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Many target variables in official statistics follow a semicontinuous distribution with a mixture
of zeros and continuously distributed positive values. Such variables are called zero inflated.
When reliable estimates for subpopulations with small sample sizes are required, model-based
small-area estimators can be used, which improve the accuracy of the estimates by borrowing
information from other subpopulations. In this article, three small-area estimators are
investigated. The first estimator is the EBLUP, which can be considered the most common
small-area estimator and is based on a linear mixed model that assumes normal distributions.
Therefore, the EBLUP is model misspecified in the case of zero-inflated variables. The other
two small-area estimators are based on a model that takes zero inflation explicitly into
account. Both the Bayesian and the frequentist approach are considered. These small-area
estimators are compared with each other and with design-based estimation in a simulation
study with zero-inflated target variables. Both a simulation with artificial data and a
simulation with real data from the Dutch Household Budget Survey are carried out. It is found
that the small-area estimators improve the accuracy compared to the design-based estimator.
The amount of improvement strongly depends on the properties of the population and the
subpopulations of interest.

Key words: Generalized linear mixed model; EBLUP; MCMC; Logit; Dutch Household
Budget Survey.

1. Introduction

Traditionally, national statistical institutes (NSIs) such as Statistics Netherlands prefer

design-based estimation methods, since these methods lead to approximately design-

unbiased estimates. However, the demand for detailed estimates for subpopulations is

increasing, while at the same time budgets are under continuous pressure. Therefore,

several NSIs started to investigate the possibilities of small-area estimation (SAE), see, for

example Eurarea (2004) and Boonstra et al. (2008). This model-based methodology is

developed for situations where the sample sizes of the subpopulations (often called

domains or areas in the SAE context) or time periods are too small to compute reliable

estimates based on design-based methods. An SAE method borrows information from

other domains or from other time periods to improve the accuracy of the domain estimates.

The most common SAE estimator is the Empirical Best Linear Unbiased Predictor

(EBLUP) (Battese et al. 1988; Rao 2003). The EBLUP is based on a linear mixed model

and assumes normal distributions. However, NSIs often have to deal with non-normally

distributed data, for which the EBLUP may yield seriously biased estimates. For such
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situations, different adjustments of the EBLUP and some new SAE methods have been

developed in recent years. For example, the robust EBLUP (Sinha and Rao 2009) reduces

the influence of outliers in the data. Chandra and Chambers (2011b) developed an

estimator for skewly distributed data, and the M-quantile estimator (Chambers and

Tzavidis 2006) does not make any assumptions about the distribution.

This article deals with the estimation for variables that are zero for a substantial part of

the population. This type of data is also called zero-inflated data. Pfeffermann et al. (2008)

and Chandra and Sud (2012) developed an estimator for such kinds of data, the first using a

Bayesian approach and the second a frequentist approach. The estimator is based on two

models, the first being a linear mixed model for the nonzero values and the second a

generalized linear mixed model for the binary zero indicator. Both the Bayesian and the

frequentist approaches are used in this article, with a small simplification of the method

used in Pfeffermann et al. (2008). The SAE method for zero-inflated data is compared with

the EBLUP and with a design-based method (the survey regression estimator). In the first

part of the article, a simulation with artificial data is carried out in which different

populations are created to investigate the properties of the considered estimators in

different situations. This simulation shows to what extent the model misspecification of

the EBLUP increases the bias of the estimates and to what extent the accuracy of the

estimates is improved when the estimators of Pfeffermann et al. (2008) and Chandra and

Sud (2012) are applied instead. In a second simulation, the estimators are applied to real

zero-inflated data of the Dutch Household Budget Survey (HBS). The HBS measures the

consumption expenditures of Dutch households. Many target variables which describe the

expenditures for different products, are zero inflated.

In Section 2 the considered methods are described. Then the results of the simulation

with artificial populations are discussed in Section 3. The results of the simulation for the

HBS follow in Section 4. In Section 5 the conclusions are given.

2. Methods

2.1. Notation

The finite population U with N elements is divided into m subpopulations or domains. A

sample with n elements is drawn using simple random sampling without replacement. The

observed value of the target variable for unit i in domain j is given by yij. The total sample

and population size in domain j are denoted by nj and Nj, respectively. The total sample is

called S and the sample in domain j is called Sj.

The explanatory variables for unit i in domain j are given by the vector

xij ¼
�
x1

ij; : : : ; x
p
ij

�t
. An intercept is always included, that is, it can be assumed that

x1
ij ¼ 1. Population means Ymean

j ¼ 1
Nj

PNj

i¼1yij for target variable y for all domains

j ¼ 1; : : : ;m have to be estimated.

The target variable yij is equal to zero for a substantial part of the population. We define

dij ¼
1 if yij – 0

0 if yij ¼ 0:

(

ð1Þ

The subscript nz is used to denote the nonzero part of the population or sample.
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2.2. Survey Regression

Survey regression (SR) is a design-based model-assisted estimator which is approximately

design unbiased (Woodruff 1966; Battese et al. 1988; Särndal et al. 1992). In this article

the SR is considered to be the reference estimator; the model-based methods are expected

to be more accurate than the SR. The SR of the unknown population mean Ymean
j for

domain j is given by

Ŷ
SR

j ¼ Ŷ
HT

j þ Xmean
j 2 X̂

HT

j

� �t

b̂; ð2Þ

where

b̂ ¼ ðXtXÞ21Xty:

Here the Horvitz-Thompson estimators are given by Ŷ
HT

j ¼ 1
nj

Pnj

i¼1yij and

X̂
HT

j ¼ 1
nj

Pnj

i¼1xij. Furthermore, Xmean
j ¼ 1

Nj

PNj

i¼1xij is the p-vector of population means

of the auxiliary information in domain j, y ¼ ð y11; : : : ; yn11; y12 : : : ; ynmmÞ
t and

X ¼ ðx11; : : : ; xn11; x12; : : : ; xnmmÞ
t.

2.3. Empirical Best Linear Unbiased Predictor (EBLUP)

Consider the linear mixed model given by

yij ¼ xt
ijbþ qj þ eij; for j ¼ 1; : : : ;m and i ¼ 1; : : : ;Nj; ð3Þ

where

qj ,N 0;s2
r

� �
; eij ,N 0;s2

e

� �
:

Here s2
e is the within-area variance parameter, whereas s2

r is the between-domain

variance.

Based on Model (3), the EBLUP (Rao 2003) is considered to estimate the population

means Ymean
j for the domains j ¼ 1; : : : ;m. The estimator for Ymean

j is then given by

Ŷ
EBLUP

j ¼ Xmean
j b̂þ q̂j: ð4Þ

Expressions for b̂ and q̂j can be found in Rao 2003, sec. 7.2. The variance parameters s2
r

and s2
e are estimated by the method of Restricted Maximum Likelihood (REML).

A refined version of (4) would use predicted values only for the nonsampled part of the

population, and the observed values for themselves. However, when sampling fractions

are small, the difference is negligible and for that reason (4) is used in this article. The

EBLUP estimator is computed with R (R Development Core Team 2009), where the

function lmer of package lme4 (Bates et al. 2015) is used to fit the linear mixed model.

2.4. A Small-Area Estimator for Zero-Inflated Data

In this section, an estimator is described that takes the zero inflation into account. There

are two approaches to estimate the models: the frequentist approach (Subsection 2.4.1),

described by Chandra and Sud (2012), and the Bayesian approach (Subsection 2.4.2),

described by Pfeffermann et al. (2008). For both approaches we use the abbreviation
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ZERO in the rest of the article, or ZERO-F or ZERO-B to make clear which approach is

used. The theoretical properties of the estimators are discussed in Pfeffermann et al. (2008)

and Chandra and Sud (2012).

Note that an important disadvantage of ZERO compared with the EBLUP is that ZERO

can only be applied if the auxiliary information is known for all elements in the population.

2.4.1. The Frequentist Approach

The target variable yij is assumed to be the product of an underlying normally distributed

variable y*
ij and dij, that is yij ¼ y*

ijdij. These two variables are modelled in two different

(generalized) linear mixed models. The first model describes the distribution of y*
ij:

y*
ij ¼ xt

nz;ijbnz þ qnz;j þ eij; for j ¼ 1; : : : ;m and i ¼ 1; : : : ;Nj; ð5Þ

where

qnz;j ,N 0;s2
r;nz

� �
; eij ,N 0;s2

e;nz

� �
:

The second model describes the probabilities pij ¼ Pðdij ¼ 1Þ ¼ Pð yij – 0Þ of the target

variable to be nonzero:

logitð pijÞ ¼ ln
pij

1 2 pij

� �
¼ xt

z;ijbz þ qz;j; for j ¼ 1; : : : ;m and

i ¼ 1; : : : ;Nj;

ð6Þ

with

qz;j ,N 0;s2
r;z

� �
:

Model (5) is estimated based on the nonzero part of the sample, Model (6) is estimated

based on the complete sample, resulting in the estimates b̂nz, q̂nz;j, b̂z, q̂z;j for the location

parameters and in estimates ŝr;nz, ŝe;nz, ŝr;z for the variance parameters.

Based on these estimates, y*
ij and pij are estimated for all elements in the population:

ŷ*
ij ¼ xt

nz;ijb̂nz þ q̂nz;j; ð7Þ

p̂ij ¼
exp xt

z;ijb̂z þ q̂z;j

� �

1þ exp xt
z;ijb̂z þ q̂z;j

� � : ð8Þ

The estimate for yij is then taken to be the product ŷij ¼ ŷ*
ijp̂ij, and the mean for domain j

can be estimated as

Ŷj ¼
1

Nj

XNj

i¼1

ŷ*
ijp̂ij: ð9Þ

Note that the model for y* can only be fitted using the nonzero observations, whereas it is

applied to predict all population elements, zero or nonzero. In order to reduce the risk of
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bias, it is therefore important to also include variables that predict dij in the model for y*.

In this article we always use the same predictors x in both models.

Again, for convenience, the prediction in (9) is used for all population elements,

including the ones observed. The mixed models can be estimated using the function lmer

of R-package lme4. Within this function, the family parameter is taken to be

binomial(link ¼ “logit”) for Model (6) and gaussian for Model (5).

Chandra and Sud (2012) proposed parametric bootstrapping for the estimation of the

mean squared error.

2.4.2. The Bayesian Approach

The two Models (5) and (6) can also be estimated in a Bayesian fashion using a Markov

Chain Monte Carlo (MCMC) simulation. Such a simulation results in a series of draws of

parameters from their joint posterior distribution given the data. An important advantage

of the Bayesian MCMC approach is that the draws can be used both for computing point

estimates and for measures of accuracy, including interval estimates. Parametric

bootstrapping, as proposed by Chandra and Sud (2012) for the frequentist approach, is less

easily available in R software packages.

The MCMC simulation is carried out over R runs. The first part of the MCMC

simulation (burnin) is not used, as it depends too strongly on the starting values.

Moreover, only every lth run is retained to save memory and increase the effective number

of independent draws. In the end, r runs are retained for further analysis. Both R and r

have to be chosen sufficiently large so that the Markov chain can converge and explore the

entire distribution. There is no reason that the number of retained runs rz and rnz has to be

equal for the two Models (5) and (6) to achieve this goal. Equality r ¼ rz ¼ rnz is

necessary for the computation of model estimates for Yj. In all MCMC simulations carried

out for this article we have taken R ¼ 40,000 runs with a burnin of 20,000 and thinning

by retaining each 20th iteration, so that r ¼ 1,000 draws are retained for posterior

analysis. From inspection of trace plots and autocorrelations, these numbers were seen

to be adequate.

From the parameter draws obtained for both MCMC simulations, posterior draws for the

small-area quantities of interest can be computed by simulating from the posterior

predictive distributions:

1. Draw residuals eij;r ,N 0;s 2
e;nz;r

� �
independently for all population units i, j and

for each MCMC iteration r ¼ 1; : : : ; r, and form posterior predictions

y*
ij;r ¼ xt

nz;ijbnz;r þ qnz;j;r þ eij;r:

All parameter draws se;nz;r, bnz;r, qnz;j;r are part of the MCMC simulation output.

2. Similarly, draw zero indicators independently from the Bernoulli distribution

according to

d*
ij;r , Beð pij;rÞ;
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with probability of a nonzero response value

pij;r ¼
exp xt

z;ijbz;r þ qz;j;r

� �

1þ exp xt
z;ijbz;r þ qz;j;r

� � :

3. Combine the posterior predictive draws to obtain posterior draws for the small-area

estimands,

Y*
j;r ¼

1

Nj

XNj

i¼1

y*
ij;r d

*
ij;r: ð10Þ

Estimates for the domain means of interest are now obtained as MCMC approximations

of the posterior means, that is,

Ŷj;mcmc ¼
1

r

Xr

r¼1

Y*
j;r:

The mean squared error of Ŷj;mcmc under the model, that is, the posterior variance, is

approximated by

mseðŶj;mcmcÞ ¼
1

r

Xr

r¼1

Y*
j;r 2 Ŷj;mcmc

� �2

: ð11Þ

Credible intervals are also considered. In particular, highest posterior 95% intervals have

been computed using the R package coda (Plummer et al. 2006).

The MCMC simulations have been carried out using the function MCMCglmm from the

R package of the same name (Hadfield 2010), which supports both models by way of

Gibbs sampling (Geman and Geman 1984; Gelfand and Smith 1990). We use weakly

informative default priors as implemented in MCMCglmm for the coefficients and variance

parameters in both models. In particular, the regression coefficients in both models are

assigned normal priors with zero mean and very large variance. Following Gelman (2006),

we use parameter-expanded inverse-chi-squared priors for the random effect variances in

both models, implying half-Cauchy priors on the standard-deviation parameters. The

scales of the half-Cauchy priors are taken to be 25, larger than the scale of the response

variable in both models. The half-Cauchy priors are more robust than inverse chi-squared

priors and their parameter-expansion representation also improves convergence and

mixing of the Gibbs sampler, especially in situations with relatively small random effect

variances (Gelman et al. 2008). For the residual variance of Model (5), a default

noninformative prior p
�
s2

e;nz

�
/ 1=s2

e;nz is used.

2.4.3. Correlated Random Effects

In Pfeffermann et al. (2008), a single two-part model is used that allows for correlations

between the random effects of the two submodels. It is possible that such a model would

better fit the data. For this article we have chosen to use the somewhat simpler model in

which components are treated independently. The main reason for this simplification is
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that the separate models can be fit using relatively fast and standard functions in R. In an

example, Pfeffermann et al. (2008) showed that taking the correlation into account only

slightly improved the accuracy of the estimates.

3. Simulation with Artificial Populations

3.1. Lay-Out of the Simulation

To investigate the properties of the ZERO and to compare it with the SR and the EBLUP,

a simulation with artificial populations is carried out. From the artificial populations,

samples are drawn repeatedly. Based on these samples, the SR, EBLUP, and ZERO are

computed. In most cases, only the frequentist approach (ZERO-F) is used because the

MCMC simulation (ZERO-B) takes much more computation time. This choice makes it

possible to simulate many different situations. In a small part of the investigated situations,

the MCMC approach is also applied and both approaches are compared.

We start with the description of the main part of the simulations with artificial

populations. The artificial populations consist of m ¼ 50 domains with N ¼ 60,000

elements. The domains are not equally sized. The domain size increases from 30 for the

first five domains up to 3,250 for the last domain.

The creation of the artificial populations starts with drawing an auxiliary variable x from

the normal distributionN (2,2.25). The mean of the auxiliary variable is then more or less

equal for all domains. This is not realistic. To get an idea of the consequences of unequal

means of the auxiliary variable, the value of the 0.9-quantile of the vector x is added for

one randomly chosen domain. This is not realistic either, but it makes it easier to analyze

the effects of such a deviation. The random effects qnz;j and qz;j for the domains j ¼

1; : : : ;m are independently distributed followingN
�
0;s2

r;nz

�
andN

�
0;s2

r;z

�
. The target

variable is then computed as yij ¼ y*
ijdij, where y* and d are generated according to Models

(5) and (6) and dij , Beð pijÞ is Bernoulli distributed taking value 1 with probability pij.

Model (6) is extended with residuals eij;z ,N
�
0;s2

e;z

�
. In both models the vector of

covariates consists of two components, the intercept and the generated auxiliary variable x.

The corresponding coefficients will be referred to as b0;nz, b1;nz, b0;z, b1;z with subscripts

0 and 1 corresponding to the intercept and x, respectively.

With different choices for b0;nz, b1;nz, b0;z, b1;z, s2
r;nz, s2

r;z, s2
e;nz, s2

e;z different types of

populations can be created. In total, 48 situations based on different parameter sets are

investigated. The parameters are chosen in such a way that populations with a wide range

of properties are included in the study, with

. a small (around 0.1), medium (around 0.5), or large proportion (around 0.85) of

nonzeros by an appropriate choice of b0;nz, b1;nz, b0;z, b1;z,

. a small (around 0.2) or large (around 0.7) correlation between the auxiliary variable x

and p, by an appropriate choice of s2
e;z,

. a small (around 0.3) or large (around 0.7) correlation between the auxiliary variable x

and y*, by an appropriate choice of s2
e;nz,

. small or large random effects qz;j and qnz;j by an appropriate choice of s2
r;z and s2

r;nz.

In the case of small random effect variances, their frequentist estimates are often

zero.
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The considered sets of parameters and corresponding types of populations are shown

in Table 1.

For each set of parameters, ten different populations are created, and with each

population, a simulation with 500 runs is carried out. In each run, a sample of size

n ¼ 2,000 using simple random sampling without replacement is drawn. By creating

different populations of each type, coincidences in the populations have less influence.

The number of ten populations per set of parameters turns out to be adequate, for the

generation of different sets of ten populations consistently gives almost the same

properties. At the same time, with 500 runs for each population it is possible to analyze the

results for different domains, for example domains with large random effects.

In addition to the simulation with 48 different parameter sets, a few special cases are

investigated. First, the simulations with the first four parameter sets are repeated with

population and sample sizes that are three times as large for all domains. Second, a

correlation of 0.5 and 0.9 between the random effects of the two model parts is added. This

is also investigated with the first four parameter sets, with the original population and

sample sizes. Third, the simulations with the first four parameter sets are repeated using a

Bayesian approach (with independent random effects). Here, only a single population is

created, for which a simulation with 1,000 runs is carried out. The frequentist approach is

applied to the same 1,000 samples.

In SAE it is sometimes useful to include the domain mean �xj ¼
1

Nj

PNj

i¼1xij as auxiliary

information (Bafumi and Gelman 2006; Neuhaus and McCulloch 2006). It appears that

this is also the case for the EBLUP in this application, especially for the domain where the

0.9-quantile of the vector x is added. Therefore, for the EBLUP xij ¼ ð1; xij; �xjÞ
t. For the

other estimators xij ¼ ð1; xijÞ
t is used, as the additional area-level covariate would slightly

deteriorate the accuracy of these estimates (results not presented).

3.2. Evaluation Measures

The most important quality measure of the estimators is the accuracy measured by the

mean squared error (mse). We use the root mse (rmse), computed as

rmsej ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

q¼1

Ŷj;q 2 Ymean
j

� �2

=n

vuut ; ð12Þ

with Ymean
j the population mean of domain j for the target variable y, Ŷj;q the estimate for

this population mean based on one of the methods in the qth run of the simulation, and v

the number of runs in the simulation. In the simulation with artificial populations, v ¼ 500.

The mse is the sum of the variance and the squared bias. In order to further analyze the

accuracy of the methods, the standard deviation (root of the variance, sd) and the bias are

also discussed. These measures are computed as

sdj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

q¼1

ðŶj;q 2 �YjÞ
2=n

vuut ; biasj ¼
Xn

q¼1

Ymean
j 2 Ŷj;q

� �
=n ð13Þ

where �Yj ¼
Pn

q¼1Ŷj;q=n is the mean of the estimates.
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Table 1. Description of the types of populations, model parameters, fractions nonzeros and population means.

No. b0;z b1;z b0;nz b1;nz sr;z sr;nz se;z se;nz

Fraction
nonzeros Popmean

1 24 2.0 10 1 0.2 0.08 1.0 1 0.51 6.70
2 24 2.0 10 1 2.0 0.08 1.0 1 0.50 6.63
3 24 2.0 10 1 0.2 0.80 1.0 1 0.51 6.70
4 24 2.0 10 1 2.0 0.80 1.0 1 0.50 6.64
5 24 2.0 30 1 0.2 0.08 1.0 5 0.51 16.87
6 24 2.0 30 1 2.0 0.08 1.0 5 0.51 16.86
7 24 2.0 30 1 0.2 0.80 1.0 5 0.51 16.78
8 24 2.0 30 1 2.0 0.80 1.0 5 0.51 16.80
9 21 0.5 10 1 0.2 0.08 2.0 1 0.50 6.31
10 21 0.5 10 1 2.0 0.08 2.0 1 0.52 6.26
11 21 0.5 10 1 0.2 0.80 2.0 1 0.51 6.27
12 21 0.5 10 1 2.0 0.80 2.0 1 0.50 6.21
13 21 0.5 30 1 0.2 0.08 2.0 5 0.51 16.39
14 21 0.5 30 1 2.0 0.08 2.0 5 0.51 16.35
15 21 0.5 30 1 0.2 0.80 2.0 5 0.50 16.25
16 21 0.5 30 1 2.0 0.80 2.0 5 0.50 16.27

17 0 2.0 10 1 0.2 0.08 0.2 1 0.88 10.86
18 0 2.0 10 1 2.0 0.08 0.2 1 0.83 10.45
19 0 2.0 10 1 0.2 0.80 0.2 1 0.88 10.87
20 0 2.0 10 1 2.0 0.80 0.2 1 0.85 10.47
21 0 2.0 30 1 0.2 0.08 0.2 5 0.88 28.33
22 0 2.0 30 1 2.0 0.08 0.2 5 0.85 27.34
23 0 2.0 30 1 0.2 0.80 0.2 5 0.88 28.42
24 0 2.0 30 1 2.0 0.80 0.2 5 0.84 27.41
25 2 0.5 10 1 0.2 0.08 2.0 1 0.86 10.50
26 2 0.5 10 1 2.0 0.08 2.0 1 0.81 9.90
27 2 0.5 10 1 0.2 0.80 2.0 1 0.86 10.51
28 2 0.5 10 1 2.0 0.80 2.0 1 0.82 9.99
29 2 0.5 30 1 0.2 0.08 2.0 5 0.86 27.83
30 2 0.5 30 1 2.0 0.08 2.0 5 0.80 26.17
31 2 0.5 30 1 0.2 0.80 2.0 5 0.86 27.72
32 2 0.5 30 1 2.0 0.80 2.0 5 0.81 26.05

33 29 2.0 10 1 0.3 0.10 0.5 1 0.09 1.36
34 29 2.0 10 1 3.0 0.10 0.5 1 0.16 2.15
35 29 2.0 10 1 0.3 1.00 0.5 1 0.10 1.37
36 29 2.0 10 1 3.0 1.00 0.5 1 0.15 2.04
37 29 2.0 30 1 0.3 0.10 0.5 5 0.09 3.24
38 29 2.0 30 1 3.0 0.10 0.5 5 0.15 5.09
39 29 2.0 30 1 0.3 3.00 0.5 5 0.09 3.27
40 29 2.0 30 1 3.0 3.00 0.5 5 0.16 5.09
41 26 0.6 10 1 0.3 0.10 2.5 1 0.07 0.95
42 26 0.6 10 1 3.0 0.10 2.5 1 0.14 1.80
43 26 0.6 10 1 0.3 1.00 2.5 1 0.07 0.94
44 26 0.6 10 1 3.0 1.00 2.5 1 0.15 1.83
45 26 0.6 30 1 0.3 0.10 2.5 5 0.07 2.34
46 26 0.6 30 1 3.0 0.10 2.5 5 0.14 4.52
47 26 0.6 30 1 0.3 3.00 2.5 5 0.07 2.37
48 26 0.6 30 1 3.0 3.00 2.5 5 0.14 4.57
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Since the population size for the first five domains is only 30 and the inclusion

probability is 1
30

, empty samples occur regularly for these domains in the simulation. In

these runs the SR cannot be computed. In the comparison of the accuracy of the SR with

the EBLUP and ZERO-F, the first five domains are therefore ignored. In the other

domains, empty samples are very rare but not impossible in the simulation. These runs are

ignored in the computation of the abovementioned measures rmsej, biasj, and sdj for the

SR. Since these cases are very rare, this does not disturb the results.

In the simulation with ten populations with the same parameters, the mean of these

measures over the ten populations is computed.

3.3. Results

Table 2 shows the mean absolute bias and mean rmse over the domains and over the ten

created populations for the SR, the EBLUP and ZERO-F. In the first six columns of the

table, where the SR is compared with the EBLUP and ZERO-F, only domains 6–50 are

included, as mentioned in the end of Subsection 3.2. The table shows that in all cases

considered, both SAE methods are more accurate than the SR, and ZERO-F is more

accurate than the EBLUP. The gain in accuracy strongly depends on the properties of the

population. The following points are noticed:

. the SR is generally approximately design unbiased. Small nonzero values are due to

the approximate nature of SR’s design unbiasedness and to the finite number of

simulation runs.

. Both model-based SAE methods are biased. The bias of the EBLUP is generally only

slightly larger than the bias of ZERO-F. The model misspecification does not cause a

serious bias of the EBLUP.

. Generally, the improvement in accuracy of both SAE methods with respect to the SR

is very large in the cases with small sr;z (odd numbers). In those cases, the rmse is

often more than halved by the SAE methods. In the case of large sr;z, the rmse of the

SAE methods is usually around ten percent smaller than the rmse of the SR.

. In some cases, the gain in accuracy of ZERO-F with respect to the EBLUP in the five

smallest domains is substantially larger than in the other domains. Therefore, it is

important to compare the EBLUP and ZERO-F with and without these domains

included.

. In many cases, the additional gain in accuracy by using the ZERO-F instead of the

EBLUP is only five percent to ten percent.

. Larger gains with ZERO-F instead of the EBLUP are possible in the case of large

sr;nz, small sr;z and a small residual variance s2
e;nz, especially if the nonzero fraction

is around 0.5 or 0.85 (number 3,11, 19, 27).

. Larger gains with ZERO-F instead of the EBLUP are also possible in the case of a

small residual variance s2
e;z if the nonzero fraction is around 0.1 or 0.85 (number

17–24, 33–40). This is not surprising as small se;z means that Model (6) is almost the

true model used to simulate the data. The gain is somewhat larger if the nonzero

fraction is around 0.1 than if it is 0.85.

. Altogether, the possible gain with ZERO-F instead of the EBLUP depends only

slightly on the nonzero fraction.
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Table 2. Mean absolute bias and mean rmse.

Domains

No.

bias
6–50
SR

bias
6–50

EBLUP

bias
6–50

ZERO-F

rmse
6–50
SR

rmse
6–50

EBLUP

rmse
6–50

ZERO-F

rmse
1–50

EBLUP

rmse
1–50

ZERO-F

1 0.03 0.21 0.20 0.78 0.29 0.27 0.38 0.33
2 0.03 0.18 0.16 0.74 0.70 0.65 0.82 0.77
3 0.03 0.28 0.20 0.78 0.41 0.30 0.49 0.36
4 0.03 0.18 0.16 0.74 0.70 0.65 0.83 0.78
5 0.08 0.54 0.53 2.14 0.79 0.74 0.97 0.83
6 0.07 0.52 0.44 2.04 1.92 1.73 2.25 2.06
7 0.07 0.64 0.62 2.13 0.91 0.85 1.08 0.93
8 0.07 0.53 0.50 2.05 1.92 1.76 2.39 2.11
9 0.04 0.26 0.26 1.01 0.38 0.36 0.43 0.40
10 0.03 0.23 0.22 0.89 0.85 0.83 1.03 0.99
11 0.04 0.34 0.27 1.01 0.49 0.38 0.57 0.44
12 0.03 0.25 0.24 0.90 0.86 0.85 1.07 1.02
13 0.09 0.73 0.74 2.73 1.03 0.99 1.17 1.12
14 0.09 0.60 0.55 2.38 2.28 2.20 2.69 2.63
15 0.09 0.73 0.72 2.72 1.06 0.99 1.22 1.16
16 0.09 0.58 0.58 2.42 2.29 2.24 2.68 2.63

17 0.02 0.13 0.12 0.51 0.18 0.16 0.22 0.18
18 0.02 0.14 0.12 0.53 0.48 0.41 0.54 0.46
19 0.02 0.19 0.11 0.51 0.40 0.22 0.43 0.26
20 0.02 0.13 0.12 0.53 0.49 0.44 0.61 0.51
21 0.06 0.32 0.31 1.64 0.50 0.44 0.65 0.51
22 0.06 0.49 0.38 1.68 1.50 1.19 1.75 1.35
23 0.06 0.50 0.42 1.63 0.74 0.65 0.86 0.72
24 0.06 0.48 0.45 1.67 1.48 1.26 1.64 1.42
25 0.02 0.17 0.17 0.68 0.25 0.24 0.31 0.28
26 0.02 0.20 0.19 0.67 0.63 0.61 0.75 0.70
27 0.03 0.25 0.16 0.68 0.46 0.27 0.49 0.31
28 0.02 0.19 0.20 0.67 0.63 0.62 0.74 0.71
29 0.07 0.45 0.46 1.98 0.67 0.64 0.77 0.74
30 0.07 0.56 0.52 1.94 1.80 1.64 2.27 1.88
31 0.07 0.61 0.54 1.98 0.86 0.79 0.99 0.92
32 0.07 0.55 0.57 1.96 1.82 1.72 2.12 1.95

33 0.02 0.16 0.14 0.59 0.23 0.19 0.32 0.21
34 0.02 0.16 0.12 0.63 0.59 0.47 0.69 0.56
35 0.02 0.17 0.14 0.59 0.24 0.20 0.29 0.22
36 0.02 0.16 0.13 0.62 0.58 0.47 0.70 0.56
37 0.05 0.36 0.32 1.43 0.52 0.44 0.66 0.52
38 0.05 0.38 0.31 1.54 1.44 1.17 1.77 1.43
39 0.06 0.40 0.35 1.45 0.57 0.49 0.70 0.54
40 0.05 0.38 0.30 1.53 1.43 1.17 1.78 1.40
41 0.02 0.13 0.13 0.55 0.20 0.18 0.26 0.22
42 0.02 0.14 0.13 0.56 0.54 0.51 0.74 0.62
43 0.02 0.14 0.14 0.56 0.21 0.19 0.27 0.22
44 0.02 0.15 0.13 0.59 0.56 0.53 0.68 0.60
45 0.05 0.35 0.34 1.41 0.52 0.49 0.59 0.56
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Another way to summarize the results about the rmse is to compute the ratios

rmseEBLUP/rmseZERO2F for all domains and the ten populations and compute quantiles of

these ratios. The results are shown in Table 3. Since the focus of this article is the

comparison of the EBLUP and ZERO-F, such a comparison is not carried out between SR

and SAE methods. We see the following results:

. In all cases there are at least some domains where the EBLUP is more accurate than

ZERO-F.

. In almost all cases, the 35% quantile is larger than 1, so ZERO-F is more accurate

than the EBLUP in at least 65% of the domains.

. In the cases with large sr;z (even numbers) and a nonzero fraction of around 0.5, the

differences between the domains are relatively small with a ten percent quantile of

between 0.96 and 1.03 and a 90% quantile between 1.05 and 1.2.

. In the cases of large residual variances s2
e;z and s2

e;nz and a nonzero fraction of around

0.5 (number 13 and 15), the differences between the domains are also relatively

small.

. For a nonzero fraction around 0.85 or 0.1, the differences between the domains are

generally larger, with two exceptions (small random effects qz;j and qnz;j and large

residual variance s2
e;z, nonzero fraction of around 0.85 (number 25 and 29).

. In many cases with small sr;z (odd numbers), the EBLUP is substantially more

accurate than ZERO-F for quite a large fraction of the domains (10% quantile smaller

than 0.9). These are often the cases where the mean gain of ZERO-F with respect to

the EBLUP over all domains is relatively large. This means that the gain in accuracy

in many domains has to be paid for with some substantial loss in accuracy in some

other domains.

3.4. Results for Domains

Table 3 shows that the gain in accuracy of ZERO-F with respect to the EBLUP sometimes

differs strongly between the domains. An analysis of the results for the domains shows that

in the situations with large sr;z (even numbered rows), the gain in accuracy of ZERO-F

generally depends strongly on the size of the random effects qz;j. The gain is larger in the

domains with the smallest (most negative) and/or the largest random effects. This gain is

Table 2. Continued.

Domains

No.

bias
6–50
SR

bias
6–50

EBLUP

bias
6–50

ZERO-F

rmse
6–50
SR

rmse
6–50

EBLUP

rmse
6–50

ZERO-F

rmse
1–50

EBLUP

rmse
1–50

ZERO-F

46 0.06 0.43 0.38 1.52 1.43 1.36 1.77 1.63
47 0.05 0.35 0.34 1.43 0.52 0.49 0.63 0.60
48 0.05 0.36 0.37 1.48 1.42 1.37 1.69 1.62
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Table 3. Quantiles, minimum and maximum of ratios rmse EBLUP and ZERO-F.

No. Min 10% 25% 35% 50% 65% 75% 90% Max

1 0.34 0.85 0.97 1.01 1.06 1.11 1.15 1.34 27.79
2 0.78 1.02 1.04 1.05 1.06 1.08 1.10 1.16 4.36
3 0.34 0.78 1.07 1.19 1.33 1.55 1.76 2.25 21.54
4 0.76 1.01 1.03 1.04 1.06 1.07 1.09 1.15 2.88
5 0.41 0.87 0.97 1.01 1.06 1.11 1.15 1.33 34.43
6 0.77 1.03 1.06 1.07 1.09 1.11 1.13 1.20 5.18
7 0.26 0.86 0.97 1.00 1.05 1.09 1.14 1.29 45.14
8 0.72 0.99 1.03 1.05 1.07 1.09 1.12 1.18 56.46
9 0.75 0.98 1.00 1.01 1.02 1.03 1.04 1.08 6.32
10 0.85 0.98 1.00 1.00 1.01 1.02 1.03 1.06 11.52
11 0.42 0.81 0.98 1.06 1.20 1.39 1.57 1.97 8.67
12 0.55 0.98 0.99 1.00 1.01 1.01 1.02 1.05 4.93
13 0.85 0.99 1.01 1.01 1.02 1.03 1.04 1.06 3.33
14 0.83 0.99 1.01 1.01 1.02 1.04 1.05 1.10 1.31
15 0.77 0.94 0.98 1.00 1.02 1.05 1.07 1.12 4.68
16 0.81 0.96 1.00 1.00 1.01 1.03 1.04 1.08 1.47

17 0.28 0.84 0.96 1.01 1.08 1.14 1.23 1.44 43.97
18 0.53 1.03 1.08 1.11 1.15 1.22 1.31 1.56 6.15
19 0.36 1.21 1.50 1.65 1.84 1.98 2.11 2.49 5.42
20 0.62 1.03 1.08 1.09 1.12 1.16 1.19 1.28 19.79
21 0.18 0.85 0.97 1.04 1.12 1.19 1.25 1.56 40.88
22 0.50 1.06 1.14 1.19 1.25 1.33 1.44 1.69 62.60
23 0.12 0.82 0.96 1.04 1.13 1.21 1.28 1.49 31.22
24 0.50 0.98 1.07 1.11 1.15 1.21 1.29 1.51 5.04
25 0.91 0.97 0.99 1.01 1.02 1.05 1.06 1.10 17.24
26 0.64 0.95 0.99 1.00 1.04 1.08 1.13 1.28 11.82
27 0.40 0.94 1.27 1.42 1.68 1.93 2.10 2.56 5.27
28 0.65 0.94 0.98 1.00 1.02 1.05 1.07 1.14 12.87
29 0.71 0.97 0.99 1.01 1.03 1.05 1.06 1.09 6.46
30 0.61 0.98 1.02 1.04 1.10 1.19 1.25 1.37 16.10
31 0.64 0.88 0.97 1.00 1.06 1.11 1.16 1.30 3.43
32 0.62 0.94 1.00 1.02 1.05 1.10 1.16 1.33 12.37

33 0.39 0.79 0.99 1.10 1.21 1.35 1.49 1.99 18.16
34 0.48 1.09 1.16 1.18 1.24 1.33 1.46 1.80 8.12
35 0.16 0.80 0.96 1.08 1.20 1.34 1.48 1.97 18.84
36 0.52 1.07 1.14 1.17 1.23 1.33 1.42 1.75 4.21
37 0.13 0.76 0.95 1.03 1.14 1.25 1.37 1.90 11.24
38 0.51 1.07 1.13 1.16 1.23 1.34 1.51 1.85 5.12
39 0.11 0.76 0.94 1.02 1.13 1.27 1.38 1.85 9.72
40 0.43 1.06 1.13 1.15 1.21 1.34 1.52 1.76 5.97
41 0.45 0.88 0.94 0.98 1.01 1.06 1.09 1.22 6.51
42 0.60 0.95 1.00 1.02 1.08 1.17 1.22 1.35 6.02
43 0.59 0.85 0.94 1.00 1.06 1.11 1.18 1.37 8.00
44 0.61 0.96 1.00 1.02 1.08 1.15 1.21 1.34 4.13
45 0.64 0.90 0.96 0.98 1.01 1.05 1.08 1.17 3.00
46 0.55 0.95 0.99 1.01 1.06 1.12 1.18 1.31 4.81
47 0.61 0.85 0.92 0.96 1.01 1.07 1.12 1.27 2.26
48 0.54 0.95 0.99 1.01 1.05 1.11 1.16 1.27 3.16
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caused by both a smaller bias and a smaller standard deviation of ZERO-F in these

domains. In situations with around 50% nonzero target variables, the gain in accuracy is

similar in the domains with the smallest and the largest random effects. In situations with

around 85% nonzero target variables, this gain is larger in the domains with the largest

random effects. In situations with around ten percent nonzero target variables, it is the

opposite. This is demonstrated for three situations in Table 4. There, for three groups of

domains, the mean rmse is computed over the selected domains and over the ten created

populations for each situation. This is done for both the EBLUP and the ZERO-F.

The column ‘Ratio domains 1–10’ shows the ratio of both values for the ten domains

with the smallest (most negative) random effects qz;j. The same ratio for the ten domains

with the largest random effects is given in the column ‘Ratio domains 41–50’ and the ratio

for the other 30 domains is computed in column ‘Ratio domains 11–40’. For the other

situations with large sr;z, similar results are found. However, sometimes the pattern is

disturbed due to coincidences in the domains.

In the situations with small sr;z (odd numbers), there is no visible influence of the size of

the random effects qz;j on the gain in accuracy in the domains of ZERO-F with respect to

the EBLUP. In a few cases, a similar dependency on the size of the random effects qnz;j is

visible. The gain in accuracy of ZERO-F with respect to the EBLUP does not depend

strongly on the domain size. The gain in accuracy of both SAE methods with respect to the

design-based SR decreases with increasing sample size, a rather general phenomenon in

small-area estimation.

In many situations with small sr;z, the differences between the domains cannot be

explained by domain size or the size of the random effects.

The results for the domain where the 0.9 quantile of the vector x is added are special in

many cases. There, the rmse of the EBLUP and the SR are similar, and the rmse of the

ZERO-F is smaller, whereas in most of the other domains, the rmse of the EBLUP is

smaller than the one of the SR.

3.5. Results for Larger Populations and for Correlated Random Effects

The simulations for the first four situations are repeated for larger populations

(N ¼ 180,000) and larger samples (n ¼ 6,000). The results for these simulations are

similar to those for the smaller populations and samples discussed in the previous

subsection and are therefore not included in detail. As expected, the possible gain in

accuracy by using SAE methods instead of the SR is smaller when the sample size

increases. The gain in accuracy of ZERO-F with respect to the EBLUP is more or less

equal to that with smaller sample sizes.

Table 4. Ratio mean rmse EBLUP and ZERO-F over the ten created populations and over groups of domains,

ordered by size of random effects qz;j.

No.
Fraction
nonzeros

Ratio
domains 1–10

Ratio
domains 11–40

Ratio
domains 41–50

2 0.50 1.10 1.05 1.08
18 0.83 1.09 1.15 1.43
34 0.16 1.60 1.23 1.12
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Furthermore, the simulations for the first four situations are repeated with correlated

random effects qz;j and qnz;j. The results are shown in Table 5 (for correlation 0.5) and

Table 6 (for correlation 0.9). The accuracy of the SR is, as expected, not affected by this

correlation. The effect on the accuracy of the EBLUP and ZERO-F is also small. Only for

the EBLUP in Situation 3 is there some loss in accuracy, compared with the situation with

uncorrelated random effects (Table 2). Despite the model misspecification of ZERO-F (by

ignoring the correlation), the improvement of the accuracy by ZERO-F instead of the SR

is of the same order as in the situation where the correlation is zero. Nevertheless, it can be

useful to investigate ZERO with modelling the correlation in order to achieve an

additional gain in accuracy. However, in the example of Pfeffermann et al. (2008) the

improvement in accuracy by using this more complex model is very small.

3.6. Results for Bayesian Approach

Finally, the simulations for the first four situations are repeated with ZERO-B. For these

simulations, a single population is created for each situation, the number of runs in the

simulations being 1,000. The mean absolute bias, mean sd and mean rmse over the

domains of ZERO-F and ZERO-B are shown in Table 7. The general conclusion is that the

accuracy of both approaches is very similar. The bias is slightly reduced with the Bayesian

approach, whereas the sd is slightly increased.

Figures 1 and 2 show boxplots of the model-based rmse based on the MCMC

simulations for all 1,000 runs of the simulation for Situations 1 and 2. For Situations 3 and

4 similar results were obtained, so these results are omitted. The simulation rmses,

Table 5. Mean absolute bias and mean rmse, correlation 0.5.

Domains

No.

bias
6–50
SR

bias
6–50

EBLUP

bias
6–50

ZERO-F

rmse
6–50
SR

rmse
6–50

EBLUP

rmse
6–50

ZERO-F

rmse
1–50

EBLUP

rmse
1–50

ZERO-F

1 0.03 0.21 0.21 0.78 0.30 0.28 0.35 0.32
2 0.03 0.19 0.18 0.74 0.70 0.65 0.80 0.76
3 0.03 0.29 0.22 0.78 0.47 0.31 0.53 0.36
4 0.03 0.18 0.19 0.75 0.71 0.67 0.89 0.81

Table 6. Mean absolute bias and mean rmse, correlation 0.9.

Domains

No.

bias
6–50
SR

bias
6–50

EBLUP

bias
6–50

ZERO-F

rmse
6–50
SR

rmse
6–50

EBLUP

rmse
6–50

ZERO-F

rmse
1–50

EBLUP

rmse
1–50

ZERO-F

1 0.03 0.24 0.24 0.78 0.33 0.30 0.40 0.35
2 0.03 0.18 0.19 0.74 0.70 0.66 0.86 0.77
3 0.03 0.29 0.22 0.78 0.48 0.31 0.52 0.35
4 0.03 0.16 0.19 0.75 0.71 0.67 0.91 0.84

Krieg et al: Occupational Coding: Small-Area Estimation with Zero-Inflated Data 977



computed with (12), are added to the figures. Again, there is a large difference between the

situations with large and small sr;z. For large sr;z (Situation 2, Figure 2), the model-based

rmse tracks the simulation rmse very well. In those cases, the variation of the model-based

rmse is quite small (except for the smallest domains) and the bulk of the distribution is

positioned closely around the simulation rmse. If sr;z is small (Situation 1, Figure 1), the

bulk of the distribution of the model-based rmse often deviates from the simulation rmse.

The model-based rmses do not vary much over the domains in these cases, whereas the

simulation rmses do. Nevertheless, the model-based rmses are of the same order of

magnitude as the simulation rmses and can therefore be useful as an indication for the

accuracy of the estimates, even in a repeated sampling sense.

4. Simulation with Dutch HBS Data

4.1. Design of HBS

The aim of the Dutch Household Budget Survey (HBS) is to measure the expenditures of

households. Some of these expenses are on a regular basis, for example often the same

amount of money is paid every month for rent and insurance premiums. Other expenses

are quite regular, although with varying amounts of money spent. This often concerns

cheaper products; for example, food is bought almost every week. Finally, there are also

Table 7. Bias, sd and rmse of ZERO-F and ZERO-B, mean over the domains, for bias mean of absolute values.

No. freq bias mcmc bias freq sd mcmc sd freq rmse mcmc rmse

1 0.239 0.231 0.162 0.172 0.307 0.308
2 0.222 0.217 0.644 0.648 0.714 0.715
3 0.255 0.248 0.208 0.215 0.350 0.351
4 0.234 0.229 0.660 0.664 0.735 0.735
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Fig. 1. Boxplots of MCMC estimates for rmse of ZERO-B from 1,000 simulation runs and rmse based on

simulation (diamonds), Situation 1.
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expenses that are more rare, for example furniture or clothes. These products are often, but

not always, relatively expensive. Therefore, the HBS considers three kinds of expenditures

which are measured in different parts of the survey. In this simulation we consider three

kinds of expenditures, mainly measured in the part “large expenditures”. In this part, the

responding households keep a diary of their expenditures over e20.

The HBS has been redesigned repeatedly with the aim to increase response rates and

decrease costs. Since 2012, the diary for large expenditures has been kept for a period of

four weeks. For the simulation, data from the period 2005–2010 is used. In those years, the

diary for large expenditures was kept for three months. To approximate the current design

as far as possible, we use periods of one month in the simulation, in which each original

sample household with expenditures over three months is considered as three independent

sample households with expenditures over one month.

Data from 2005–2010 are combined in a single dataset of N ¼ 100,000 households with

expenditures for one month. The expenditures are corrected for inflation to have

comparable prices over the years. This artificial population can be considered a

representative sample from the population of Dutch households. The complete Dutch

population consists of more than seven million households. The artificial population is

chosen to be smaller for computational reasons.

Based on the HBS, household expenditures are published for the entire country and for

different classifications in subpopulations. In this article, we consider a classification in

m ¼ 11 types of households. Table 8 shows these domains and their sizes in the artificial

population. In the simulation, samples of size n ¼ 5,000 are drawn by simple random

sampling without replacement. Complications caused by different response probabilities

which occur in practice are avoided. In the simulation 3,000 samples are drawn.

In the simulation, the expenditures for clothes, men’s clothes and motor fuel are used as

target variables. All three variables contain substantial amounts of zeros. This is partly

because the households had no expenditures of this kind in the considered month, and

1 4 7 10 14 18 22
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Fig. 2. Boxplots of MCMC estimates for rmse of ZERO-B from 1,000 simulation runs and rmse based on

simulation (diamonds), Situation 2.
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partly because they do not have expenditures of this kind at all. For example, households

with only female members generally do not buy men’s clothes and households without a

car or a motorcycle do not buy motor fuel.

Table 9 shows the percentages of nonzero expenditures, the means of the nonzero

expenditures, and the overall expenditure means for the three target variables and the

eleven household types. There are substantial differences between the domains. These

differences suggest that substantial random effects can be expected. However, part of the

differences may be explained by other auxiliary variables used in the models.

For the considered estimators (SR, EBLUP, and ZERO), the same auxiliary information

is used. This is a combination of different socio-economic variables. Income is the only

continuous auxiliary variable; furthermore, categorical variables about the source of

income of the main wage earner, the housing situation (owner or tenant) are used. Since

the expenditures vary over the course of the year, quarter is also added.

Table 8. Population size per type of household in artificial population of 100,000 households.

No. Description Population size

1 single man, younger than 65 years 12,976
2 single man, 65 years or older 2,985
3 single woman, younger than 65 years 11,176
4 single woman, 65 years or older 8,141
5 couple, main wage earner younger than 65 years 18,781
6 couple, main wage earner 65 years or older 10,514
7 couple with child(ren), all children younger than 18 years 19,803
8 couple with child(ren), at least one child 18 years or older 8,020
9 one-parent family, all children younger than 18 years 4,006
10 one-parent family, at least one child 18 years or older 2,291
11 other households 1,307

Table 9. Percentage nonzero expenditures, mean of nonzero expenditures and overall mean for three target

variables and eleven household types.

Percentage Mean of nonzeros Mean expenditure

No. Clothes
Motor
fuel

Men’s
clothes Clothes

Motor
fuel

Men’s
clothes Clothes

Motor
fuel

Men’s
clothes

1 23 46 22 134 99 136 31 45 29
2 21 57 20 111 71 111 24 40 22
3 40 41 0.7 109 75 89 43 30 0.6
4 35 28 0.6 114 55 75 39 15 0.5
5 47 73 22 164 109 136 76 79 30
6 40 70 17 142 78 111 57 54 19
7 56 73 20 160 113 130 89 82 26
8 56 76 27 164 121 126 92 92 33
9 44 53 3.5 105 86 94 46 45 3.3
10 42 61 9.5 124 89 110 52 54 10
11 44 64 18 158 110 128 69 71 23
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The accuracy of the estimates slightly depends on the auxiliary information, as was

investigated in a preliminary study (details not presented). However, the main results do

not change, as long as the model is not overfitted.

As in Section 3, the point estimates of ZERO-F and ZERO-B are very similar.

Therefore, only the results under ZERO-B are presented. In Subsection 4.2 the point

estimates are discussed, and in Subsection 4.3 results for the mse estimates as well as

credible intervals are presented.

4.2. Point Estimates

The rmses for the different estimators for the target variable clothes are shown for the

eleven domains in Figure 3. The results are mixed: for each estimator, there is at least one

domain where this estimator has the largest rmse. On the other hand, the SAE methods are

more accurate than the SR for a majority of the domains. This is most clear for ZERO-B

which is more accurate than the SR for all but one domain. The Domains 1 and 2 (single

men, younger than 65 years/65 years and older) are special for clothes, since these

households do not buy many clothes (compare Table 9). ZERO-B can handle these

domains better than the EBLUP. The results for men’s clothes and motor fuel are similar

and therefore not shown in figures. There, other domains are special due to very small

expenditures in these domains. For men’s clothes, these are Domains 3, 4, and 9 (single

women, younger than 65 years/65 years and older, one-parent family, all children younger

than 18 years), where again ZERO is more accurate than the EBLUP. For motor fuel, it is

2 4 6 8 10

0

5

10

15

Clothes

Domains

R
m
se

Fig. 3. Root mse of three estimators with four different fixed effects for clothes (triangle: SR, star: EBLUP,

diamond: ZERO-B).
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Domain 4 (single women, 65 years and older). There, however, the EBLUP and ZERO-B

have a similar rmse, which is much larger than the rmse of the SR.

To summarize the results, the mean of the rmse and the mean of the relative rmse over

the domains are computed. Since the relative rmse for Domain 3 and 4 is extremely large

for men’s clothes, for this variable the mean relative rmse is also computed with these

domains excluded. The results are shown in Table 10. Based on this table, it can be

concluded that ZERO-B is the most accurate estimator. The fact that the mean relative

rmse of ZERO-B is almost equal to the one of the SR for men’s clothes (Column 5 and 7) is

caused by the extremely large values for Domain 3 and 4 (compare the numbers between

brackets). The EBLUP is also more accurate than the SR, but the possible gain is smaller

than the one achieved by using ZERO-B. The possible gain in accuracy also varies

between the target variables.

4.3. mse Estimates and Coverage

Figure 4 compares the model-based rmse obtained from the MCMC simulation computed

using (11) with the design-based rmse based on the simulation for the variable clothes.

Even though the two rmse concepts are quite different, it can still be useful to have good

frequentist properties of the model-based rmse and of model-based intervals. In most

domains the model-based rmse is on average somewhat larger than the simulation rmse.

Table 10. Mean rmse (first three columns), mean relative rmse with all domains included (Columns 5–7) and

mean relative rmse with Domains 3 and 4 excluded (Columns 5–7, between brackets) for three variables.

rmse rel. rmse

Fixed SR EBLUP ZERO-B SR EBLUP ZERO-B

Clothes 6.294 5.570 4.900 0.125 (2 ) 0.130 (2 ) 0.097 (2 )

Men’s clothes 3.530 3.295 2.945 0.372 (0.239) 0.675 (0.238) 0.369 (0.183)

Motor fuel 3.834 3.432 3.284 0.074 (2 ) 0.072 (2 ) 0.068 (2 )

1 2 3 4 5 6 7 8 9 10 11
Domains

15

10

5

rm
se

Fig. 4. Boxplot of MCMC estimates for root mse and rmse based on simulation (diamonds), clothes.
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For Domain 8 it is smaller on average. Nevertheless the model-based rmse seems a useful

measure of accuracy for the domain estimates, even in a repeated sampling sense. For the

other two variables, no figures are shown because the results are similar.

The coverages of 95% highest posterior density intervals are shown in Table 11 for all

three variables. Most coverages are not very far from 95%, although some undercoverage

and overcoverage occurs depending on the domain and the variable of interest. Intervals

based on the normal approximation using the model-based mse have also been computed.

They are quite similar to the highest posterior density intervals, although slightly wider,

and in almost all cases their coverages are close to those for the highest posterior density

intervals.

5. Conclusion

Model-based small-area estimation (SAE) can be considered as an alternative to

approximately design-unbiased estimation if the sample size is too small for producing

reliable design-based estimates. Zero-inflated target variables occur in many surveys by

national statistical institutets. Therefore, in this article three SAE methods are compared

with each other and with a design-based estimator in a simulation study using zero-inflated

variables. The first SAE method is the EBLUP (Rao 2003), which is the most common

SAE method but ignores zero inflation. The second and third SAE method, developed by

Pfeffermann et al. (2008) and Chandra and Sud (2012), take the zero inflation explicitly

into account. They are based on the same models but use the Bayesian and the frequentist

approach respectively. They result in similar point estimates and are referred to in

abbreviation as ZERO. The general conclusion is that in the case of zero-inflated variables,

an improvement of accuracy can be achieved with all SAE estimators compared with

design-based methods. So the performance of the EBLUP is often satisfactory even though

the model of the EBLUP is misspecified since it ignores the zero inflation. Generally

ZERO is more accurate than the EBLUP. In a simulation with artificial populations, the

properties of the populations can be controlled. There, ZERO is less model misspecified.

The amount of improvement in accuracy of ZERO compared with the EBLUP depends on

the properties of the entire population and the domains. In some populations, the

improvement is negligible; in others, it is substantial. In all considered simulations, there

are also some domains where the EBLUP is more accurate than ZERO.

The accuracy of the point estimates of ZERO under the frequentist approach or under

the Bayesian approach is almost equal, which means that the statistician’s taste can be the

Table 11. Coverage for 95% highest posterior density intervals.

Domain

1 2 3 4 5 6 7 8 9 10 11

Clothes 96.4 97.7 99.3 98.4 91.6 96.1 95.3 89.6 99.5 99.3 99.2
Men’s

clothes
90.0 94.4 97.4 96.9 92.7 98.5 93.4 96.6 98.2 98.6 96.3

Motor fuel 95.4 99.5 98.6 97.0 95.4 98.8 94.9 93.5 96.3 98.5 97.0
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deciding factor. A disadvantage of the Bayesian approach is that the computation time is

higher, while an advantage is that information about the accuracy of the estimates follows

directly. For the frequentist approach, no formula for the mean squared error has been

developed so far. Parametric bootstrapping can be applied as proposed by Chandra and

Sud (2012), which is also computationally intensive. The mean squared error estimates

under the Bayesian approach do not always track the simulation error accurately.

However, the mean squared error estimates seem to be useful as an indication of accuracy.

In a second simulation, real data of the Household Budget Survey (HBS) of Statistics

Netherlands are used. The considered target variables, expenditures for three products, are

zero inflated. In this simulation, the properties of the population cannot be controlled.

Model misspecification is now more pronounced for ZERO since this estimator takes only

one particular deviation from normality (zero inflation) into account, but no other possible

deviations. Nevertheless, ZERO is the most accurate estimator for the majority of the

domains. Contrary to the first simulation, in the simulation with HBS data there are some

domains where the design-based estimator is substantially more accurate than ZERO.

Such domains are very rare in the simulation with artificial data. Further results of both

simulations are similar.

ZERO as used in this paper assumes a normal distribution of the nonzero part of the

population. This assumption is not quite met in our application to the HBS. A suitable

transformation applied to the target variable, as described in Dreassi et al. (2012) and

Chandra and Chambers (2011a), could improve the model and the estimates. Furthermore,

a model that replaces the normal distribution for random effects by one with wider tails

might be able to better accommodate outlying random effects to prevent overshrinkage. In

the continuation of this research, these potential improvements can be implemented and

the results can be compared with those in this paper. Other research questions are how the

estimators work if a complex design of the survey and different response probabilities

must be taken into account.
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