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Official statistics are a fundamental source of publicly available information that periodically
provides a great amount of data on all major areas of citizens’ lives, such as economics, social
development, education, and the environment. However, these extraordinary sources of
information are often neglected, especially by business and industrial statisticians. In
particular, data collected from small businesses, like small and medium-sized enterprizes
(SMEs), are rarely integrated with official statistics data.

In official statistics data integration, the quality of data is essential to guarantee reliable
results. Considering the analysis of surveys on SMEs, one of the most common issues related
to data quality is the high proportion of nonresponses that leads to self-selection bias.

This work illustrates a flexible methodology to deal with self-selection bias, based on the
generalization of Heckman’s two-step method with the introduction of copulas. This approach
allows us to assume different distributions for the marginals and to express various depen-
dence structures. The methodology is illustrated through a real data application, where the
parameters are estimated according to the Bayesian approach and official statistics data are
incorporated into the model via informative priors.

Key words: Bayes theorem; copulas; Heckman’s two-step method; informative priors; small
and medium-sized enterprizes.

1. Introduction

Official statistics are a fundamental source of information about many aspects of citizens’

lives, about health, education, public and private services, as well as about the economic

climate, the financial situation, and the environment.

Official statistics represent precious and rich data sources not only for public

institutions, but also for firms that need to compare their performance against their

competitors, measure the satisfaction of their customers, explore new markets and identify

the most profitable locations to establish new subsidiaries.

However, the use of official statistics by firms, and in particular by medium-sized

enterprizes (SMEs), is still rather limited.

Due to the recent growth of the number of available data sources and the increase

in data quality, the use of innovative methods to aggregate results obtained from
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official statistics and from specific datasets is fundamental in order to obtain reliable

analyses.

The issue of data quality may invalidate statistical results, in which case integrating

different data sources and methods to improve data quality is needed.

According to the literature, the reliability of the results of a survey is reduced by the

existence of nonsampling errors or errors related to data-collection methods.

The major types of nonsampling errors are measurement, coverage, and self-selection

errors (see Nicolini and Dalla Valle 2012).

A coverage error is observed when the total number of subjects (target population) and

their list (frame population), available to the creator of the sampling list used to select

surveyed units, do not coincide.

A measurement error is given by the difference between the real value of an item related

to a surveying unit and the corresponding observed value. This type of error frequently has

been attributed to the presence of an interviewer.

Finally, a self-selection error, or unit nonresponse error, takes place when the selected

unit does not answer or does not fill in the questionnaire form. This nonresponse may be

caused by the inability to reach the subject or by his/her refusal to join the survey. The self-

selected subjects who have provided answers to the questionnaire form a nonprobabilistic

sample of the population.

In this article we focus on self-selection error, which is associated with subjects’

independent decision to take part in the survey.

The main issue with self-selection is that the responders differ from nonresponders and

therefore estimating an effect from only the responders might confound the effect and the

choice to respond. Typically responders have common characteristics (i.e., they may all be

young, middle-class women). In this case the sample is biased, since it does not represent

the population it is related to, and the sample distribution of the variables differs from the

same variables in the population.

The literature proposes some methods to correct the bias caused by self-selection. The

Propensity Score Matching method was first introduced by Rubin (1974) and later

developed by Rosenbaum and Rubin (1983), and suggests correcting the self-selection

bias in probabilistic terms. According to this method, propensity scores are calculated

using a multivariate logistic regression, and then each responder (from the so-called

treatment group) is matched with a nonresponder (from the so-called control group) with

the same score (for more details, please see Nicolini and Dalla Valle 2011). However,

Propensity Score Matching requires large samples with substantial overlap between

treatment and control groups.

The Heckman two-step Procedure, proposed by Heckman (Heckman 1979), considers

two equations tied together by a latent factor that allows the missing data associated with the

nonresponding subjects to be estimated. Heckman’s method and its variants have been an

essential tool for applied economics. Hamilton and Nickerson (2003) apply Heckman’s

method to strategic management and in particular to endogenous self-selection, according to

which managers choose strategies and organizational forms with the expectation that they

will yield high performance. The authors show that the use of corrections for endogeneity

may yield more accurate estimates of the costs and benefits of alternative strategic choices.

Lucchetti and Pigini (2013) use Heckman’s self-selection model to propose a test for
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bivariate normality in imperfectly observed models, based on the information matrix test

for censored models with bootstrap critical values via Monte Carlo simulation. However,

Heckman’s approach requires restrictive assumptions that limit its flexibility and makes

it difficult to adapt it to various dependence structures in the data.

We propose a novel approach allowing us on the one hand to correct self-selection bias

and on the other hand to integrate specific data with official statistic data. This innovative

approach combines the virtues of a flexible generalization of Heckman’s two-step method

using copulas and the Bayesian approach. The use of copulas to generalize Heckman’s

method relaxes the assumptions of normality and permits the accommodation of different

types of dependencies, while the Bayesian approach allows the integration of official data

by means of prior information. Moreover, our method can be applied successfully when

dealing with small samples.

The remainder of this article is organized as follows: in Section 2 we introduce copulas

and we present the main results of copula theory; Section 3 is devoted to the self-selection

model as proposed by Heckman; Section 4 illustrates the characteristics of the proposed

approach, using copulas within the self-selection model and integrating information with

the Bayesian approach; Section 5 introduces an illustrative example and presents the

results of the application of our model; finally, concluding remarks are given in Section 6.

2. Introduction to Copulas

2.1. Definition of Copula

The copula allows us to model the joint distribution of two or more random variables in a

flexible way, incorporating their dependency effects. The word copula is derived from Latin,

meaning to bind, tie, connect, and was first adopted by Sklar (Sklar 1959). In this context, the

term refers to the ability of the copula to link the marginal distributions of random variables

to a multivariate distribution, generating a stochastic dependence relationship. The main

advantage of the copula is that it allows us to explicitly express the dependence structure of

a set of random variables, whatever the distribution of these variables.

More formally, the copula is a multivariate distribution function defined over the unit

cube ½0; 1�d (where d is the dimension of the copula), C : ½0; 1�d ! ½0; 1�, linking two or

more marginals distributed as uniforms. In the bivariate case, our focus in the remainder of

the article, d ¼ 2 and the copula is expressed as

Cuðu1; u2Þ ¼ PrðU1 , u1;U2 , u2Þ; ð1Þ

where C is the bivariate copula, U1;U2 are uniformly distributed random variables, with

support belonging to the set [0, 1]2, and u is the copula dependence parameter vector.

The most important result in copula theory is Sklar’s theorem (Sklar 1959), stating that

if F is a joint bivariate distribution function with marginals F1 and F2, then there exists a

bivariate copula C such that for ðx1; x2Þ

Fðx1; x2Þ ¼ CuðF1ðx1Þ;F2ðx2ÞÞ: ð2Þ

If F1 and F2 are continuous functions, then the copula is unique for any

ðx1; x2Þ [ R < {21;þ1}. Thus, although the marginals are arguments of the copula, it
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is independent of them, since it separates the distributions of the marginals from their

dependence structure, parametrized by u.

Nelsen’s (1999) corollary suggests a method of generating copulas via the inversion

method. If F is a continuous bivariate joint distribution function with univariate marginals

F1 and F2 and generalized inverses F21
1 and F21

2 , then for ðu1; u2Þ there exists a unique

copula C such that

Cuðu1; u2Þ ¼ F F21
1 ðu1Þ;F

21
2 ðu2Þ

� �
: ð3Þ

2.2. Types of Copulas

The two main families of copulas are the Elliptical and Archimedean copulas (see Joe

1993, 1997).

Elliptical copulas are the copulas of elliptical distributions and their form is generally

obtained using Nelsen’s corollary (3). They are multivariate distributions sharing many of

the tractable properties of the multivariate normal distribution.

The most popular elliptical copula is the Normal or Gaussian copula, whose

characteristics are summarized in Table 1.

Another example of a copula that is particularly useful for its mathematical simplicity

is the Farlie-Gumbel-Morgenstern (FGM) copula (Morgenstern 1956; Gumbel 1960;

Farlie 1960).

The Archimedean family includes copulas expressed in a simple form based on the

mathematical theory of associativity, and covers a variety of dependence structures.

Archimedean copulas are constructed based on a generator function w : ½0; 1�! ½0;1�,

with the properties of being a continuous, convex, and decreasing function (i.e., wð1Þ ¼ 0,

w 0ðtÞ , 0 and w 00ðtÞ . 0 for 0 , t , 1). The function wðtÞ generates the copula, in the

bivariate case, as follows

wðCuðu1; u2ÞÞ ¼ wðu1Þ þ wðu2Þ: ð4Þ

When the generator is strict (i.e., wð0Þ ¼ 1), then the inverse w21ð�Þ exists and the copula

is expressed as

Cuðu1; u2Þ ¼ w21½wðu1Þ þ wðu2Þ�;

otherwise a pseudoinverse function w ½21� is used.

Some of the most popular Archimedean copulas are the AMH, Clayton, Gumbel and

Frank copula (Ali et al. 1978; Clayton 1978; Gumbel 1960; Frank 1979). The main

characteristics of these types of copulas are listed in Table 1 and they will be used in

Section 5 to fit our model to real data. The range of Kendall’s t is reported for comparison

purposes. This concordance measure is generally preferred to the copula’s dependence

parameter u, since t is invariant with respect to the marginals and to strictly increasing

transformations of the variables. For more details about transforming the copula parameter

u into Kendall’s t, please see Smith (2003).

Figure 1 shows the bivariate contour plots of the different types of copulas illustrated in

this section, all with standard normal margins and t ¼ 0.5.
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3. The Self-Selection Model

The self-selection model we are proposing is also known as the Tobit-2 model (as

introduced by Tobin 1958). This is a censored regression model where the dependent

variable is only observed in a selected sample that is not representative of the population.

Censoring occurs when the value of the dependent variable is only partially known. It is

a defect in the sample, because if there were no censoring, then the data would be a

representative sample from the population of interest.

In 1979, Heckman proposed a model for self-selection, which is made by two linear

equations related to each other: the substantial equation and the selection equation.

Supposing that data are missing for N 2 n observations (the number of nonresponders),

we define the selection equation (that represents participation) for individual i,

i ¼ 1, : : : , N, as follows:

y*
1i ¼ x1ib1 þ 11i; ð5Þ

where y*
1i is an unobserved latent random variable such that y*

1i . 0 corresponds to

responders, while y*
1i # 0 corresponds to nonresponders; x1i is the ith vector of variables

known for all N subjects, b1 is a vector of parameters, and 11i is the error.

The substantial equation (that is observed for participants) for individual i is:

y*
2i ¼ x2ib2 þ 12i; ð6Þ

where y*
2i denotes the latent continuous variable of interest, x2i is the ith vector of variables

known for all N subjects, b2 is a vector of parameters, and 12i is the error.

Normal, θ = 0.7

−3 −1 1 2 3

−3

0

2

FGM, θ = 1

−3 −1 1 2 3

−3

0

2

AMH, θ = 0.714

−3 −1 1 2 3

−3

0

2

Clayton, θ = 2

−3 −1 1 2 3

−3

0

2

Gumbel, θ = 2

−3 −1 1 2 3

−3

0

2

Frank, θ = 5.74

−3 −1 1 2 3

−3

0

2

Fig. 1. Bivariate contour plots of different copulas, with standard normal margins and t ¼ 0.5. From the top

left figure: Normal with u ¼ 0.7, FGM with u ¼ 1, AHM with u ¼ 0.714, Clayton with u ¼ 2, Gumbel with u ¼ 2,

Frank with u ¼ 5.74.
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Note that the explanatory variables x1 and x2 for the selection and substantial equation

may or may not be equal. However, the model is well identified if the exclusion restriction

is fulfilled, that is, if x1 includes a component that has substantial explanatory power but

that is not present in x2 (see Heckman 1979). If the exclusion restriction is not fulfilled, the

consequence is perfect multicollinearity and the equations cannot be estimated.

We can now define the observed variables

y1i ¼
0 if y*

1i # 0

1 if y*
1i . 0

8
<

:

and

y2i ¼
0 if y1i ¼ 0

y*
2i if y1i ¼ 1;

(

where y1i ¼ 1 corresponds to a responder and y1i ¼ 0 to a nonresponder, and we observe

the outcome y2i only if the latent selection variable y*
1i is positive.

Note that the self-selection model can be alternatively written such that the selection

equation becomes

and the substantial equation becomes

where ½�� is the indicator function.

Hence, the likelihood function of the self-selection model is

L ¼
YN

i¼1

Pr y*
1i # 0

� �� 	12y1i f 2j1 y2ijy
*
1i . 0

� �
�Pr y*

1i . 0
� �� 	y1i

ð7Þ

where the first term is the contribution of nonresponders and the second term is the

contribution of responders. In other words, the density of y2i is the same as that of y*
2i for

y1i ¼ 1 and is equal to the probability of observing y*
1i # 0 if y1i ¼ 0.

The conditional density in Equation (7) can be written as follows

f 2j1 y2ijy
*
1i . 0

� �
¼

1

1 2 F1ð0Þ
f 2ð y2iÞ2

›

›y2

Fð0; y2iÞ


 �

where F1ð0Þ ¼ Pr y*
1i # 0

� 	
¼ Pr{y1i ¼ 0} and Fð�;�Þ is the bivariate joint cdf

(cumulative distribution function). Substituting the conditional density form into (7) yields

L ¼
YN

i¼1

{F1ð0Þ}
12y1i f 2ð y2iÞ2

›

›y2

Fð0; y2iÞ

� 
y1i

: ð8Þ
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4. Copulas Applied to Self-Selection

The likelihood function of the self-selection model (8) can be re-expressed in a more

flexible way using copulas. In particular, in (8) the derivative of the joint cdf, following

Sklar’s theorem and its corollary, can be written as

›

›y2

Fð0; y2iÞ ¼
›

›v
CuðF1ð0Þ; vÞ

����
v!F2

�
›F2

›y2

:

Thus the likelihood function (8) can be written in terms of copulas as follows

L ¼
YN

i¼1

F1ð0Þf g
12y1i 1 2

›

›F2

CuðF1;F2Þ


 �
�f 2ð y2iÞ

� 
y1i

: ð9Þ

4.1. Heckman’s Model

Heckman’s model is also called the Normal model. He supposes that the marginal latent

variables Y*
1 and Y*

2 are distributed according to Gaussian models, such that:

Y*
1 , Nðx1b1; 1Þ Y*

2 , N x2b2;s
2
2

� �
;

where s2
1 ¼ 1. As a consequence the error terms follow a bivariate normal distribution:

11

12

 !

, N
0

0

 !

;
s2

1 u

u s2
2

0

@

1

A

0

@

1

A:

The likelihood function in this case takes the form

L ¼
YN

i¼1

1 2 Fðx1ib1Þf g
12y1i

1

s2

f
y2i 2 x2ib2

s2

� �
F

x1ib1 þ
u

s2

ð y2i 2 x2ib2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 u2
p

0

BB@

1

CCA

8
>><

>>:

9
>>=

>>;

y1i

; ð10Þ

where the left term corresponds to non self-selection, while the right term corresponds to

self-selection.

Heckman’s assumption of a joint normal distribution for the error terms is overly

restrictive, limiting the applicability of his approach. As pointed out by Lee (1983), the

copula approach can be used to relax the traditional assumption that the marginal

distributions are normal. Indeed, the marginals are very often not normally distributed,

especially financial variables. Smith (2003) provides a general copula-based framework

for Heckman’s model by demonstrating that copulas can be used to extend the standard

analysis to any bivariate distribution with given marginals (see also Smith 2005). The use

of normal marginals and normal copula leads us to the traditional Heckman’s method, as is

shown by comparing Equations (10) and (8) (see Bhat and Eluru 2009). However, with

significant departures from normality for the marginals and/or the copula, the traditional

Heckman’s approach is no longer sufficiently general and the use of the copula approach is

essential to provide the flexibility necessary for modelling the data and the dependencies

in the correct way. The following sections will demonstrate how the Bayesian approach
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allows us to incorporate different sources of information into the generalized Heckman’s

model, and how this technique can be applied to nonresponse modelling.

According to the copula approach, the likelihood has to be calculated using the (8). The

expressions of the derivatives ›
›F2

CuðF1;F2Þ for each type of copula are listed in Table 2.

4.2. The Bayesian Approach

In order to integrate specific data with official data sources, we use the Bayesian approach,

specifying informative priors using official information. The Bayesian approach is based

upon the idea that the interviewer begins with some prior beliefs about the system and then

updates these beliefs on the basis of observed data. This updating procedure is based upon

Bayes’ Theorem:

p ðhjdataÞ / f ðdatajhÞpðhÞ ðposterior / likelihood £ priorÞ;

where h is the parameter vector. Generally, parameter estimates are determined

employing the Markov Chain Monte Carlo (MCMC) method, which uses algorithms to

sample observations from the posterior distribution based on the construction of a Markov

chain that has the posterior as its equilibrium distribution. The state of the chain after

a number of steps is then used as a sample of the posterior distribution. If the prior

distributions are conjugate, general MCMC algorithms are not needed, but simpler

techniques, like the Gibbs Sampler, may be used (see Albert and Chib 1993; Gamerman

and Lopes 2006; Armero et al. 2008).

In order to apply the Bayesian approach to the generalized Heckman’s model, we

specify prior distributions for the vectors of parameters of the selection equation b1 and of

the substantial equation b2, for the variance parameter s2
2, and for the copula dependence

parameter u. Then, we sample from the posterior distribution by implementing a

Metropolis-within-Gibbs algorithm.

We assume a multivariate normally distributed vague prior for the selection equation

parameter vector b1 , Nðm1;S1Þ where m1 is a (n1 þ 1)-dimensional vector of zeros and

S1 ¼ 100In1þ1, with In1þ1 the (n1 þ 1)-dimensional identity matrix. Like for the

parameter vector b1, we consider a multivariate normal prior for the substantial equation

parameter vector b2, but we used information from official statistics to define informative

prior distributions. Hence, b2 , Nðm2;S2Þ, where m2 is a (n2 þ 1)-dimensional vector and

Table 2. Expressions for the copula derivatives ›
›F2

CuðF1;F2Þ.

Copula Expression for ›
›F2

CuðF1;F2Þ

Gaussian F F21ðu1Þ2uF21ðu2Þffiffiffiffiffiffiffiffiffi
12u 2
p

� �

FGM u1 1þ uð1 2 u1Þð1 2 2u2Þ½ �

AMH
ð12uÞu1þuu2

1

12uð12u1Þð12u2Þð Þ2

Clayton u2ðuþ1Þ
2 u2u

1 þ u2u
2 2 1

� �2 1þu
uð Þ

Gumbel u21
2 ð2lnðu2ÞÞ

u21�Cuðu1; u2Þ ð2lnðu1ÞÞ
u þ ð2lnðu2ÞÞ

u
� � 1

u
21ð Þ

Frank 1 2 euCuðu1;u2Þ
� �

ð1 2 euu2 Þ21
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S2 is the (n2 þ 1)-dimensional prior covariance matrix. For s 2
2 we consider the vague

prior s 2
2 , G21ða; bÞ where a ¼ 0.001 and b ¼ 0.001. As prior distribution for t we

consider the vague prior t , Betaða;bÞ extended to the range [21, 1] (Huard et al. 2006),

where a ¼ 1 and b ¼ 1.

5. Innovation Survey Data

The methodology illustrated in the previous section was tested using two datasets: a

national-level survey and an official EU-level survey dataset.

The first dataset is available on the ISTAT (Italian National Institution of Statistics)

website and it contains data collected through a survey on innovations introduced and

innovative activities undertaken by a sample of Italian firms between 2008 and 2010.

The Italian Innovation Survey, carried out on a two-year basis, collects information

about new or significantly improved goods or services (product innovations) and new or

significantly improved processes, logistics or distribution methods (process innovations),

as well as about organizational and marketing innovation. The original data were per-

turbed by ISTAT, in order to guarantee the privacy of respondents (see ISTAT 2013).

From the original ISTAT dataset, we only selected SMEs, that, according to the

definition provided by the European Union, include enterprises which employ fewer than

250 persons and which have an annual turnover not exceeding 50 million euros, and/or an

annual balance sheet total not exceeding 43 million euros.

Moreover, we restricted our attention to the reference period of 2010, hence limiting the

number of firms in the dataset to 4,266.

Therefore, from a total number of 3.8 millions of Italian SMEs in 2010, we only

considered survey information of a small sample of about 4,200 firms.

The variables we used from the innovation survey dataset are described in Table 3.

We integrated the ISTAT innovation survey data with a second dataset, the 2010

Innovation Union Scoreboard (IUS) provided by the European Union (see European

Commission 2010). IUS provides a comparative assessment of the research and innovation

performance of the EU Member States and the relative strengths and weaknesses of their

research and innovation systems.

In particular, we used data about human resources, firms’ activities, and outputs,

considering the following variables:

. human resources who completed tertiary education,

. business R&D firm expenditure,

. non-R&D innovation firm expenditure,

. firms introducing product or process innovations,

. firms introducing marketing/organizational innovations,

. knowledge-intensive services exports,

. sales of new-to-market and new-to-firm innovations.

We used the IUS variables listed above to define informative prior distributions for the

substantial equation parameters b2 of the generalized Heckman’s model, described in

Section 4. The parameters of these informative priors were defined based on the empirical

distributions of the corresponding IUS variables. This approach allows us to integrate the
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ISTAT national data source with the more general IUS international data source, provided

by the European Commission.

5.1. The Model

We suppose the firms that did not respond to the questionnaire are those belonging to the

business and other services and nonmarketed services NACE macrosectors. The percentage

of respondent firms is 85.07%, while the percentage of nonrespondent firms is 14.93%.

We assume a Normal distribution for the marginal Y*
1 (selection equation)

Y*
1 , Nðx1b1; 1Þ

and a log-normal distribution for Y *
2 (substantial equation), after a graphical examination

of the variable and the application of the Kolmogorov-Smirnov test, which accepts log-

normality:

logY*
2 , N ml;s

2
l

� �
;

where ml ¼ e x2b2þs
2=2 and s 2

l ¼ es 2

2 1
� �

e2x2b2þs
2

. Figure 2 shows the histogram of

the variable Turnover.

In the model, the target variable y2 is turn; the vector x1 comprises the above eleven

variables listed in Table 3. The model is well identified if the exclusion restriction is

fulfilled, that is, if x1 includes a component (empdeg) that has substantial explanatory

power but that is not present in x2.

5.2. Results

We run the Metropolis-within-Gibbs algorithm for 10,000 iterations and discarded the first

2,000 iterations as the burn-in period. Because of space considerations, we here analyze

the MCMC traceplots of the model using the Clayton copula, since the results obtained

Table 3. Description of the innovation survey dataset variables.

Innovation survey dataset

Variable names Variable label

turn turnover
rrdinx expenses for activities of R&D
rrdexx expenses for acquisitions of R&D services
rmacx expenses for acquisition of machinery and equipment
roekx expenses for acquisition of other external technologies
rdsgx expenses for design activities
rprex expenses for other innovative activities
rtrx expenses for education on innovative activities
rmarx expenses for marketing of innovative products
empdeg number of employees with a university degree
turnmar turnover coming from new products or services

(or significantly improved products and services)
for the reference market

turnin turnover coming from new products or services
(or significantly improved products and services) for the firm only
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with the other choices of copulas are very similar to those presented. The trace plots of the

parameters b1, b2, s 2 and u are listed in the Appendix. The sample paths show that the

chains are well mixing, freely exploring the sample space.

Parameter estimates for the selection and substantial equations are very stable, as shown

in Figures 3 and 4, representing credible intervals for b1 and b2, respectively. A credible

interval is computed from the posterior distribution and is the interval within which the

probability of the parameter of interest falling in is given by the level of credibility. The

credible intervals are all very similar for the different choices of copula. The only

exceptions are the credible intervals of the b2 parameters modeled with the independence

copula. However, this was expected, since the independence copula assumes no asso-

ciation between the selection and substantial equations. The results of the b1 parameters

indicate which variables are associated with response. From Figure 3, the variables with a

significant negative influence on the response are rrdinx, roekx and empdeg, while the

variable with a significant positive influence on the response is rmarx. This means that

firms that invest in R&D and external technologies, do not invest in marketing, and

employ several graduates, are nonrespondents. The b2 parameters indicate which variables

explain the firms’ turnover. Figure 4 suggests that the variables with a significant positive
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Fig. 2. Histogram of Turnover.
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Fig. 3. Credible intervals of b1 for all copulas considered at 95% level.
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influence on the firms’ turnover are rrdinx, turnmar, turnin, rmacx, rrdexx, and rprex. This

means that firms investing in R&D, machinery equipment, new products and services, and

other innovative activities show a high turnover.

Figures 5 and 6 show the boxplots of the posterior distributions of the parameters u

and t. As can be seen from the plots, the dependence parameters t are positive, meaning

that the nonrespondent SMEs (firms that did not fill in the questionnaire) are those with

high turnover. The values of Kendall’s t denote a moderate degree of dependence for

almost all the different types of copulas.

5.2.1. Model Comparison

We compare the performances of the different copula models using the Deviance

Information Criterion (DIC), which has the following expression

DIC ¼ �Dþ pD
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Fig. 4. Credible intervals of b2 for all copulas considered at 95% level.
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where �D ¼ Eð22log½LðdatajhÞ�Þ is the average of the log-likelihoods calculated at the end

of each MCMC iteration, pD ¼ �D 2 D̂ and D̂ ¼ 22log½Lðdatajh*Þ� is the log-likelihood

calculated using the parameter posterior means. Models with smaller DIC are better

supported by the data.

Table 4 lists the DIC results for the different copulas. The Clayton copula model

outperforms the others, since it has the lowest DIC value. Therefore, the Clayton copula

is the one that best models the relationship between Heckman’s equations. The main

advantage that the Clayton copula offers over the Normal is that the unequal tail

dependence, which is stronger in the left tail, is properly accounted for, leading to more

accurate results.

Finally, in order to correctly estimate our target variable, that is the turnover of the

SMEs, we need to consider the dependence value estimated through the most suitable

copula for our data. The mean turnover can be calculated as

E YjY*
1 . 0

� �
¼

ð1

0

y f 2j1 yjY*
1 . 0

� �
dy ¼

1

1 2 F1ð0Þ
EðYÞ2

ð1

0

y
›

›F2

CuðF1;F2Þf 2dy

0

@

1

A

where the result was evaluated at x ¼ �x, the covariate averages across the total number

of firms. Figure 7 shows the histogram of the mean turnover value for the SMEs,

Boxplots of the τ posterior distributions
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Fig. 6. Boxplots of the posterior distributions of t for the different copulas.

Table 4. Model comparison.

DIC

AMH 243599.06
Clayton 250993.80
FGM 243678.94
Frank 243681.95
Gumbel 245594.26
Indep 243767.92
Normal 243593.09
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calculated from the MCMC simulations. The dashed line represents the true average

value of turnover for the observed dataset, while the dotted line represents the average

value of turnover predicted by the traditional OLS model, which is based on the Normal

copula and the log-transformation of y2. Please note that the true value of turnover is

available, since self-selection was artificially introduced in the Innovation survey

dataset, as explained in Subsection 5.1. This result shows that the use of the OLS model

in presence of self-selection is completely unrealistic and underestimates the true value

of the target variable. The generalized Heckman’s model using the Clayton copula

performs well and accurately predicts the true value of turnover, since the predicted

turnover is very close to its true value. The Clayton copula in this case is more flexible

than the traditional Normal copula in capturing asymmetric tail dependence, and it gives

more reliable predictions.

6. Concluding Remarks

This article illustrated the application of the Bayesian generalized Heckman approach to

correct the self-selection bias integrating different sources of information.

This approach has a number of potential applications, especially where survey data are

employed. The use of official statistics in sector and marketing analysis by firms is one of

them. However, this approach can be successfully implemented in education, medical, and

social studies.

A limitation of the study could be the computational complexity in some cases.

However, the main advantage is the accuracy of the results compared to traditional

approaches.

Further studies may include the analysis of additional families of copulas and their

rotated versions.
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Fig. 7. Histogram of Turnover predicted via the Bayesian generalized Heckman approach. The plot compares

the copula estimate for the average turnover with the biased OLS estimates.
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Appendix
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Fig. 8. Trace plots of the b1 parameters for the Clayton copula model. The labels on the vertical axes refer to

the names of the variables.
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