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When analyzing data sampled with unequal inclusion probabilities, correlations between
the probability of selection and the sampled data can induce bias if the inclusion probabilities
are ignored in the analysis. Weights equal to the inverse of the probability of inclusion are
commonly used to correct possible bias. When weights are uncorrelated with the descriptive
or model estimators of interest, highly disproportional sample designs resulting in large
weights can introduce unnecessary variability, leading to an overall larger mean square error
compared to unweighted methods.

We describe an approach we term ‘weight smoothing’ that models the interactions between
the weights and the estimators as random effects, reducing the root mean square error (RMSE)
by shrinking interactions toward zero when such shrinkage is allowed by the data. This article
adapts a flexible Laplace prior distribution for the hierarchical Bayesian model to gain a more
robust bias-variance tradeoff than previous approaches using normal priors. Simulation and
application suggest that under a linear model setting, weight-smoothing models with Laplace
priors yield robust results when weighting is necessary, and provide considerable reduction in
RMSE otherwise. In logistic regression models, estimates using weight-smoothing models with
Laplace priors are robust, but with less gain in efficiency than in linear regression settings.

Key words: Weight trimming; winsorization; Bayesian finite population inference;
Hierarchical models.

1. Introduction

Studies based on data sampled with unequal inclusion probabilities typically apply case

weights equal to the inverse of the probability of inclusion to reduce or remove bias in

estimators of descriptive population quantities, such as means or totals (Horvitz and

Thompson 1952). This “fully weighted” approach can be extended to estimate analytical

quantities that focus on association between risk factors and outcomes, such as population

slopes in linear and generalized linear models, by applying sampling weights to score

equations, and solving for the resulting “pseudo-maximum likelihood” estimators (PMLEs)

(Binder 1983; Pfeffermann 1993). Unweighted and weighted estimators generally

correspond when the underlying model (either implicit or explicit) is correctly specified and

the sampling scheme is noninformative. When the model is misspecified or the sampling
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scheme is informative, weighted estimators typically reduce bias, often (although not

always) at the cost of increased variance. As model assumptions improve and/or sampling

better approximates noninformativeness, the increase in variance from weighted analysis

could overwhelm the reduction in bias, leading to an overall larger mean square error (MSE)

than would be the case if the weights were ignored or at least controlled in some fashion.

In many, if not most cases, fully weighted estimators are used without concerns about

such tradeoffs. When variability in weights is of concern, weight trimming, or

“winsorization,” is used to control the variation in weights by capping the weights at some

value w0, and redistributing the values above w0 among the rest (Alexander et al. 1997;

Kish 1992; Potter 1990). Various criteria have been used to determine the cap value based

on data. Some examples include the National Assessment of Education Progress (NAEP)

method by Potter (1988), which set the cutoff point equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c
P

i[s w2
i =n

p

, where c

was chosen in an ad-hoc manner. Cox and McGrath (1981) approached it by estimating

the cutoff point value which optimizes the empirical MSE estimated by

dMSEMSEðûtÞ ¼ ðût 2 ûwÞ
2 2 dVarVarðûtÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dVarVarðûtÞdVarVarðûwÞ

q

, where ûw is the fully weighted

estimator, and ût, t ¼ 1, : : : , T, is the weight-trimmed estimator, with t denoting various

trimming levels ordered from lowest to highest. These levels are ad hoc, except for w0 ¼ w̄

for t ¼ 1, which fixes all weights to their mean value and yields the unweighted estimator,

and w0 ¼ max wi for t ¼ T, which yields the fully weighted (untrimmed) estimator.

Chowdhury et al. (2007) suggested treating the weights as coming from a skewed

cumulative distribution (e.g., an exponential distribution), and using the upper one percent

of the fitted distribution as a cut point for weight trimming. Beaumont (2008) proposed

a generalized design-based method, replacing the actual weights with weights predicted

using a function of response and design variables. Details of these design-based

approaches are summarized in Henry and Valliant’s (2012) review.

An alternative to standard design-based weighted estimation is a model-based approach

that accommodates disproportional probability-of-selection design in a finite population

Bayesian inference setting. By creating dummy variables stratified by equal or

approximately equal case weights, a fully weighted data analysis is obtained by building a

model with indicators for the weight strata together with interaction terms between the

weight stratum indicators and model parameters of interest, then obtaining inference about

the population quantity of interest from its posterior predictive distribution. Elliott and

Little (2000) established two model-based approaches for weight-trimming: model

averaging, or “weight pooling”, and hierarchical modeling, or “weight smoothing”. A

weight pooling model collapses strata with similar weights together with their associated

interaction terms, mimicking a data-driven weight-trimming process. Weight smoothing

treats the underlying weight strata as random effects, and achieves a balance between fully

weighted and unweighted estimates using a shrinkage estimator: thus the weight strata are

smoothed if data provide little evidence of difference between strata, and are separated if

data suggest that interactions with strata are present. Under a Bayesian framework, a two-

level model is implemented, assigning a multivariate normal prior for the random effects,

with inference obtained from the posterior predictive distribution of the population

parameter of interest. Elliott (2007) extended the application of weight-smoothing models

to linear and generalized linear models, and discussed different structures for the random-

effect priors, namely exchangeable, autoregressive, linear and nonparametric random
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slopes. Both of these papers found that there was an efficient/robustness tradeoff with

respect to structure in the prior mean and variance, with simple exchangeable models

providing highly efficient estimates when the weights provided little bias correction, but

being susceptible to “oversmoothing” and yielding biased estimators when weights really

were necessary to provide substantial bias correction. Highly structured models such as

smoothing splines provided robust bias correction, but had less dramatic gains in

efficiency and were more complex to implement. Hence we are motivated to find

alternative models that will induce weight smoothing under simple mean and covariance

matrix settings, while improving the bias-variance tradeoff. A logical choice would be

a Laplace prior, which can be viewed as providing a Bayesian version of a LASSO

regression model (Park and Casella 2008). This heavier-tailed prior might be expected

to provide little or no shrinkage when bias correction is required, but still allow

approximation to an unweighted estimator when the data suggest weak relationships with

probability of selection.

In this article we extend the weight-smoothing approach by use of Laplace priors for the

random-effect weight strata and interaction terms instead of multivariate normal priors, in

order to achieve more robustness against “oversmoothing” in settings where weights are

required to accommodate model misspecification or nonignorable sampling. We evaluate

the performance of our proposed model in a simulation study, under both model

misspecification and informative sampling, for both continuous and dichotomous

outcomes, and compare it with competing methods. The article is organized as follows. In

Section 2 we review the theory of model smoothing together with recently proposed

model-assisted methods, and develop our model with Laplace priors. Section 3 provides

simulation studies, and compares bias, coverage and MSE of the proposed method with

competing methods. Section 4 demonstrates the method’s performance for both linear and

logistic scenarios by applications to dioxin data from the National Health and Nutrition

Examination Survey (NHANES) and Partners for Child Passenger Safety dataset. Section 5

provides a summary discussion.

2. Weight-Smoothing Methodology

2.1. Finite Bayesian Population Inference

For finite Bayesian population inference, we model the population data Y: Y , f (Y ju,Z ),

where Z are the variables associated with the sample design (probabilities of selection,

cluster indicators, stratum variables). Note that the parametric model f can either be highly

parametric with a low dimension u (e.g., a normal model with common mean and

variance), or have a more semiparametric or nonparametric flavor with a high-dimension u

(such as a spline or Dirichlet process model). Inference about some population quantity of

interest Q(Y) is based on the posterior predictive distribution of

pðYnobjYobs;I;ZÞ¼

Ð Ð

pðIjY ;Z;u;fÞpðYnobjYobs;Z;u;fÞpðYobsjZ;uÞpðu;fÞdudf
Ð Ð Ð

pðIjY ;Z;u;fÞpðYnobjYobs;Z;u;fÞpðYobsjZ;uÞpðu;fÞdudfdYnobs

ð1Þ

where Ynob consists of the N 2 n unobserved cases in the population, u models Y (possibly

conditional on Z) and f models the inclusion indicator I (equal to 1 if the unit is sampled
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and observed and 0 otherwise). Thus p(I jY, Z, u,f) refers to the distribution of the sample

mechanism given the design variables and the data of interest, p(Ynob jYobs, Z, u,f) gives

the distribution of the unobserved elements in the sample given the observed elements in

the sample and the (fully observed) design variables, and p(Yobs jZ, u) models the observed

data given any design variables. Assuming that f and u have independent priors, the

sampling mechanism is said to be “noninformative” if the distribution of I is independent

of Y Zj , or “ignorable” if the distribution of I only depends on Yobs Zj . When the sampling

design is ignorable, p(I jY, Z, u,f) ¼ p(I jYobs, Z,f), and thus (1) reduces to

pðYnobjYobs;ZÞ¼

Ð

pðYnobjYobs;Z;uÞpðYobsjZ;uÞpðuÞdu
Ð Ð

pðYnobjYobs;Z;uÞpðYobsjZ;uÞpðuÞdudYnobs

;

allowing inference about Q(Y) to be made without explicitly modeling the sampling

inclusion parameter I (Ericson 1969; Holt and Smith 1979; Little 1993; Rubin 1987;

Skinner et al. 1989). Note that if inference about quantities QðY Xj Þ involving covariates

X is desired (e.g., regression slopes), noninformative or ignorable sample designs can be

relaxed to have the distribution of I depend on X.

2.2. Weight Modeling

Beaumont (2008) proposed an alternative model-assisted method, tamping down the

extreme values in weights by replacing weights with values from a prediction model of

weights regressed on response and design variables. Denote I ¼ (I1, : : : , IN)T as the vector

of sample inclusion indicators, that is, Ii ¼ 1 as ith unit sampled and Ii ¼ 0 otherwise,

Y ¼ (Y1, : : : , YN)T the vector of survey-response variables, and Z ¼ (Z1, : : : , ZN)T the

vector of design variables. Assuming a noninformative sampling design, thus

PðI Z; Yj
�

¼ PðI Zj Þ, the predicted weights are obtained by ~wi ¼ EMðwi Ii ¼ 1; yij
�

,

where M refers to the expectation of wi under a given model. Beaumont discussed

two models, the linear form EMðwi I; Yj
�

¼ HT
i bþ v

1=2
i e i, and the exponential form,

EMðwi I; Yj
�

¼ 1þ exp HT
i bþ v

1=2
i e i

� �

, where Hi and vi . 0 are known functions of yi.

(The exponential form prevents the predicted weights from being negative.) He presented

two examples of HT
i b, one-degree polynomial and five-degree polynomial of yi. The

predicted weights are obtained by fitting the (unweighted) model on the sampled data, then

the reweighted estimator of the survey-response variable of interest is obtained using the

predicted weights. Extensions to regression settings can consider models of the form

EMðwi I; Y ;Xj
�

¼ JT
i bþ u

1=2
i e i, where Ji and ui are functions of Yi and Xi (possibly

including interactions).

2.3. Weight Smoothing

In general, weight smoothing stratifies the data by inclusion probability, and applies a

hierarchical model treating strata means as random effects, thus achieving trimming via

shrinkage. Considering the population mean as the quantity of interest, a general weight-

smoothing model is as follows:

Yhi
iid, Nðmh;s

2Þ

m, NHðf;GÞ
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where m ¼ (m1, : : : ,mH), f ¼ (f1, : : : ,fH), and h ¼ 1, : : : , H indexes different “weight

strata” defined, for example, by same or similar inclusion probabilities. In the case of

stratified or poststratified sample designs, h indexes the actual strata. In more general

designs, subjects can be formed into strata with equal or similar weights. We assume f, G,

and s 2 all have weak or noninformative priors. Typically these strata are ordered from the

smallest weight (highest probability of selection) to the largest weight (lowest probability

of selection), but this is not required if a more natural ordering is available, for example, if

the weight strata represent a disproportionately stratified sample by age. Based on this

model, the posterior mean of the population mean is derived as:

Eð �YjyÞ ¼
X

H

h¼1

½nh �yh þ ðNh 2 nhÞm̂h�=N

where Nh and nh are the population and sample sizes in stratum h, respectively, and

m̂h ¼ E(mhjy). Various assumptions can be made for the prior distribution of m, such as

Exchangeable random effect (XRE): fh ¼ f0 for all h, G ¼ t 2IH

Autoregressive (AR1): fh ¼ f0 for all h, G ¼ t 2A, Ajk ¼ r j j2kj, j,k ¼ 1, : : : , H

Linear (LIN): fh ¼ f0 þ f 0*h, G ¼ t 2IH

Nonparametric (NPAR): fh ¼ g(h), G ¼ 0 where g is an unspecified, twice-differentiable

function.

See Elliott and Little (2000) for a detailed review.

The weight-smoothing mechanism can be easily intuited in the simplest case of the

exchangeable random-effect (XRE) model (Holt and Smith 1979; Ghosh and Meeden 1986;

Little 1991; Lazzaroni and Little 1998), where fh ¼ m for all h, and G ¼ t 2IH. The

estimation of m̂h is now a shrinkage estimator as m̂h ¼ whȳh þ (1 2 wh)ỹ, for wh ¼ t 2nh/

(t 2nh þ s 2) and ~y ¼
P

h nh=ðnht
2 þ s2ÞÞ21

P

h nh=ðnht
2 þ s2

� �

�yh. As t 2 ! 1, wh ! 1,

and Eð �YjyÞ ¼
PH

h¼1½nh �yh þ ðNh 2 nhÞ�yh�=N ¼
PH

h¼1ðNh=NÞ�yh, the fully weighted esti-

mator. On the other hand, as t 2 ! 0, wh ! 0, and the estimation shrinks toward the

unweighted mean: since ~y ¼

P

h
nh �yh=s

2

P

h
nh=s 2

¼ �y if t 2 ¼ 0, Eð �YjyÞ ¼
PH

h¼1½nh �yh þ ðNh 2

nhÞ�y�=N ¼ ðn=NÞ�yþ �yð1 2 n=NÞ ¼ �y if t 2 ¼ 0. Since t 2 is itself estimated from the data,

and is a measure of the information available to distinguish how the population means within

a weight strata differ, the weight-smoothing model achieves a “data-driven” compromise

between the weighted estimator, which is design consistent but may be highly inefficient, and

the unweighted estimator, which is fully efficient when the assumption of independence

between inclusion probability and mean of Y holds, but is likely biased otherwise.

2.4. Weight Smoothing for Linear and Generalized Linear Regression Models

Generalized linear regression models (McCullagh and Nelder 1989) postulate a likelihood

for yi of the form

f ð yijui;sÞ ¼ exp
yiui 2 bðuiÞ

aiðsÞ
þ cð yi;sÞ

� �

where ai(s) is a known function of (nuisance) scale parameter s, and the mean of yi given

by mi ¼ b0(ui) is based on a linear combination of fixed covariates xi through some link

function g such that E( yijui) ¼ mi, and gðmiÞ ¼ gðb 0ðuiÞÞ ¼ hi ¼ xT
i b. In the meantime,
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Var ( yijui) ¼ ai (s)V(mi), where V(mi) ¼ b00(ui); thus the variance is usually a function of

the mean, with the exception of normal distribution, for which b00(ui) ¼ 1. The link is

considered canonical if ui ¼ hi, with the simplifying result that V(mi) ¼ 1/g0(mi). Some

examples include Gaussian (linear) regression, where ai (s) ¼ s 2 and the canonical link is

g(mi) ¼ mi; logistic regression, where aiðsÞ ¼ n21
i and the canonical link is g(mi) ¼

log(mi/(1 2 mi)), and Poisson regression, where ai(s) ¼ 1 and the canonical link is

g(mi) ¼ log(mi).

When considering weighted estimators, we index by the inclusion stratum h, thus

gðE½yhijbh�Þ ¼ xT
hibh. For weight-smoothing models, the hierarchical structure is

considered as

bT
1 ; : : : ;b

T
H

� �T
jb*;G , NHPðb

*;GÞ

where b* is an unknown vector of mean values for the regression coefficients and G is an

unknown covariance matrix. Our interest is to estimate the target-population quantity

B ¼ (B1, : : : , Bp)T, which is the slope that solves the population score equation

UN (B) ¼ 0 where

UNðbÞ ¼
X

N

i¼1

›

›b
log f ð yi;bÞ ¼

X

H

h¼1

X

Nh

i¼1

yhi 2 g21ðmiðbÞÞxhi

VðmhiðbÞÞg 0ðmhiðbÞÞ

Notice that the quantity B that satisfies U(B) ¼ 0 is always a meaningful population

quantity even if the model is misspecified, since it is a linear approximation of xi to hi.

A first-order approximation of E(Bjy, X) is given based on B̂ where

X

H

h¼1

Wh

X

nh

i¼1

ðŷhi 2 g21ðmiðB̂ÞÞÞxhi

VðmhiðB̂ÞÞg0ðmhiðB̂ÞÞ
¼ 0

where Wh ¼ Nh/nh, ŷhi ¼ g21 xT
hib̂h

� �

, and b̂h ¼ E(bhjy, X). For linear regression, where

V(mi) ¼ s 2 and g0(mi) ¼ 1,

B̂ ¼ EðBjy;XÞ ¼
X

h

Wh

X

nh

i¼1

xhix
0

hi

" #21
X

h

Wh

X

nh

i¼1

xhix
0

hi

 !

b̂h

" #

:

In case of logistic regression, V(mi) ¼ mi (1 2 mi) and g 0ðmiÞ ¼ m21
i ð1 2 miÞ

21, and

E(Bjy, X) is obtained by solving the weighted score equation for population regression

parameter B

X

H

h¼1

Wh

X

nh

i¼1

xhi expit x
0

hiB
� �

2 expit x
0

hib̂h

� �� �

¼ 0

where expit(.) ¼ exp(.)/(1 þ exp(.)).

2.5. Laplace Prior for Weight Smoothing

Instead of using a multivariate normal distribution as the prior of bs, we propose using a

multivariate Laplace distribution. Unlike the normal distribution prior which restricts the

variation between random-effect term and prior mean in an L 2-norm manner, Laplace
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measures by the L 1 distance. This should allow more severe downweighting of

interactions between the regression parameters and the probability of selection for which

there is only weak evidence in the data, while preserving those that we need for bias

correction.

The general form of multivariate Laplace distribution is given by Eltoft et al. (2006):

pY ð yÞ ¼
1

ð2pÞd=2

2

l

Kðd=2Þ21

ffiffiffiffiffiffiffiffiffiffiffiffi

2

l
qð yÞ

r

 !

ffiffiffiffiffiffiffiffiffiffiffiffi

2

l
qð yÞ

r

 !ðd=2Þ21

where y is a d-dimensional random variable y ¼ ( y1, : : : , yd); Km(x) denotes the modified

Bessel function of the second kind and order m, evaluated at x; q( y) ¼ ( y 2 m)tG21

( y 2 m); G ¼ {gjk}, j, k ¼ 1, : : : , d is a d £ d matrix defining the internal covariance

structure of the variable Y, m ¼ (m1, : : : , md) is the vector of means, and l an overall scale

parameter. However, this format is inconvenient for application. The alternative approach

is to represent the Laplace distribution as a scale mixture of normals with an exponential

mixing density:

bhjb
*
h;Dt;s

2 , MVN b*
h;s

2Dth

� �

b*
hjs

2
0 , MVN 0;s 2

0 Ip

� �

Dth ¼ diag t 2
h1; : : : ; t

2
hp

� �

s 2; t 2
1 ; : : : ; t

2
Hp , 1=s 2

Y

Hp

j¼1

l2

2
e2l 2t2

j =2

l2 , Gamma ðg; dÞ

where g and d are known constants. The first level of the model depends on the distribution

assumption of the generalized linear model used. In this article, we take linear regression

and logistic regression as examples, and provide the full hierarchical Bayesian model and

related Gibbs Sampler algorithm.

For linear regression, Y conditional on all other parameters follows a normal

distribution. Assuming that the residual variance s 2 is independent from the latent mixing

variables ti, the hierarchical model is as follows:

yhijxhi;bh;s
2 ind, N xT

hibh;s
2

� �

bhjb
*
h;Dt;s

2 ind, MVN b*
h;s

2Dth

� �

b*
hjs

2
0

ind, MVN 0;s2
0Ip

� �

Dth ¼ diag t2
h1; : : : ; t

2
hp

� �

s2; t2
1; : : : ; t

2
Hp , 1=s2

Y

Hp

j¼1

l2

2
e2l 2t2

j =2

l2 , Gammaðg; dÞ
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where again g and d are known constants. Following the deduction in Park and Casella

(2008), the analytical forms of all fully conditional distributions of b, s 2 and so on exist, and

the posterior predictive distribution could be obtained through a Gibbs Sampler as below.

A detailed derivation is available online at www.doi.org/10.1515/jos-2016-0026, Appendix A.

bhjrest , MVN A21 XT
h Yh þ D21

th b*
h

� �

;s2A21
� �

;A ¼ XT
h Xh þ D21

th

b*
hjrest , MVN ðs2DthÞ

21 ðs2DthÞ
21 þ s2

0I
� �21

� �21

bh; ðs
2DthÞ

21 þ s2
0I

� �21
� �21

	 


s2jrest , InvGamma ðnþ HpÞ=2;
1

2

X

H

h¼1

ðYh 2 XhbhÞ
T ðYh 2 XhbhÞ

" 

þ
X

H

h¼1

bh 2 b*
h

� �T
ðDthÞ

21 bh 2 b*
h

� �

#!

1=t2
hijrest , InvGaussian

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2s2

bh 2 b*
h

� �2

s

; l2

 !

l2 , Gamma Hpþ g;
1

2

X

H

h¼1

X

p

i¼1

t2
hi þ d

 !

At each step in the Gibbs Sampler chain, a draw of the linear regression population

slope B is obtained from the draw of bh as B ¼
P

h Wh

Pnh

i¼1xhix
0

hi

� �21

P

h Wh

Pnh

i¼1xhix
0

hi

� �

bh

� �

.

For logistic regression, the model is similar to that for linear regression, except that Y

follows a binomial distribution, and estimation of s 2 is no longer necessary:

yhijxhi;bh; ,
Y

H

h¼1

Y

nh

i¼1

expðxhibhÞ

1þ expðxhibhÞ

	 
yhi 1

1þ expðxhibhÞ

	 
12yhi

bhjb
*
h;Dt;, MVNðb*

h;DthÞ

b*
hjs

2
0 , MVNð0;s2

0IpÞ

Dth ¼ diagðt2
h1; : : : ; t

2
hpÞ

t2
1; : : : ; t

2
Hp ,

Y

Hp

j¼1

l2

2
e2l 2t2

j =2

l2 , Gammaðg; dÞ

where g and d are known constants. When the first level is not normally distributed, the

fully conditional distribution of b does not belong to any known distribution, and thus

direct sampling is impossible. Instead we apply a Metropolis method, and the proposed

bh is drawn from Npðb
0

h; cbDbÞ, for Db ¼
�

V21
bh þ D21

th

�21
, where b

0

h is the ML estimate

of the logistic regression of y on z from strata h, and Vbh the associated covariance matrix
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obtained from the expected information matrix evaluated atbh. The proposedbh is accepted

with probability r ¼ max[1,{fb(bprop)}/{fb(b)}], where fb is the posterior distribution of b

proportional to pðbhÞ
Qnh

i¼1 f ð yhi bhj
�

. All other parameters follow the Gibbs Sampler

algorithm, and are directly drawn from their fully conditional distributions as below (full

derivation is available online at www.doi.org/10.1515/jos-2016-0026, Appendix B):

b*
hjrest , MVN ðDthÞ

21 ðDthÞ
21 þ s2

0I
� �21

� �21

bh; ðDthÞ
21 þ ðs2

0IÞ21
� �21

	 


1=t2
hijrest , InvGaussian

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2

bh 2 b*
h

� �2

s

; l2

 !

l2 , Gamma Hpþ g;
1

2

X

H

h¼1

X

p

i¼1

t2
hi þ d

 !

At each step in the Gibbs Sampler chain, a draw of the logistic regression population

slope B is obtained from the draw of bh by solving the weighted score equation
PH

h¼1Wh

Pnh

i¼1xhi expit x
0

hiB
� �

2 expit x
0

hibh

� �� �

¼ 0. In practice, B can be obtained by

replacing the observed yhi with the predicted values g x
0

hibh

� �

for each draw of b̂h and

obtaining the weighted pseudo-MLE for the logistic regression model.

3. Simulation Study

To evaluate the performance of weight-smoothing models using Laplace priors, we create

several scenarios for ordinary linear regression and logistic regression, generating separate

populations with normally distributed outcomes and dichotomized outcomes accordingly.

We also consider scenarios where heteroscedasticity or multiple covariates occur. The

target of interest is the population slope in a regression model. In addition to our Laplace

prior estimator, we include an unweighted estimator, a fully weighted estimator, a normal-

prior (exchangable) estimator (Elliott and Little 2000; Elliott 2007), and several variations

of the estimator proposed by Beaumont (2008) for comparison. For each scenario and

estimator, we compute bias, square root of mean square error (RMSE) and coverage of

95% confidence or credible intervals as follows:

bias ¼ S21
X

s

s¼1

ðB̂s 2 BÞ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S21
X

s

s¼1

ðB̂s 2 BÞ2

s

coverage ¼ S21
X

s

s¼1

I B̂
L

s # B # B̂
U

s

� �

where s indexes the independent samples drawn for each simulation, B̂s is the point

estimator of the regression coefficient of interest, B̂
L

s and B̂
U

s correspond to the lower and

upper bounds of the 95% confidence or credible interval, and B to the regression

coefficient computed using the population data (i.e., the inference target of interest).
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Relative root mean square error (RRMSE) is reported as the ratio of the estimator’s RMSE

to the fully weighted estimator’s RMSE.

3.1. Hierarchical Weight Smoothing Model for Ordinary Linear Regression

We first generate a population of size N ¼ 20,000. The predictor X is uniformly distributed

between zero and ten, and is equally divided into 20 strata with intervals of 0.5 each. The

response variable Y is generated as a spline function of X noted below, with knots located

between strata. Three sets of coefficients of the spline are applied separately to represent

the various patterns of Y jX from straight slope to accelerating and decelerating curves.

YijXi;b;s
2 , N b0 þ

X

20

h¼1

bhðxi 2 h=2Þþ;s
2

 !

Xi , UNIð0; 10Þ; i ¼ 1; : : : ;N ¼ 20;000

We assume b0 ¼ 0, and consider three sets of the spline coefficients

ba ¼ ð2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ

bb ¼ ð0; 0; 0; 0; 0; 0; :25; :25; :25; :25; :5; :5; :5; :5; 1; 1; 1; 1; 1; 1Þ

bc ¼ ð11;21;21;21;21;21;21;20:5;20:5;20:5;20:5;20:25;

20:25;20:25;20:25; 0; 0; 0; 0; 0Þ:

We let the population variance s 2 vary across 101.5, 103.5 and 105.5 to create varying

levels of background noise compared to changes in slope. Figure 1 shows each of the

3 £ 3 ¼ 9 populations generated for the linear regression.

From the population, samples of size n ¼ 1,000 are repeatedly drawn without

replacement, according to inclusion probabilities proportional to ph ¼ (1 þ h/30) * h for

the hth stratum, which results in a ratio of 35 times between the maximum and minimum

probabilities. We also ensure that the sample size of each stratum is greater than three for

computation convenience. Z is created as Z ¼ I ^ X, where I ¼ c(I1, : : : , Ih) is an indicator

vector marking that the current observation belongs to the ith stratum. It is also centered

within each column with respect to each stratum, and used as predictor in the simulations.

Thus ba corresponds to a linear model (no model misspecification); bb to a setting where

the nonlinearity is greatest where the probability of selection is the highest, and bc to a

setting where the nonlinearity is greatest where the probability of selection is the lowest.

Our inferential target is B ¼
�

PN
i¼1

~Xi
~X
0

i

�21PN
i¼1

~XiYi for ~Xi ¼ ð1 XiÞ
0

, the least-squares

linear approximation of Y to X. Under bb and bc, weights correct bias from model

misspecification. Under ba, the model is correctly specified, suggesting that the

unweighted estimator is most efficient. Also note that under bb, the curvature is largest

where the data are most densely sampled, while the reverse is true under bc, suggesting

that varying degrees of trimming will be required to optimize the bias-variance tradeoff.

For the hyperprior parameters, s2
0 is arbitrarily defined as 1,000 to approximate a

noninformative prior; the prior for l follows a gamma hyperprior with parameter g ¼ 1

and d ¼ 1.78, as suggested by Park and Casella (2008). All other parameters in simulation

are initialized at zero, except for the variance estimator s 2, which is initialized at one.
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A Gibbs Sampler method is applied, that is, all parameters are sequentially drawn

from the full conditional distribution for each iteration. Then, to obtain the estimate from

the posterior predictive distribution, the unobserved Y are generated based on sampled

parameters from each iteration, and the target population slope B is obtained by fully

weighted regression on observed and predicted Y. The process iterates 10,000 times, with a

burn-in of 2,000. Diagnostic plots are generated to ensure the algorithm’s convergence via

visual inspection. Overall, 200 samples are generated from each population to provide the

empirical distribution for the repeated measures properties.

We compare the properties of our Laplace model (HWS) with major competitors,

including the unweighted model (UNWT), fully weighted model (FWT), weight-

smoothing model with normal prior and exchangeable random-slope assumption (XRS),

and two variations of the estimators proposed by Beaumont (2008): predicted weights on y

and x (PREDYX) and predicted weights on degree 5 polynomial of y, together with x

(PREDYX5). Bias and nominal 95% coverage are recorded directly, while RMSE is

rescaled relative to the fully weighted estimator. Results are provided in Tables 1, 2, and 3.

Under ba, where the model is correctly specified, all methods yield unbiased results, and

the unweighted estimator maintains the best efficiency, with an approximate 30% decrease

in RMSE compared to the fully weighted estimator. The original weight-smoothing

method under XRS tends to provide unstable results, inflating the variance when the

population signal is strong, but achieving similar RMSE as the unweighted estimator when

the population signal is weak relative to the noise. Our model, under the same XRS
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Fig. 1. Scatter plot of population for the linear regression simulation
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assumption but with a Laplace prior, gives more stable results that resemble the fully

weighted estimator when variance is low, but increase in efficiency as the population

variance increases. Both the XRS and HWS estimators have correct to somewhat

conservative coverage when the linear model is correctly specified. The Beaumont

estimator PREDYX has improved RMSE compared to the fully weighted estimator, since

it models the weight as a linear function of X; PREDYX5 yields estimates similar to the

fully weighted estimator, as variance reduction was minimal due to the increased

variability in the model weights.

For scenarios under bb and bc, the unweighted estimator of B is biased, and the fully

weighted estimator strongly prevails over the unweighted estimator with respect to both

RMSE and true coverage for small to moderate levels of residual variances. The weight-

smoothing method under XRS remains biased at moderate levels of variance for bb and bc,

and also at small levels of variance for bc, raising RMSE relative to FWT and destroying

nominal coverage, suggesting that the exchangeable random-slope structure is not able to

capture the relation in mean and variance among strata. The weight-smoothing estimator

with Laplace prior has limited bias similar to that of the fully weighted estimator, but very

substantially reduced RMSE, with correct to conservative coverage. The PREDYX

estimator is insufficiently structured to reduce bias in the small-to-medium residual-

variance settings; PREDYX5 mimics the fully weighted estimator and thus has little

savings in relative RMSE under any of the scenarios.

3.2. Hierarchical Weight Smoothing Model for Logistic Regression

Following Elliott (2007), we set up populations in two settings: model misspecification and

informative sampling. For model misspecification, the population is equally divided into 20

strata, and the predictor X is uniformly distributed within each stratum on an interval

ranging from 0.5(h 2 1) to 0.5h. The binary response variable is generated as follows:

PðYi ¼ 1jXiÞ , BERðexpitð1:5 2 :75Xi þ C*X2
i ÞÞ;

Xhi , UNIð0:5*ðh 2 1Þ; 0:5*hÞ; h ¼ 1; : : : ; 20; i ¼ 1; : : : ; 1000

Our inferential target is B ¼ (B0 B1)
0

, the value of b ¼ (b0 b1)
0

that solves the score

equation UðbÞ ¼
PN

i¼1
~XiðYi 2 expitð ~X

0

i bÞÞ, corresponding to the best linear approxi-

mation to Xi and log EðYijXiÞ
12EðYijXiÞ

� �

. For C, we consider values of 0, .027, .045, .061, .080,

corresponding to no model misspecification at c ¼ 0 to increasing levels of model

misspecification. The selection probability for each observation remains the same within

each stratum, and increases linearly along strata, with a ratio between maximum and

minimum probabilities equal to 20.

For the informative sampling setting, we follow the same formula of

PðYi ¼ 1jXiÞ , BERðexpitð1:5 2 :75Xi þ C*X2
i ÞÞ;

Xhi , UNIð0:5*ðh 2 1Þ; 0:5*hÞ; h ¼ 1; : : : ; 20; i ¼ 1; : : : ; 1000

but fix C ¼ 0, so the model is correctly specified. We also create a vector of binary value

Z*
i such that CorðYi; Z

*
i Þ ¼ r, and let r range from 0.05 to 0.95 to represent different levels
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of correlation with Y. Then we let Zi ¼ Z*
i Ui þ ð1 2 Z*

i ÞXi, where Ui , Uð0; 10Þ

independent of Xi, and the selection probability is proportional to Zi. Thus whether the

selection probability is related to X or not is determined by the value of Z *, which is

correlated with Y to some level. The process results in a ratio of roughly 30 between the

maximum weight and minimum weight, with the correlation between selection probability

and Y varying from 0 to 30% as the correlation between Z * and Y increases from .05 to .95.

Twenty strata of equal size are created by pooling observations with similar selection

probabilities together.

From this population, samples with n ¼ 1,000 are selected without replacement, with

the selection probability stated above. We create weight strata using the values of h.

A total of 200 samples are generated to create the empirical distribution for inference.

A single MCMC chain is built for each data set, and for each iteration in the algorithm, all

parameters are sequentially drawn from the full conditional distribution, except for b,

which is drawn via a Metropolis step (proposed from a normal distribution centered at

MLE with inverse expected information as covariance matrix, and accepted according to

likelihood ratio times prior distribution). Then the predicted Y is calculated based on

drawn parameters, and the target population slope is obtained by fully weighted logistic

regression. The initial values of parameters are assigned the same as linear regression

setting, and the process iterates 10,000 times, with a burn-in of 2,000.

We compare the properties of our Laplace model (HWS) with the same major

competitors as in the linear regression setting. Bias and nominal 95% coverage are

recorded directly, while RMSE is rescaled according to the fully weighted estimator.

Results are provided in Table 4 and 5.

While comparing different models under the model misspecification settings, the

unweighted model has increased bias as the population model is less correctly specified,

resulting in a change from an efficient estimate to a poor estimate (RMSE ratio from

69.7% to 281.9% of FWTs as C increases) and poor coverage as misspecification

increases. The exchangeable random-slope model estimator is not robust, with bias similar

to the unweighted model, and larger RMSE than the fully weighted estimator, although

coverage is conservative. The hierarchical weight smoothing model with Laplace prior

provides a more robust estimator, with minimal bias, and RMSE reduced by up to 14%

compared to the FWT estimator, with true coverage similar to that of the fully weighted

estimator. The weight-prediction model PREDYX performs similarly to the unweighted

estimator, gaining efficiency when the model is correctly specified, and suffering as

misspecification increases. PREDYX5, which predicts weights with a degree-five

polynomial of x, essentially mimics the fully weighted estimator.

Under informative sampling, the unweighted estimator has only slightly larger RMSE

than the fully weighted estimator, but is substantially biased with poor coverage. The

exchangeable random-effect model has a similar degree of bias compared to the

unweighted estimator, but has increased variability that, while providing conservative

coverage, yields substantially increased RMSE over the fully weighted estimator. The

hierarchical weight-smoothing model with Laplace prior again provides a more robust

estimator, with minimal bias, and RMSE reduced by up to twelve percent compared to the

FWT estimator, although true coverage suffers to a moderate degree except when the
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sampling is highly informative. PREDYX improves RMSE by up to 17% while having

only slight undercoverage. PREDYX5 again mimics the fully weighted model.

3.3. Hierarchical Weight-Smoothing Model for Heteroscedasticity Scenario

In this section we evaluate the performance of the hierarchical weight-smoothing model

compared to unweighted and fully weighted models under the heteroscedasticity setting.

Here the main purpose of weighting is not to correct bias, but to adjust for the violation in

the homoscedasticity assumption, and to yield correct inference on target quantities.

We expect the data-driven method to capture the heteroscedasticity pattern in data well,

and lead to proper inference.

First, we create a population of size N ¼ 20,000. The interval between zero and ten is

evenly divided into ten strata with a length of one, and the predictor X is uniformly

distributed within each stratum. The response variable Y is then generated from a normal

distribution, with mean equal to twice of X, and variance as an increasing function of X:

Xi , UNIð0; 10Þ; i ¼ 1; : : : ;N ¼ 20;000

Pi ¼ ð1þ dXie=30Þ * dXie=2

YijXi;s
2 , Nð2 * Xi;Pi *s

2Þ

where the population variance s2 is set to 101, 103 and 105 to adjust for different scales of

population variance.

We repeatedly draw samples from the population without replacement by inclusion

probabilities proportional to P, to link the corresponding weights to the heteroscedasticity

pattern. The inferential target remains the population slope; all other settings for

parameters and simulations remain the same. Altogether 200 samples are drawn, and the

HWT model is fit using 10,000 iterations, with 2,000 as burn-in. To evaluate the results,

we compare bias, relative RMSE and true coverage of the nominal 95% confidence

interval or credible interval across the unweighted model, fully weighted model, and

hierarchical weight-smoothing model in Table 6.

The results suggest that violation in homoscedasticity undermines the performance of

the unweighted estimator when the population variance is small. But as the population

variance increases, this effect is quickly overwhelmed by concerns about efficiency, where

the unweighted estimator has about a 35% reduction in RMSE compared to the fully

weighted estimator. The hierarchical weight-smoothing model performs well in the

heteroscedastic setting, where it correctly retains the weight interactions at low variances,

yet “tunes them out” when efficiency is the dominating component.

3.4. Hierarchical Weight-Smoothing Model with Multiple Covariates

In the last simulation study we focus on the hierarchical weight-smoothing model’s

performance when multiple covariates exist in the model. The challenge lies in that some

covariates may be related to the sampling scheme, and thus could benefit from weighting,

but some may be independently distributed, and could lose efficiency in weighting. Simply

applying the fully weighted or the unweighted model will sacrifice either variance for
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covariate associations unrelated to the sampling scheme, or bias for covariate associations

related to the sampling scheme; we expect our data-driven method could reach a balance in

between these options.

To replicate such a situation, we look into three different scenarios: independent

covariates X1 and X2 with model misspecification on X1, and weight related to X1;

independent covariates X1 and X2 with model misspecification on X1, and weight related to

X2; and correlated covariates X1 and X2, with model misspecification on X1, and weight

related to X1.

For the first scenario, we generate a population of size N ¼ 20,000, with two covariates

X1 and X2 independently drawn from uniform distributions on an interval between zero

and ten. The outcome Y is generated from a normal distribution with mean equal to a spline

function of X1 plus X2, thus our linear approximation to X1 leads to model misspecification.

YijX1i;X2i;b;s
2 , Nðb0 þ x2i þ

X

10

h¼1

bhðx1i 2 hÞþ;s
2Þ

X1i , UNIð0; 10Þ; i ¼ 1; : : : ;N ¼ 20;000

X2i , UNIð0; 10Þ; i ¼ 1; : : : ;N ¼ 20;000

b ¼ ð0; 0; 0:5; 0:5; 0:5; 0:5; 1; 1; 1; 2Þ

where the variance s 2 is set to 101, 103, and 105 for variation in background noise.

The inclusion probabilities are proportional to pi ¼ ð1þ dX1ie=30Þ * dX1ie=2, and

samples of size n ¼ 1,000 are repeatedly drawn. Weights equal to inverse inclusion

probabilities naturally create ten strata. For computation convenience, we also create Z

as Z ¼ I ^ (X1, X2), where I ¼ c(I1, : : : , Ih) indicates to which stratum an observation

belongs. We assess the model performance through its inference on the population slopes

of Y to X1 and X2: ~B ¼ ðB0;B1;B2Þ ¼
PN

i¼1
~Xi
~X

‘

i

� �21
PN

i¼1
~XiYi for X̃i ¼ (1 X1i X2i)

0

.

When initializing the process, we retain all previous hyperprior parameters settings.

The same Gibbs Sampler method is applied, and the predicted Y is generated to

yield inference on target population slopes B1 and B2. The process iterates 10,000 times,

with a burn-in of 2,000. We conduct 200 simulations to provide the empirical

distribution to estimate repeated measurement properties. Table 7 compares bias, relative

RMSE and true coverage of the nominal 95% confidence interval or credible interval

across the hierarchical weight-smoothing method, unweighted model and fully weighted

model.

The results in Table 7 suggest that when the population variance is small, the

unweighted model result suffers from model misspecification and has a substantially

larger bias compared to the fully weighted estimator. Yet for the covariate on which the

model is correctly specified, the unweighted estimator gains efficiency and yields an

RMSE about half the size of the RMSE of the weighted estimator. As background variance

increases, the influence of bias decreases and the unweighted estimator prevails over the

fully weighted estimator in estimating both X1 and X2. The hierarchical weight-smoothing

model closely resembles the fully weighted estimator with minor improvements. That is, it

Xia and Elliott: Weight Smoothing for Generalized Linear Models Using a Laplace Prior 527



T
a

b
le

7
.

C
o

m
p

a
ri

so
n
s

o
f

b
ia

s,
re

la
ti

ve
ro

o
t

m
ea

n
sq

u
a
re

er
ro

r
(R

R
M

S
E

)
a

n
d

co
ve

ra
g

e
o

f
n

o
m

in
a

l
9

5
%

co
n

fi
d
en

ce
in

te
rv

a
l/

cr
ed

ib
le

in
te

rv
a

l
(C

I)
o

f
va

ri
o
u

s
es

ti
m

a
to

rs
fo

r
th

e

m
u

lt
iv

a
ri

a
te

li
n

ea
r

re
g

re
ss

io
n

co
ef

fi
ci

en
ts

B
1
,B

2
w

h
en

w
ei

g
h

t
is

re
la

te
d

to
X

1
u
si

n
g

p
o
p
u
la

ti
o
n
s

w
it

h
d
if

fe
re

n
t
re

si
d
u
a
l
va

ri
a
n
ce

s
co

rr
es

p
o
n
d
in

g
to

va
ri

o
u
s

m
o
d
el

s
u
n
d
er

co
n
si

d
er

a
ti

o
n

s
2
¼

1
0

s
2
¼

1
0

3
s

2
¼

1
0

5

9
5

%
C

I
9

5
%

C
I

9
5

%
C

I
E

st
im

at
o

r
B

ia
s

R
R

M
S

E
co

v
er

ag
e

B
ia

s
R

R
M

S
E

co
v

er
ag

e
B

ia
s

R
R

M
S

E
co

v
er

ag
e

B
1

U
N

W
T

0
.9

7
6

6
.5

9
2

0
0

.9
4

7
1

.2
9

3
0

.5
5

2
.7

4
7

0
.6

9
7

0
.9

9
F

W
T

2
0

.0
7

4
1

0
.9

3
2

0
.3

8
5

1
0

.9
7

1
.5

1
9

1
0

.9
3

H
W

S
2

0
.0

7
6

1
.0

0
7

0
.8

4
2

0
.3

7
7

0
.9

9
9

0
.9

6
1

.4
4

2
0

.9
9

2
0

.9
9

B
2

U
N

W
T

2
0

.0
1

3
0

.4
4

0
0

.9
4

0
.0

7
5

0
.3

9
2

0
.9

7
2

1
.7

5
4

0
.4

9
0

0
.9

3
F

W
T

2
0

.0
1

2
1

0
.8

9
0

.1
5

3
1

0
.9

5
2

0
.6

5
6

1
0

.8
9

H
W

S
2

0
.0

1
4

0
.9

9
1

0
.8

8
0

.1
6

0
0

.9
9

3
0

.9
8

2
0

.8
4

1
0

.9
9

0
0

.9
1

Journal of Official Statistics528



correctly applies weight when model misspecification occurs, but fails to tune the result

when efficiency is more important.

For the second scenario, we follow the same setting as the previous scenario, except

that the inclusion probabilities are now proportional to pi ¼ ð1þ dX2ie=30Þ * dX2ie=2. Since

the weights are related to the covariate that is correctly specified in the model, and

independent from the covariate that requires adjustment, we expect no bias correction

from the fully weighted estimator, and better efficiency from the unweighted estimator.

We keep the same parameter initialization and simulation setting. The simulation

consists of 200 samples, 10,000 iterations within each sample, including 2,000 burn-in.

The bias, relative RMSE and true coverage of the nominal 95% confidence interval or

credible interval are reported in Table 8.

As expected, the result from the unweighted model is more efficient than the

fully weighted model, leading to a 30% to 70% reduction in RMSE. Since weighting

is unnecessary for either X1 or X2 according to the population setup, the weight-smoothing

model is able to limit the side effect of weighting, and achieves on average a 30%

reduction in RMSE compared to the weighted model. Also note that the weight-smoothing

model result suffers a moderate drop in the true coverage of a nominal 95% credible

interval when the population variance is small relative to the misspecification.

For the last scenario, we study the model behavior when X1 and X2 are correlated.

For this purpose, we create X1 by the former approach, that is, from a uniform distribution

on interval between zero and ten, but define X2 as having a uniform distribution centered

at X1 to yield a correlation of about 0.45 between X1 and X2. The rest of the settings stay

the same:

YijX1i;X2i;b;s
2 , N b0 þ x2i þ

X

10

h¼1

bhðx1i 2 hÞþ;s
2

 !

X1i , UNIð0; 10Þ; i ¼ 1; : : : ;N ¼ 20;000

X2i , UNIð0; 10Þ þ X1i; i ¼ 1; : : : ;N ¼ 20;000

b ¼ ð0; 0; 0:5; 0:5; 0:5; 0:5; 1; 1; 1; 2Þ

Similarly, three settings of variance are considered, and the inclusion probabilities are

related to X1 according to the formula pi ¼ ð1þ dX1ie=30Þ * dX1ie=2. The simulation again

consists of 200 samples and 10,000 iterations within each sample, including 2,000 burn-in.

The results are presented in Table 9.

Although X1 and X2 are correlated in this scenario, the results are very close to the first

scenario. The weighted method is useful when model misspecification exists and the

population variance is small, but loses to the unweighted method due to lack of efficiency

when the model is correctly specified, or the variance is large compared to potential

biasedness. The hierarchical weight-smoothing model fails to balance the two situations,

closely resembling the fully weighted method.

Combining all three scenarios, we conclude that the weight-smoothing model with Laplace

prior has large gains in efficiencies when weighting is not necessary for any of the covariates,

at the cost of a moderate drop in the true coverage rate when the residual variance is small.

In other settings, its performance is similar to the fully weighted estimator.
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4. Application

4.1. Application on Dioxin data from NHANES

To demonstrate the performance of our method in the linear regression setting, we

consider its application on the dioxin dataset from the National Health and Nutrition

Examination Survey (NHANES). During the 2003–2004 survey, 1,250 representative

adult subjects were selected in a probability sample of the US, and had their blood

biomarkers measured, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a com-

pound usually formed through incomplete combustion such as incineration, paper and

plastics manufacturing, and smoking. Other demographic variables including age and

gender are available from the survey. The sampled data are stratified into 25 strata, with

each consisting of two Masked Variance Units (MVU’s) to account for geographic

clustering in the sample design without compromising confidentiality. Survey weights are

provided as well. Due to technical limits, 674 readings are below limit of detection, and are

imputed through multiple imputation using the model described in Chen et al. (2010),

resulting in five replicate data sets. Both survey structure and imputation are incorporated

in analysis using a jackknife method and Rubin’s formula (Rubin 1987).

To determine the connection between log of TCDD level and individual demographic

information, four linear regression models are fitted as log TCDD on age, log TCDD on

gender, log TCDD on age and gender, and log TCDD on age, gender, and interaction. The

hierarchical model is built as described before, with same initial value of parameters as

those in the simulation. For each model setting, the unweighted (UNWT), fully weighted

(FWT), and the hierarchical weight-smoothing (HWS) estimators are obtained (the

exchangeable random-slope model fails to converge and is removed from the result).

To estimate mean square error, the fully weighted version is treated as unbiased. Note that

the fully weighted estimator is unbiased only in expectation, leading to an unbiased

estimated square bias of regression coefficient b̂ given by max(0,(b̂ 2 b̂w)2 2 V̂01), where

V̂01 ¼dVarVarðb̂Þ þdVarVarðb̂wÞ2 2dCovCovðb̂; b̂w) (Little et al. 1997). To fully account for the

design features, all variance/covariance estimates are calculated via jackknife as
dVarVarðb̂wÞ ¼

P

h
kh21

kh

Pkh

i¼1 b̂wðhi Þ
2 b̂w

� �2
, b̂w(hi )

¼ (X0W(hi )X)21XW(hi )y, where b̂w(hi )

denotes the weighted b estimator from sample excluding ith MVU in hth stratum, and

W(hi ) is a diagonal matrix consisting of case weight wj for all elements j � h, j � i, kh

kh21
wj

for all elements j [ h, j � i, and 0 for elements j [ h, j [ i. dVarVarðb̂) and dCovCovðb̂w; b̂) are

calculated accordingly, and estimates from five imputed replicate datasets are combined

using Rubin’s formula (Rubin 1987). All Gibbs Sampler estimates are based on 10,000

iterations after discarding 2,000 draws as burn-in. The resulting bias and RMSE estimates

are summarized in Tables 10 through 13.

For the first two models of log TCDD on age and gender separately, the estimation of

the single predictor using an unweighted model appears to be biased compared to the fully

weighted model, resulting in an estimated bias of about 40% and 70% of RMSE. However,

the weighted model also fails to provide an efficient estimate for effect on age, supported

by a RMSE of 3.888, larger than the RMSE of 3.265 from the unweighted model.

Meanwhile, the hierarchical weight-smoothing model shows its ability to improve

efficiency, both reducing the bias comparing to the unweighted model, and maintaining a
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RMSE similar to or smaller than the fully weighted model depending on the severity of

variance inflation.

As more predictors enter the model, the estimated bias rapidly decreases in scale,

leading to a scenario in which both bias and inflation in variance could dominate the

overall RMSE, and neither the unweighted model nor the fully weighted model prevails in

estimating all predictors. Hence the hierarchical weight-smoothing model cannot reduce

bias further, yet it succeeds in reducing variance, resulting in overall smaller RMSE

comparing to both the unweighted and fully weighted estimator (although the narrowness

of the interval suggests that its coverage may be compromised to some degree, as in

Subsection 3.4 of the simulation study).

4.2. Application on Partners for Child Passenger Safety Data

In this section, we use a Partners for Child Passenger Safety dataset to demonstrate our

method’s performance under a logistic regression setting. Unit observations in the dataset

are damaged vehicles disproportionally sampled from State Farm Insurance claims

records between December 1998 and December 2005, when at least one child occupant

less than 16 years of age was a passenger in a model year 1990 or newer State Farm-

insured vehicle with a damage claims report. The focus of the study is children’s

consequential injuries, defined by either facial lacerations or other injuries rated two or

more on the Abbreviated Injury Scale (AIS) (Association for the Advancement of

Automotive Medicine 1990). Due to the rare occurrence of the injury among all claims, to

improve accuracy of the corresponding estimation of this rare outcome, the overall

population was divided into three strata based on injury status – vehicles with at least one

child occupant screened positive for injury at the time of the crash, vehicles with all child

occupants reported receiving medical treatment but screened negative for injury, and

vehicles with no occupants receiving medical treatment – and crossed with two strata

defined by whether the vehicle was driveable or not. Since the stratification was associated

Table 10. Regression of log TCDD on Age. Bias and RMSE for linear slope estimated for age: unweighted, fully

weighted and hierarchical weight smoothing

Estimator Est.95%CI Bias(1023) RMSE(1023)

UNWT .0331.0284,.0378 21.262 3.265
FWT .0343.0266,.0420 0 3.888
HWS .0343.0319,.0367 20.086 1.214

Table 11. Regression of log TCDD on Gender. Bias and RMSE for linear slope estimated for gender:

unweighted, fully weighted and hierarchical weight smoothing

Estimator Est.95%CI Bias(1022) RMSE(1021)

UNWT .154.002,.306 28.219 1.248
FWT .236.110,.362 0 0.637
HWS .242.122,.362 0.589 0.607
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with risk of injury (ascertained by follow-up survey), and cannot be fully explained by

other auxiliary variables, the sampling design is informative, with weights varying from

one to 50, and nine percent of weights lying outside three times their standard deviation.

As determined by Winston et al. (2002), children rear seated in compacted extended cab

pickups are at greater risk of consequential injuries than children rear seated in other

vehicles. To strengthen the conclusion, two models are applied, the unadjusted logistic

model of injury status on car type (compacted extended cab pickups or others), and

adjusted logistic model adapting control variables including child age (years), use of

restraint (Y/N), intrusion into the passenger cabin in accident (Y/N), tow away after

accident (Y/N), direction of impact (front/side/rear/other), and weight of the vehicle

(pounds). The logistic hierarchical weight-smoothing model is set up as stated in the

previous section, then the Gibbs sampler is executed for 10,000 iterations with 2,000 burn-

in, and odds ratios are compared with the unweighted and fully weighted model. As this is

a disproportionally stratifed sample design, standard variance estimators are used for the

unweighted and fully weighted estimators, while the posterior predictive distribution of

the HWT model is used to compute point estimates and 95% credible intervals for the

HWT estimator.

The estimated odds ratios for compacted extended cab pickups indicator did not vary

much from the unadjusted model to the fully adjusted model, while unweighted regression

and fully weighted regression lead to quite different results, from an OR of 3.534 to 11.317

for the unadjusted model, and from 3.448 to 13.890 when all other control variables are

included (see Table 14). The hierarchical weight-smoothing model estimates lie in

between the unweighted and weighted estimates, although much closer to the fully

weighted model. It is also worth noting that with similar point estimates, the HWS model

provides a considerable reduction in estimated standard deviation, leading to a narrower

95% confidence interval compared to the fully weighted model, a characteristic also

presented in the previous simulation study.

5. Discussion

Model-based approaches to “trimming” survey weights attempt to formally balance bias

and variance, resulting in an estimate usually lying between those from the unweighted

model and fully weighted model. The weight-smoothing model using a Laplace prior

shows the potential to provide a more efficient estimate than either the unweighted model

Table 12. Regression of log TCDD on age and gender. Bias and RMSE for linear slope estimated for age and

gender: unweighted, fully weighted and hierarchical weight smoothing

Age Gender

Estimator Est.95%CI Bias(1024)
RMSE
(1023) Est.95%CI Bias(1022)

RMSE
(1022)

UNWT .0336.0287,.0385 29.067 3.296 .256.108,.404 20.159 9.017
FWT .0345.0268,.0422 0 3.895 .254.132,.377 0 6.161
HWS .0344.0320,.0368 20.841 1.227 .265.153,.377 1.058 5.659
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or the fully weighted model, using an approach that is nearly as simple to implement in a

regression setting as an exchangeable model, with equivalent or improved increases in

efficiency but better robustness properties. Large increases in efficiency occur when bias is

present due to model misspecification, and population variance is small so the weight-

smoothing model is able to model the underlying data structure precisely, yielding an

estimate with greatly reduced mean square error. However, this aggressive estimation

comes at some cost of robustness, that is, the reduced variance could lead to lower than

nominal coverage rates. As presented in the simulation, the HWS model suffers a

moderate drop in the coverage rate when population variance is small, although it is

usually competitive with the coverage of the fully weighted estimator. In future, it would

be worth exploring the model’s mechanism in reducing the overall RMSE, and the limit of

the scenarios under which it still maintains reasonable coverage.

The distribution of weights with a high degree of variability can itself vary

considerably, from relatively uniform or heavy-tailed distributions, as we have seen in the

simulations or the NHANES examples, to a small number of extreme outlying weights, to

intermediate cases, as was the case in the Partners for Passenger Safety example. Since the

method works by smoothing a given weight-stratum estimate inversely to its stability

relative to other weight-stratum estimates, we would anticipate that there would not be

consistent differences between these different types of weight distributions. If either the

heavy-tailed or outlier weight strata are well estimated and sufficiently different from

other weight strata, this interaction will be preserved and the fully weighted estimator will

be approximated; otherwise the interaction will be shrunk and the estimator will move

away from the fully weighted estimator.

We also note that the Laplace weight-smoothing model is largely agnostic to the

construction of the weights. Instead, it focuses on whether there are enough data to support

main effects and interactions between the weights and the parameter of interest (note that

the main effects themselves can be viewed as interactions with the intercept in the case of

estimating a population mean). While simple to implement, there may be settings where

one wants to smooth some components of the weights (e.g., selection and nonresponse)

while retaining others (e.g., post stratification or calibration). Such “partial smoothing”

model-based approaches remain a topic for future research.

Comparing the results of the Laplace prior weight-smoothing models with the model-

based estimators of Beaumont (2008), we find that the Laplace estimators offer the

promise of relatively simple estimators that can approximate fully weighted estimators

Table 14. Odds ratio and relevant 95% confidence interval for estimated effect on injury from compacted

extended cab pickups: unweighted, fully weighted, hierarchical weight smoothing, and exchangeable random

effect

Odds Ratio (OR)

Estimator Unadjusted Adjusted

UNWT 3.534(2.003,6.234) 3.448(1.850,6.430)

FWT 11.317(2.737,46.784) 13.890(3.176,60.760)

HWS 10.559(3.731,29.876) 13.268(7.919,22.232)
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when weights are required for bias correction, but improve over weighted estimators in

terms of variability while maintaining an approximately correct nominal coverage of

credible intervals. In contrast, in some settings the Beaumont estimators can “over

smooth” weights when bias correction is needed and yield unstable estimators when the

weight prediction is weak. The predicted weights in the weight-modeling approach of

Beaumont incorporate information from design variables, thus yielding better predictions

for weighted mean and population total estimates than unweighted estimators. However,

in some settings even a degree-five polynomial may fail to correctly approximate the

relationship between the inverse of the probability of selection and the sample statistic of

interest. Perhaps even more importantly, highly structured models for weight prediction

such as high-degree polynomials may result in unstable estimates of weights, adding

unnecessary variance rather than dampening it, although model-selection methods

may reduce such impacts. Methods such as those proposed by Pfeffermann (2011)

and Kim and Skinner (2013), who proposed a form of “stabilized” weight models as

~wi ¼ EMðwijI; Y;XÞ=EMðwijI; YÞ; may be of use in informative sampling settings (in

noninformative sampling settings, w̃i ¼ wi if the model is correctly specified). Ultimately

we find attempts to model weights rather than data misguided, as this focuses on design

factors on which we should be conditioning, rather than assessing uncertainties in the data

that may be fertile ground for mean square error reduction while preserving approximate

nominal coverage: that is, calibrated Bayes estimators (Little 2011).

As a final note, there is an issue of whether a census estimate of a parameter of a

misspecified model is a sensible inferential target. Our perspective is that statistical

models are rarely perfect, and that complex sample designs can sometimes magnify the

degree of these failures. We recognize, however, that there is controversy in this area. For

example, Rothman et al. (2013) make a case that truly scientific endeavors attempt to make

causal statements that should be independent of sample selection. Keiding and Louis

(2015) replied to this with an argument perhaps close to the one we make here, which is

that the transportability (in the formal sense of Pearl and Bareinboim 2014) of model

results may still require attention to the effects of sample design.
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