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Nonresponse is very common in epidemiologic surveys and clinical trials. Common methods
for dealing with missing data (e.g., complete-case analysis, ignorable-likelihood methods, and
nonignorable modeling methods) rely on untestable assumptions. Nonresponse two-phase
sampling (NTS), which takes a random sample of initial nonrespondents for follow-up data
collection, provides a means to reduce nonresponse bias. However, traditional weighting
methods to analyze data from NTS do not make full use of auxiliary variables. This article
proposes a method called nonrespondent subsample multiple imputation (NSMI), where
multiple imputation (Rubin 1987) is performed within the subsample of nonrespondents in
Phase I using additional data collected in Phase II. The properties of the proposed methods by
simulation are illustrated and the methods applied to a quality of life study. The simulation
study shows that the gains from using the NTS scheme can be substantial, even if NTS
sampling only collects data from a small proportion of the initial nonrespondents.

Key words: Double sampling; maximum likelihood; missing data; nonignorable missing-data
mechanism; quality of life; weighting.

1. Introduction

Nonresponse is very common in population surveys and clinical trials. Complete-case

analysis (CC), which discards the incomplete cases, can lead to a substantial loss of

information or biased estimation of the key parameters. Since the publication of Rubin’s

seminal paper on missing data (Rubin 1976), a number of ignorable-likelihood (IL)

methods have been developed, including ignorable maximum likelihood, Bayesian

inference, and multiple imputation (Dempster et al. 1977; Rubin 1987; Heitjan and Rubin

1991; Little and Zhang 2011). IL methods provide valid inference when missingness does

not depend on the underlying missing values after conditioning on available data, a state

termed missing at random (MAR) (Rubin 1976; Little and Rubin 2002). When MAR

holds, inference can be based on the observed-data likelihood, and thus does not require

modeling assumptions about the missingness indicators. When the missingness could

depend on the missing values (missing not at random (MNAR) mechanism), nonignorable

models (NIM) are developed based on the joint distribution of the variables and the
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missing-data indicators (Heckman 1976; Amemiya 1984; Little 1993, 1994; Nandram and

Choi 2002, 2010).

Both IL and NIM methods make use of all available data, but they rely on assumptions

about the missing-data mechanism. IL methods are vulnerable to failures of the ignorable

missingness assumption; NIM methods are vulnerable to misspecification of the missing-

data mechanism and suffer from problems with identifying parameters. The assumptions

about the missing-data mechanism are untestable without knowing the underlying values

of the missing data. The choice may be aided by learning more about the missing-data

mechanism; for example, by recording reasons why particular values are missing. The

difficulty in identifying parameters in NIM may be alleviated in some special cases, such

as small-area estimation (Nandram and Choi 2002). In cases where the assumptions about

the missing-data mechanism cannot be determined, an alternative strategy is to perform

a sensitivity analysis to see whether key results are robust to alternative methods and

assumptions.

Yet another alternative is to use a study design to relax to some degree the assumptions

required under IL and NIM. One such design is two-phase sampling, in which a subsample

of nonrespondents to the original survey (Phase I) is selected for further interview attempts

(Phase II). This method is called nonresponse two-phase sampling (NTS). It was first

proposed by Hansen and Hurwitz (1946) to reduce the nonresponse bias in mail

questionnaires by carrying out personal interviews with a fraction of the nonrespondents.

Discussions of sample-size selection and estimation of the population mean/total can be

found in Hansen and Hurwitz (1946) and Srinath (1971). Some examples of using two-

phase sampling to mitigate the effects of nonresponse include the National Comorbidity

Survey (Elliott et al. 2000), the 2003 Survey of Small Business Finances (Harter et al.

2007) and the 2011 Canadian National Household Survey (Statistics Canada 2011).

Previous research mainly relies on using case weights developed from the two-phase

sample, rather than auxiliary variables, to reduce bias in estimating population means or

totals (Hansen and Hurwitz 1946; Srinath 1971; Harter et al. 2007). This article proposes

nonrespondent subsample multiple imputation (NSMI), where multiple imputation (Rubin

1987) is performed within the subsample of nonrespondents in Phase I, using additional

data collected in Phase II. The rationale of NSMI is that the MAR assumption, which the

multiple-imputation method is based on, is valid within the nonrespondent subsample

in Phase I, but may be invalid if extended to the whole sample. This is true when

the missingness in Phase I is MNAR and the NSMI reduces the nonresponse bias; when

the missingness in Phase I is ignorable, the NSMI is still a valid method, although there is

some loss of efficiency compared with multiple imputation using all cases.

Section 2 presents a motivating application based on data from a quality of life (QOL)

study. In this application, 147 out of the 750 participants did not reply to the initial QOL

survey. In Phase II, all 147 nonrespondents were recontacted and 39 provided answers to

an abridged version of the QOL instrument. The NSMI method consists of multiple

imputation of the missing QOL outcomes within the subsample of nonrespondents in

Phase I, that is, using the partial information of the 39 respondents in Phase II to impute the

missing QOL data.

Section 3 introduces the framework of NTS and the necessary notation. Section 4

reviews the methods for analyzing data from NTS and proposes NSMI. Section 5 presents
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simulations that illustrate the properties of NSMI, while Section 6 applies the method to

the motivating data. Section 7 concludes with a discussion.

2. Motivating Problem: A Quality of Life Study

To illustrate the methods, data from 750 participants in a community-based study––the

Children in the Community study (CIC) (Cohen et al. 2005)––are considered. The sample

was based on a random residence-based cohort, originally drawn from 100 neighborhoods

in two upstate New York counties in 1975. Additional information regarding the study is

available from Cohen et al. (2005). From 1991 to 1994 (T1), 750 youths (mean age 22

years and SD 2.8 years) were interviewed in their homes by trained interviewers. QOL

data were collected as part of the survey. QOL was assessed by the young adult quality of

life instrument (YAQOL) (Chen et al. 2004). In 2001–2004 (T2) at mean age 33.0 years

(SD ¼ 2.8), the same group of participants was surveyed via the web using the same QOL

instrument. Of the 750 subjects assessed for QOL at T1, 603 (80.4%) completed the QOL

survey at T2; 147 did not respond to the follow-up survey. For these 147 subjects, an

abridged version of the QOL instrument was mailed to their home address. Upon return of

the completed surveys, subjects were paid for their participation. Of the 147 eligible

subjects, 39 (26.5%) returned their QOL questionnaire. The resources scale used here is

taken from the abridged version and identical to that employed at T1.

The goals of the QOL analysis included estimating the mean resources score and

determining whether the resources scores are related to major demographic

variables––age, gender, race and education. CC analysis suffers from inefficiency and

potential bias if the missingness of QOL is MNAR. IL analyses make use of the partial

information in the incomplete cases, but assume the missing data are MAR. NSMI is

proposed for this problem, which is shown to be valid if the conditions of the Phase II

sampling are met, regardless of the missing-data mechanism in Phase I.

3. Continuing Data Collection for Nonresponse

Data with the structure in Table 1 are considered. Let {yi; i ¼ 1; : : :n} denote n

independent observations on a (possibly multivariate) outcome variable Y, where Y has

missing values. Yobs;1 is used to represent the data observed in Phase I, Yobs;2 to represent

the data missing in Phase I, but observed in Phase II, and Ymis to represent the data missing

after Phase II sampling. Let Yobs ¼ ðYobs;1;Yobs;2Þ and Ymis;1 ¼ ðYobs;2;YmisÞ represent the

observed data after Phase II and the missing data from Phase I, respectively. The vector of

Table 1. Two-phase sampling for nonresponse and general missing-data structure for Section 3.

Pattern Observation, i yi R1;i S2·1;i R2·1;i R2;i

1 i ¼ 1; : : :;m
p

1 – – 1
2 i ¼ mþ 1; : : :;mþ r x 0 1 1 1
3 i ¼ mþ r þ 1; : : :;mþ s ? 0 1 0 0
4 i ¼ mþ sþ 1; : : :; n ? 0 0 0 0

Key:
p

denotes observed; ? denotes at least one entry missing; x denotes at least one entry missing in Phase I, but

observed in Phase II.
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covariates, zi, is assumed to be fully observed. Interest concerns the parameters f, which

govern the conditional distribution of yi on zi; pð yijf; ziÞ.

In Phase I, yis are observed for i ¼ 1; : : : ;m; but contain missing values for

i ¼ mþ 1; : : : ; n. The response indicator for Phase I is denoted as R1,i, equal to 1 if yi is

observed and 0 otherwise. In Phase II, s subjects were sampled from the nonrespondents in

Phase I and r subjects responded. S2·1;i is used to denote whether a subject was sampled

among the nonrespondents in Phase I. Let pi denote the Phase II sampling probability

among nonrespondents in Phase I,

pi ¼ Pr ðS2·1;i ¼ 1jR1;i ¼ 0; zi; yiÞ: ð1Þ

After Phase II sampling, data on r additional subjects were collected. R2·1;i is used to

denote the Phase II response indicator among the nonrespondents in Phase I. The overall

response indicator after completion of Phase II is denoted as R2;i. Depending on the

context, the second-stage sampling may be a simple random, stratified or other probability

sampling scheme. In certain settings such as this example, all nonrespondents may be

contacted, with pi ¼ 1 for all i, so that m þ s ¼ n and the fourth row in Table 1 is empty.

The rows of Table 1 divide the cases into four patterns. Pattern 1 (i ¼ 1; : : : ;m)

consists of subjects for whom yi is fully observed after first-phase data collection. Pattern 2

consists of cases that were missing in Phase I, but subsequently observed in Phase II

sampling. Pattern 3 consists of cases that were sampled in Phase II, but did not respond,

and Pattern 4 were those Phase I nonrespondents were not sampled in Phase II.

4. A Comparison of Methods for Analyzing the Data

4.1. Ignorable Likelihood Using Multiple Imputation (MI)

In this subsection, data with the structure in Table 2 are considered. Yobs and Ymis are used

to denote the observed and missing component of the data Y, respectively. Ri is used to

denote the response indicator, equal to 1 if yi is observed and 0 otherwise. Z denotes the

covariates that are fully observed. When the data contain missing values, the full model

to describe the data is the joint distribution of Yobs, Ymis and R conditional on

Z;PðYobs;Ymis;Rjf; j; ZÞ, where j is the parameter associated with the distribution of the

response indicator R. The observed likelihood can be written as:

Lðf; j jYobs;R; ZÞ / PðYobs;Rjf; j; ZÞ ð2Þ

Table 2. General missing-data structure for Subsection 4.1.

Pattern Observation, i yi Ri

1 i ¼ 1; : : :;m
p

1
2 i ¼ mþ 1; : : :; n ? 0

Key:
p

denotes observed; ? denotes at least one entry missing.
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where

PðYobs;Rjf; j; ZÞ ¼

ð
PðYobs;Ymis;Rjf; j; ZÞdYmis

¼

ð
PðYobs;Ymisjf; ZÞPðRjYobs;Ymis; j;ZÞdYmis: ð3Þ

When the missing-data mechanism is missing completely at random (MCAR) or MAR

(Little and Rubin 2002), (3) becomes

PðYobs;Rjf; j; ZÞ ¼
PðYobsjf; ZÞPðRjj; ZÞ if MCAR

PðYobsjf; ZÞPðRjYobs; j; ZÞ if MAR:

(
ð4Þ

Under the further condition that the parameter spaces of f and j are distinct, the

likelihood-based inference on f can be conducted based on PðYobsjf; ZÞ, ignoring the

missing-data mechanism:

LðfjYobs; ZÞ / PðYobsjf; ZÞ: ð5Þ

Likelihood-based methods that ignore the missing-data mechanism are called ignorable

likelihood (Little and Zhang 2011). Options for IL are maximum-likelihood estimation,

Bayesian inference, and multiple imputation. Bayesian inference is based on the posterior

distribution of f given by:

PðfjYobs; ZÞ / LðYobsjf; ZÞPðfÞ; ð6Þ

where PðfÞ is the prior distribution of f.

Another option of IL is multiple imputation, that is, to impute the missing data Ymis, and

then apply complete-data-based methods to the imputed data to make inference on the

parameters f. Multiple imputation is closely related to Bayesian inference. The

imputation of Ymis is based on the posterior predictive distribution of Ymis given Yobs,

which is the conditional predictive distribution, PðYmisjYobs;f; ZÞ, averaged over the

posterior distribution of f, that is,

PðYmisjYobs; ZÞ ¼

ð
PðYmisjYobs;f; ZÞPðfjYobs; ZÞdf: ð7Þ

In order to generate M sets of imputations given Yobs;M values of f are independently

drawn from the posterior distribution, say ~fðtÞðt ¼ 1; : : : ;MÞ. For each ~fðtÞ, one set of

imputed values of Ymis is obtained by taking a random draw of Ymis from the

corresponding posterior predictive distribution P YmisjYobs; ~f ðtÞ; Z
� �

. Rubin (1987)

showed that when the proper imputation method is followed (i.e., an imputation method

that accounts for the uncertainty in the model parameters), the resulting inference based on

the multiply imputed datasets is valid. The M imputed datasets are then analyzed as if each

of them is a complete dataset. The analysis results from M imputed datasets are combined

following the multiple-imputation combining rules (Rubin 1987).
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Unlike IL methods, CC analysis discards all cases that contain missing values and is

based on the following likelihood:

LccðfÞ ¼ const: £
Ym
i¼1

pð yijR ¼ 1;f;ZÞ: ð8Þ

The estimation of f is obtained through maximizing L/ðfÞ; CC analysis is the default

method in most statistical packages.

4.2. Complete-Case and Ignorable-Likelihood Methods

In this section, data with the structure in Table 1 are considered. The notation is the same

as in Section 3. Depending on whether the additional data, Yobs;2 are used, there are two

versions of complete-case analysis and ignorable-likelihood method (e.g., multiple

imputation). The ignorable-likelihood methods that use data in Phase II (IL2) can be

written as:

Lign;2ðfÞ ¼ PðYobsjf; ZÞ ¼

ð
PðYobs;Ymisjf; ZÞdYmis

¼ const: £
Ym
i¼1

pð yijR1;i ¼ 1;f;ZÞ £
Ymþr

i¼mþ1

pðyijR1;i ¼ 0;R2;i ¼ 1;f;ZÞ

£

ð
· · ·

ð Yn

i¼mþrþ1

pð yi;obs; yi;misjR2;i ¼ 0;f;ZÞdymþrþ1;mis· · ·dyn;mis

ð9Þ

where yi;obs consists of the fully observed components of yi.

Rubin’s (1976) theory shows that a sufficient condition for valid inference based on (9)

is that MAR holds in the Phase II data, that is:

PðR2jYobs;Ymis; j;ZÞ ¼ PðR2jYobs; j;ZÞ: ð10Þ

A complete-case analysis using Phase II data (CC2) bases inferences for f on the

complete observations in Patterns 1 and 2. In a likelihood context, the method bases

inference on the conditional likelihood corresponding to the complete cases after Phase II

sampling, namely:

Lcc;2ðfÞ¼ const:£
Ym
i¼1

pð yijR1;i¼1;f;ZÞ£
Ymþr

i¼mþ1

pð yijR1;i¼0;R2;i¼1;f;ZÞ: ð11Þ

Note that the first part of (9) is exactly the same as (11), and that the second part explains

how (9) uses the partially observed component of the outcome yi (possibly multivariate)

for i¼mþrþ1; : : : ;n. The key assumption under which inference based on L/;2ðfÞ is

valid is that the missingness after Phase II is MCAR,

PðR2jYobs;Ymis;j;ZÞ¼PðR2jj;ZÞ: ð12Þ

Note that (12) is a special case of (10); when the missingness after Phase II is MCAR,

the IL2 method is also valid and more efficient than CC2 because CC2 removes from the

analysis all cases that were not observed after Phase II sampling, and fails to use the

information in the partially observed data.
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The ignorable-likelihood methods that use only the Phase I data (IL1) are based on the

following likelihood:

Lign;1ðfÞ ¼ PðYobs;1jf;ZÞ ¼

ð ð
PðYobs;1;Yobs;2;Ymisjf;ZÞdYobs;2dYmis

¼ const: £
Ym
i¼1

pð yijR1;i ¼ 1;f;ZÞ

£

ð
· · ·

ð Ymþr

i¼mþ1

pð yi;obs; yi;misjR1;i ¼ 0;R2;i ¼ 1;f;ZÞdymþ1;mis· · ·dymþr;mis

£

ð
: : :

ð Yn

i¼mþrþ1

pð yi;obs; yi;misjR2;i ¼ 0;f;ZÞdymþrþ1;mis· · ·dyn;mis

ð13Þ

They are valid if:

PðR1jYobs;1;Yobs;2;Ymis; j;ZÞ ¼ PðR1jYobs;1; j;ZÞ: ð14Þ

Likewise, the CC analysis based only on Phase I uses cases in Pattern 1 (CC1) in Table 1,

and is equivalent to (8) when no resampling has occurred. Here, the likelihood can be

written as:

Lcc;1ðfÞ ¼ const: £
Ym
i¼1

p yijR1 ¼ 1;f;Z
� �

: ð15Þ

The CC1 analysis is valid if the corresponding missing-data mechanism is MCAR:

PðR1jYobs;Ymis; j;ZÞ ¼ PðR1jj;ZÞ: ð16Þ

In both cases with or without using data from Phase II, the ignorable-likelihood methods

are more efficient than the CC analysis if the corresponding missing-data mechanisms are

ignorable (MAR or MCAR). The choice between IL1 and IL2 relies on whether (10) or

(14) is a more reasonable assumption, that is, whether the MAR assumption holds among

second-wave nonrespondents regardless of the first-wave missingness mechanism

(suggesting IL2), or whether MAR holds among first-wave nonrespondents, but

missingness is nonignorable at Phase 2 (suggesting IL1).

4.3. Nonrespondent Subsample Multiple Imputation (NSMI)

In this section, data with the structure in Table 1 are also considered. NSMI is proposed,

which applies the multiple-imputation method to the cases in Patterns 2, 3, and 4. In the

NSMI method, we leave out the subjects in Pattern 1 when the missing values in Pattern 3

and 4 were imputed, and then the imputed datasets from Patterns 2, 3, 4 are combined with

data from Pattern 1 for statistical analyses. The method is valid if within the nonrespondents

in Phase I (Patterns 2, 3, and 4), the missingness after Phase II sampling is MAR, namely,

ðR2·1 ¼ 1jR1 ¼ 0;Yobs;2;Ymis; j;ZÞ ¼ PðR2·1 ¼ 1jR1 ¼ 0;Yobs;2; j;ZÞ ð17Þ

Zhang et al.: Nonrespondent Subsample Multiple Imputation 775



This missingness mechanism is called nonrespondent subsample missing at random

(NS-MAR). Conditioning on R1 ¼ 0, the joint distribution of Yobs;2, Ymis and R2·1 can be

written as:

PðYobs;2;Ymis;R2·1jR1 ¼ 0;f; j; ZÞ

¼ PðYobs;2;YmisjR1 ¼ 0;f; ZÞPðR2·1jR1 ¼ 0;Yobs;2;Ymis; j; ZÞ
ð18Þ

The joint distribution of Yobs;2 and R2·1 conditional on R1 ¼ 0 is obtained by integrating

out Ymis (Little and Rubin 2002):

PðYobs;2;R2·1jR1 ¼ 0;f; j; ZÞ ¼

ð
PðYobs;2;Ymis;R2·1jR1 ¼ 0;f; j; ZÞdYmis ð19Þ

The key assumption for the NSMI methods is NS-MAR, which ensures that the imputed

values are from the predictive distribution of Ymis.

It should be noted that the assumption in (17) does not confine the missing-data

mechanisms in the whole sample (R2) or the missing-data mechanism in Phase I (R1) to a

certain missing-data mechanism, and therefore NSMI may be applied even under the

MNAR missingness mechanism in Phase I or Phase I/II combined data as long as Phase II

is MCAR or MAR. In contrast, the IL2 assumptions are violated, since under NS-MAR we

have:

PðR1 ¼ 1j�Þ ¼ f 1ðX;Yobs;1;Yobs;2;YmisÞ; PðR2·1 ¼ 1jR1 ¼ 0;�Þ ¼ f 2ðX;Yobs;2Þ

where f 1 and f 2 are arbitrary functions, and thus:

PðR2 ¼ 1j�Þ ¼ PðR1 ¼ 1j�ÞPðR2 ¼ 1jR1 ¼ 1;�Þ þ PðR1 ¼ 0j�ÞPðR2 ¼ 1jR1 ¼ 0;�Þ

¼ PðR1 ¼ 1j�Þ þ PðR1 ¼ 0j�ÞPðR2 ¼ 1jR1 ¼ 0j�Þ

¼ f 1 þ ð1 2 f 1Þf 2

Since f 1 involves missing values, the distribution of R2 depends on underlying missing

values, and therefore the assumption for IL2 is violated.

5. Simulation Studies

This section illustrates the properties of the NSMI method using simulation studies and

compares the performance of NSMI to other methods under different missing-data

mechanisms in Phases I and II. For each simulation study, six methods are applied to

estimate the mean of the outcome Y and the regression coefficient of Y on scalar covariates

Z and X:

1. BD: estimates using the data before deletion (BD), that is, the full data generated

from simulation before missing values are created, as a benchmark method.

2. CC1: complete-case analysis using respondents from Phase I.

3. CC2: complete-case analysis using respondents from both Phases I and II.

4. IL1: multiple imputation using data from Phase I.
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5. IL2: multiple imputation using data from both Phases I and II.

6. NSMI: multiple imputation in the nonrespondent subsample in Phase I using only

additional data from Phase II.

The first three methods (BD, CC1, CC2) were implemented using standard maximum-

likelihood estimation procedures in the software package R version 2.15.0 (R Development

Core Team 2012). Methods 4–6 were implemented in the R package mice (multiple

imputation through chained equations, Van Buuren and Groothuis-Oudshoom 2011); the

number of imputed datasets was ten and the default was used for other options.

This article compares the performance of each of the methods using empirical bias, root

mean square errors (RMSE), and the coverage probabilities of the 95% confidence

intervals.

The first set of simulations generates ðz; xÞi from the normal distribution with mean 0,

and covariance matrix
1 0:3

0:3 1

 !
; for i ¼ 1,2, : : : , 1,000. Y is related to Z and X by the

linear model:

yi ¼ 1þ zi þ xi þ 1i; 1i
iid
~ Nð0; 1Þ:

The response Y is subject to missingness, while Z and X are fully observed. Two

covariates are used to allow the response mechanisms in Phases I and II to depend on

different covariates (depending on z in Phase I and on x in Phase II). Let Ri denote the

response indicator for yi in Phase I. Phase I missing values in Y are generated based on the

following three missing-data mechanisms:

(I) MCAR: Pr ðRi ¼ 0jzi; xi; yiÞ ¼ expitð21Þ;

(II) MAR: Pr ðRi ¼ 0jzi; xi; yiÞ ¼ expitð21þ ziÞ;

(III) MNAR: Pr ðRi ¼ 0jzi; xi; yiÞ ¼ expitð2yiÞ;

where expitð�Þ is the inverse logit function, expitð�Þ ¼ exp ð�Þ=½1þ exp ð�Þ�. Ri is then

generated from a Bernoulli distribution with probability Pr ðRi ¼ 0jzi; xi; yiÞ. Each

missing-data generation scheme results in approximately 27% of the values of Y being

missing in Phase I.

Let R2�1;i denote the response indicator in the subsample of nonrespondents in Phase

I. Phase II responses in Y are generated under an MCAR mechanism:

Pr ðR2·1;i ¼ 1jRi ¼ 0; zi; xi;Y iÞ ¼ 0:25:

The biases, root RMSE, and coverage probabilities of the 95% confidence intervals from

each of the six methods are reported in Table 3. Results are based on 1,000 repetitions for

each simulated condition.

For the MCAR missing-data mechanism in Phase I, all methods yield approximately

unbiased estimates of both the mean of Y and the regression of Y on X and Z. IL2 has the

smallest RMSE for the population mean since it makes full use of the data. For the

regression parameters, CC2 and IL2 give comparable estimates since the incomplete cases

do not contain additional information for the regression of Y on the covariates for this

missing-data mechanism (Little and Zhang 2011). The NSMI method has moderately
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larger RMSEs because of increased variability in the imputed values, which uses subjects

from Patterns 2, 3, and 4, but not subjects from Pattern 1.

For the MAR missing-data mechanism in Phase I, all methods give approximately

unbiased estimates for the regression coefficients, but the CC1 and CC2 methods show

significant biases in estimating the mean of Y. This is not surprising because the

missingness of Y depends on X, which is conditioned on in the estimation of the regression

of Y on Z and X, but not in the estimation of the (marginal) mean of Y. As in the Phase I

MCAR case, the NSMI has a somewhat greater RMSE than the IL methods, because

information about the respondents in Phase I was not used in the imputation.

For MNAR missing-data generation in Phase I, the NSMI method is the only method

that provides unbiased estimates of the mean of Y and the regression coefficients of Y on Z

and X. All other methods show significant biases because the MCAR or MAR assumptions

are violated.

When the Phase II missingness mechanism is MAR, the results are similar to the results

when the Phase II missingness mechanism is MCAR. Please refer to the online

supplementary material for related results found at www.dx.doi.org/10.1515/jos-2016-

0039.

The second set of simulations uses the same setup as in the MNAR scenario in the

previous simulations, but vary the probability of being sampled in Phase II, that is, p is

0.05, 0.15, 0.25 or 0.50. The same six methods are applied on the simulated data. The bias,

RMSE, and coverage probabilities are reported in Table 4.

For the simulated MNAR data in Phase I, only NSMI gives approximately unbiased

estimates of the mean of Y and the regression coefficients. The precision increases as the

sampling proportion in Phase II increases. Note that even randomly sampling five percent

of the nonrespondents in Phase I is enough to distinguish the NSMI results from other

competing methods. However, if data are collected on a small percentage of

nonrespondents in Phase I, the NSMI yields estimates with large variance, and hence

increased average lengths of the 95% confidence intervals. Please refer to the online

supplementary material for additional simulation studies to examine how the performance

of the NSMI method depends on the proportion of missingness.

The performance of different methods when the Phase II missing-data mechanism is

MNAR is presented in the online supplementary material and is examined now. When the

missing-data mechanism in Phase I is MAR or MCAR, IL1 is the only method that gives

approximately unbiased estimates; in this case, both methods utilizing additional

data from Phase II (IL2, and NSMI) are biased, because the missingness mechanism in

Phase II is MNAR. When both Phases I and II’s missingness mechanisms are MNAR, no

method gives unbiased estimators for any of the parameters of interest. Please refer to the

online supplementary material for additional studies comparing NSMI with alternative

methods.

6. Application to Motivating Example

The proposed method will now be applied to the QOL dataset. For illustration

purposes, the results for the resources subscale are presented. This is to estimate the mean

resources and the regression of resources on gender (male versus female), age (in years),

Zhang et al.: Nonrespondent Subsample Multiple Imputation 779
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race, and education. Race was dichotomized as white versus nonwhite, and education was

dichotomized as high school and above versus education below high-school level.

All covariates are fully observed, whereas 147 out of 750 subjects have missing values

in resources in Phase I. In Phase II, 39 out of the 147 nonrespondents provided data. Since

the Phase II data collection was done within three months of Phase I, it was assumed that

resources remained unchanged from Phase I. In implementing the NSMI method, we make

the assumption that, among the 147 nonrespondents, the missingness after Phase II is

MAR, thus meeting the conditions for NSMI. The validity of other competing methods

rests on the mechanism that generates the missing data in Phase I. For instance, if the

missing-data mechanism in Phase I is MCAR, then both CC and IL methods provide valid

estimates. However, if the missingness in Phase I is MNAR (as suggested by Bonetti et al.

1999 and Fielding et al. 2009), then CC and IL methods will fail to give an unbiased

estimation.

For all imputation methods, the fully observed resources measured at the mean age of

22 years are used in the imputation model, but not in the analysis model; this is because the

resource scale measured at that age serves as a good predictor for the resources at the mean

age of 33, but is not of direct interest in the analysis model (Meng 1994; van Buuren et al.

1999). The results from five methods are shown in Table 5. With respect to the modeling

of resources as a function of gender, age, race, and education, NSMI shows a weaker

negative association of race with resources compared with the other four methods. In

particular, the NSMI method did not reveal a statistically significant association of race

with resources, in contrast to the other methods, where whites had significantly greater

resources. Age also had a somewhat weaker positive association with resources, although

this relationship was not significant in any of the approaches. Those with higher levels of

education and females had higher levels of resources, although these relationships were

not statistically significant in any of the methods, nor did they differ systematically across

the methods.

7. Discussion

Two-phase sampling has been proposed and used in surveys with nonresponse for five

decades. However, little research has been done to show the benefit of nonresponse

subsampling; traditional methods (i.e., weighting) also fail to make full use of the

additional data collected from two-phase sampling. This article proposes an NSMI method

to analyze data from NTS. The proposed method yields valid estimates when the missing-

data mechanism in the subsample of initial nonrespondents is MAR, regardless of the

missing-data mechanism in Phase I. The simulation studies also show that it is beneficial to

use the NTS scheme, even when collecting data from only a small proportion of the

nonrespondents.

Previous studies suggest that the missing-data mechanism in QOL outcomes was

probably not MCAR (Bonetti et al. 1999; Fielding et al. 2009). Therefore, NSMI is

considered in this applied example, which utilizes two-phase sampling to obtain data from

a subsample of the initial nonrespondents in the Children in the Community study. Using

the proposed NSMI method, white race was not found to be significantly associated with

Zhang et al.: Nonrespondent Subsample Multiple Imputation 781
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increased resources, while other alternatives suggested a significant association between

race and resources.

By exploring the relationship between missing values and observed data, the NSMI

methods use the information of the fully observed variables and improve the efficiency of

the estimation. The method of multiple imputation by chained equations provides a valid

way of utilizing the information in other variables when imputing the missing values. The

NSMI method not only provides a valid estimation of the marginal distribution of the

outcome (e.g., mean), but also of the conditional distribution of the outcome on covariates

(e.g., regression).

Missing data are ubiquitous and all methods for handling missing data rely on untestable

assumptions. NTS provides a valid way to relax these untestable assumptions in part.

Ideally, Phase II sampling takes a random sample of Phase I nonrespondents. However,

these random subsamples may still be subject to nonresponse. In cases when the sampling

yields a missing-data mechanism of MAR for Phase I nonrespondents, the proposed NSMI

method is valid, regardless of the first-stage mechanism. In the event that both first- and

second-stage missing-data mechanisms are MNAR, neither NSMI nor any multiple-

imputation methods that ignore missing-data mechanisms are free of bias. Of course, in

practice, assessing MNAR directly is not typically possible––the motivation for the NSMI

approach is that, if the Phase I missingness mechanism is strongly MNAR, the Phase II

missingness may be less so, because the Phase I nonrespondents may share some common

characteristics that make the NS-MAR assumption plausible.

The NTS scheme considered in this article involves collecting data from

nonrespondents. This is challenging in practice, but may be achieved by giving an

abridged version of the questionnaire, by giving incentives for response, or by using other

advanced survey techniques, such as tailoring the questionnaire to the interviewees

(Groves and Couper 1998). In the second-stage subsampling within a fixed budget, there is

a balance between reducing the nonresponse rate and subsampling more subjects, because

by focusing on a moderate number of nonrespondents, it is possible to obtain a high

response rate and therefore reduce the nonresponse bias (Elliott et al. 2000). This aspect of

the problem is currently under investigation.

Finally, it should be noted that use of the NSMI approach is not fail-safe. As the

simulation studies show, if Phase I missingness is MCAR, there is no gain in using the

NSMI approach; if Phase I is MCAR or MAR, and Phase II is MNAR, substantial bias can

be introduced relative to MAR methods that ignore the Phase II data. While Phase I MAR

and MNAR mechanisms cannot be distinguished from observed data, some evidence for

Phase I MCAR can be deduced from the observed data. Hence, methods that consider the

evidence for MCAR and ‘trade off’ Phase I versus Phase II imputation may be desirable to

enhance robustness under all different mechanisms. In addition, follow-up nonresponse

designs that devote more intensive effort to minimizing Phase II MNAR though use of

techniques that may not be practical or cost-effective to implement during Phase I data

collection (use of targeted incentives, expensive but high response rate data-collection

modes such as face-to-face interviews) might be implemented to make NSMI assumptions

more plausible. Future research is needed into analytic methods both to improve

robustness to NSMI assumption failures and to consider data-collection methods that

better meet NSMI assumptions.
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