemma on

division of polynomials in B by 1 2 B and 1 2 F.

Lemma: Let aðBÞ ¼ a0 þ a1Bþ · · ·þ akBk be a polynomial in B of degree k . 0. Then

(i) aðBÞ
12B
¼ a0 þ ða0 þ a1ÞBþ · · ·þ ða0 þ · · ·þ ak21ÞB

k21 þ ða0þ· · ·þakÞB
k

12B
, and

(ii) aðBÞ
12F
¼ akBk þ ðak þ ak21ÞB

k21 þ · · ·þ ðak þ · · ·þ a1ÞBþ
ðakþ· · ·þa0Þ

12F
:

If a0 þ · · ·þ ak ¼ 0, then a(B) contains 1 2 B (equivalently, contains 1 2 F) as a factor.

Note from the Lemma that the coefficients of the k 2 1 degree polynomial that results from

dividing a(B) by 1 2 B can be obtained by cumulatively summing the coefficients of a(B) or,

for division by 1 2 F, by cumulatively summing the coefficients of a(B) in reverse order.

Applying this approach to 1 2 1
s 2 UsðBÞUsðFÞ yields the followingas(B) for s ¼ 2, 4, and 12:

s ¼ 2 : a2ðBÞ ¼
1

4

s ¼ 4 : a4ðBÞ ¼
1

16
½10þ 4ðBþ FÞ þ ðB2 þ F 2Þ�

s ¼ 12 : a12ðBÞ ¼
1

144
½286þ 220ðBþ FÞ þ 165ðB2 þ F 2Þ þ 120ðB3 þ F 3Þ

þ 84ðB4 þ F 4Þ þ 56ðB5 þ F 5Þ þ 35ðB6 þ F 6Þ þ 20ðB7 þ F 7Þ

þ 10ðB8 þ F 8Þ þ 4ðB9 þ F 9Þ þ ðB10 þ F 10Þ�:

Appendix B: Derivation Details for the ARIMA(0,1,1)(0,1,1)s (Airline) Model

For the airline model, we consider (15):

Q*
s ðBÞ ¼

ð1 2 u2Þ
2

ð1 2 BÞ2ð1 2 FÞ2

£
ð1 2 u1Þ

2

4
ð1þ BÞð1þ FÞ 1 2

1

s2
UsðBÞUsðFÞ2

s2 2 1

12s2
ð1 2 BsÞð1 2 F sÞ

� ��

þ
ð1þ u1Þ

2

4
ð1 2 BÞð1 2 FÞ 1 2

1

4s2
UsðBÞUsðFÞð1þ BÞð1þ FÞ

� ��

:
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We know that 1 2 1
s 2 UsðBÞUsðFÞ ¼ ð1 2 BÞð1 2 FÞasðBÞ and ð1 2 BsÞð1 2 F sÞ ¼

ð1 2 BÞð1 2 FÞUsðBÞUsðFÞ. The first term in brackets on the right-hand side above is

thus (1 2 B)(1 2 F) times asðBÞ2 s 221
12s 2 UsðBÞUsðFÞ. If, for each of the cases s ¼ 2, 4, and

12, we cumulatively sum and reverse sum the coefficients of asðBÞ2 s 221
12s 2 UsðBÞUsðFÞ, the

first and last values in this twice-summed sequence are both zero. Thus, from the Lemma,

asðBÞ2 s 221
12s 2 UsðBÞUsðFÞ ¼ ð1 2 BÞð1 2 FÞms1ðBÞ, where ms1(B) is the symmetric

polynomial whose coefficients are the nonzero terms of the sequence produced by

the summing and reverse summing. For the second term in brackets on the right-hand

side above, if we cumulatively sum and reverse sum the coefficients of

1 2 1
4s 2 UsðBÞUsðFÞð1þ BÞð1þ FÞ, we again get zero for the first and last coefficients,

so 1 2 1
4s 2 UsðBÞUsðFÞð1þ BÞð1þ FÞ ¼ ð1 2 BÞð1 2 FÞms2ðBÞ for the symmetric poly-

nomial ms2(B) whose coefficients we just produced. The terms in the second and third lines

of the Expression (15) for Q*
s ðBÞ thus both contain (1 2 B)2(1 2 F)2, and cancelling this

with the (1 2 B)2(1 2 F)2 in the denominator shows that

Q*
s ðBÞ ¼ ð1 2 u2Þ

2 ð1 2 u1Þ
2

4
ð1þ BÞð1þ FÞms1ðBÞ þ

ð1þ u1Þ
2

4
ms2ðBÞ

� �

:

The polynomials ms1(B) and ms2(B) for the cases of s ¼ 2, 4, and 12 are given below.

s ¼ 2 : m2;1ðBÞ ¼
1

4
and m2;2ðBÞ ¼

1

16
ð6þ Bþ FÞ

s ¼ 4 : m4;1ðBÞ ¼
3

16
½26þ 16ðBþ FÞ þ 5ðB2 þ F 2Þ�

m4;2ðBÞ ¼
1

64
½44þ 19ðBþ FÞ þ 6ðB2 þ F 2Þ þ ðB3 þ F 3Þ�

s ¼ 12 : m12;1ðBÞ ¼
1

1; 728
½16; 874þ 16; 016ðBþ FÞ þ 14; 091ðB2 þ F 2Þ

þ 11; 616ðB3 þ F 3Þ þ 8; 988ðB4 þ F 4Þ þ 6; 496ðB5 þ F 5Þ

þ 4; 333ðB6 þ F 6Þ þ 2; 608ðB7 þ F 7Þ þ 1; 358ðB8 þ F 8Þ

m12;2ðBÞ ¼
1

576
½1; 156þ 891ðBþ FÞ þ 670ðB2 þ F 2Þ þ 489ðB3 þ F 3Þ

þ 344ðB4 þ F 4Þ þ 231ðB5 þ F 5Þ þ 146ðB6 þ F 6Þ

þ 85ðB7 þ F 7Þ þ 44ðB8 þ F 8Þ þ 19ðB9 þ F 9Þ

þ 6ðB10 þ F 10Þ þ ðB11 þ F 11Þ�:
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