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Misspecification effects (meffs) measure the effect on the sampling variance of an estimator of
incorrect specification of both the sampling scheme and the model considered. We assess the
effect of various features of complex sampling schemes on the inferences drawn from models
for panel data using meffs. Many longitudinal social survey designs employ multistage
sampling, leading to some clustering, which tends to lead to meffs greater than unity. An
empirical study using data from the British Household Panel Survey is conducted, and a
simulation study is performed. Our results suggest that clustering impacts are stronger for
longitudinal studies than for cross-sectional studies, and that meffs for the regression
coefficients increase with the number of waves analysed. Hence, estimated standard errors in
the analysis of panel data can be misleading if any clustering is ignored.
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1. Introduction

Interest in fitting models to longitudinal complex survey data has grown in the last decade.

Longitudinal surveys often make use of complex sampling procedures, such as unequal

selection probabilities, stratification and multistage sampling, to select the initial panel

sample at the first wave in order to best use the available resources (e.g., Smith et al. 2009).

Nevertheless, to our knowledge, insufficient attention is still paid to the impacts of

sampling complexities on the regression analysis of panel data in the survey-sampling

literature.

Researchers and other users of panel data often make use of standard statistical

techniques, which in most of the cases do not take account of the complex sample designs.

These techniques may assume that the data are (after conditioning on some covariates)

realizations of independent and identically distributed random vectors, which is rare in

practice. The standard formulation of inference methods is often not valid when analysing

data collected using a complex sampling scheme. According to Chambers and Skinner
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(2003), even when the sampling design is considered ignorable, the standard inferential

procedures may not satisfactorily reproduce the population complexities underlying the

sampling mechanism. For a discussion on design-based and model-based methods for

estimating model parameters under both ignorable and nonignorable sampling designs, see

also Binder and Roberts (2003).

Moreover, complex sampling schemes may induce a correlation structure among

observations, as elements in the same cluster are likely to be more similar than elements in

different clusters. Therefore, when a sample is selected by complex sampling at Wave 1,

a correlation structure among the observations, additional to the longitudinal correlation,

may be induced. Under this situation, the use of standard statistical techniques with

complex sampling data may lead to seriously biased point and standard-error estimates

(see e.g., Nathan and Holt 1980). Ignoring clustering and weighting effects, for example,

tends to lead to the underestimation of standard errors, and therefore to narrowed

confidence intervals and to the incorrect rejection of null hypotheses. Stratification

normally affects the analysis in an opposite direction. Thus ignoring clustering, weighting

and stratification effects may lead to inappropriate statistical inference.

There is a well substantiated literature on methods for taking account of complex

sampling schemes in the analysis of survey data. Skinner et al. (1989), Chambers and

Skinner (2003), and Pfeffermann (2011), for example, provide further information and

references. For cross-sectional data, Kish and Frankel (1974), Holt and Scott (1981), Scott

and Holt (1982), Skinner (1986, 1989a, b), and Feder (2011), for example, have considered

the effects of complex sampling on regression model parameters estimation.

Furthermore, Feder et al. (2000) proposed combining multilevel modelling, time-series

modelling and survey-sampling methods for panel data analysis; Sutradhar and Kovacevic

(2000) developed a generalised estimating equations approach by considering an

autocorrelation structure in multivariate polytomous panel data models. In addition,

Skinner and Holmes (2003) studied two approaches for dealing with sampling effects,

either by taking the repeated observations as multivariate outcomes and utilising weighted

estimators that account for the correlation structure, or by considering a two-level

longitudinal model.

Skinner and Vieira (2007) presented some empirical and theoretical evidence that the

variance-inflating impacts of clustering may be higher for longitudinal analyses than for

corresponding cross-sectional analyses and that those effects may increase with the

number of waves considered in some types of analysis. Moreover, Vieira and Skinner

(2008) considered parametric models for panel data and have proposed methods of

estimating model parameters that allow for complex schemes by incorporating survey

weights into alternative point estimation procedures and using linearisation methods for

variance estimation (see Vieira 2009 for further references).

Large-scale longitudinal studies usually involve the selection of a probability sample

from a population at the time the panel starts. Weighting in the panel data context has three

main aims. If we consider, for example, a survey with two waves, then the longitudinal

weight at Wave 2 would: (i) account for unequal selection probabilities at Wave 1,

(ii) adjust for unit nonresponse which may occur at Waves 1 and 2, and (iii) adjust

(via poststratification, raking or calibration) so that weighted sample estimates for certain

auxiliary variables match their respective known population parameters. Longitudinal
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weights, therefore, allow for different selection probabilities and nonresponse at Wave 1

and attrition, and are adjusted, at each wave, to take account of previous wave

respondents’ absence through refusal at the current wave or through some other way of

sample attrition. Longitudinal weights are calculated in order to guarantee the property

that weighted sample moments are consistent for population moments with respect to the

joint sampling/nonresponse probability distribution.

The current article further examines the impacts of clustering in panel data analysis,

previously investigated by Skinner and Vieira (2007). Moreover, the impacts of survey

weighting and stratification are studied by comparing these with the impact on

corresponding cross-sectional analyses and by examining how these effects behave with

increases in the number of survey waves considered in the analysis. Misspecification

effects (meffs) for parameter estimates in regression models for (i) the logarithm of

household income and (ii) a material satisfaction score are used to evaluate the impact of

various features of complex designs on inference. The data are taken from Waves 12 to 15

of the British Household Panel Study (BHPS). To validate the conclusions from an

empirical study, a simulation study is also performed, where the use of the meffs as a

measure of incorrect specification of the model considered is also extensively explored in

the longitudinal data analysis context.

The contribution of the current article, when compared to Skinner and Vieira (2007),

is (i) the investigation of the impacts of survey weighting and stratification, (ii) the

consideration of alternative meff measures, (iii) the undertaking of a detailed simulation

study, and (iv) the use of the meffs as a measure of the impact of incorrect specification of

longitudinal models.

This article is organised in six sections. In Section 2 we introduce the panel data under

analysis. Section 3 introduces the models, point and variance estimation procedures, and

describes the various meffs. In Section 4 we present our motivating application and

empirical results obtained from real panel data. In Section 5, the simulation study

conducted is described and its results are presented. The concluding discussion is

presented in Section 6.

2. Data and Sampling Design

The empirical evidence presented in this article is based upon data from the BHPS,

which was a large nationally representative household panel survey of individuals in

private domiciles in Great Britain (see Taylor et al. 2010). This survey had the main

objective of providing information about social and economic change at the individual and

household levels.

The BHPS is a longitudinal survey and adopts a complex multistage sampling scheme

for collecting data. In addition, it has a multiple-cohort prospective panel design. At

Wave 1, in 1991, the survey design involved (i) a multistage stratified clustered probability

design with systematic sampling and (ii) approximately equal probability selection of

households. As primary sampling units (PSUs or clusters), 250 postcode sectors were

selected, with replacement, and with probability of selection proportional to size, using a

systematic sampling procedure. The final strata are the result of several stratification

stages, which may be summarised as follows:
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(a) First, the population was divided into 18 implicit regional strata (regions).

(b) Within each region, PSUs were ranked and then split into major strata of

approximately equal size based on the proportion of heads of households in

professional or managerial positions.

(c) Within major strata, PSUs were reranked by the proportion of their population in

pensionable age.

(d) Major strata were then split into two minor strata: a nonmetropolitan area, with

PSUs sorted by their proportion of employed population in agriculture; and a

metropolitan area, with PSUs sorted by their population both under pensionable age

and living in single-person households. For further details on the BHPS sampling

design, see Taylor et al. (2010).

Our analyses are based upon a subset of 2,255 men and women aged 16 or more, clustered

in 234 PSUs, who were original sample members, who gave a full interview in Waves 12

to 15 (collected from 2002 until 2005), and who were employed throughout the period.

This results in a balanced panel. Note that we study the same subsample considered by

Salgueiro et al. (2013), which does not include the BHPS extension samples selected from

Scotland, Wales, and Northern Ireland. Therefore, T ¼ 4, where T is the number of waves

considered. BHPS respondents were asked to answer several questions related to

sociodemographic, economic, and attitudinal characteristics. The following variables are

considered in our analysis: gender, age category, number of children in the household,

education level, social class, marital status, health status, hours normally worked per week,

and the logarithm of the household income.

The BHPS data set includes longitudinal weights wi, which are provided for individual

cases that have responded at each wave up to and including the latest wave (Wave 15 in

our analysis). The longitudinal weight at any wave generally accounts for losses between

each immediate pair of waves up to that point and for the initial sampling design. For

information regarding how the weights are defined for the BHPS, see Taylor et al. (2010),

where further details about the sampling design of the BHPS are also given.

We have also included a material satisfaction score variable in our data set. Factor

analysis, undertaken by Salgueiro et al. (2013), was used to assess which BHPS measures

of subjective wellbeing could be combined into a measure of satisfaction with material

dimensions of life. A material satisfaction score has subsequently been calculated for

each respondent as the total sum of the responses to the following three satisfaction

variables: (i) satisfaction with household income, (ii) satisfaction with house/flat, and

(iii) satisfaction with job. These three variables were originally measured on a scale from 1

(not satisfied) to 7 (completely satisfied).

In our sample, the relative frequency for males and females is approximately 50%.

The distribution of the age category variable is negatively skewed, as the frequencies for

the older categories are larger. Most of the respondents were either married or living as

a couple in 2002. Approximately 80% of the respondents considered themselves in either a

good or excellent health condition. Furthermore, over 75% of the individuals worked

at least 30 hours per week. About 55% of the individuals had a high level of education, and

only 16% of them occupied a partly skilled or an unskilled position in their last job.

Almost 62% of the respondents had no children in the household where they live.
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Moreover, in 2002, the average household income of the sample members was

approximately 3,365 British pounds in the month before the interview was made.

3. Models, Estimation Procedures, and Misspecification Effects

Regression models have found a wide range of useful applications with panel data (e.g.,

Diggle et al. 2002; Fitzmaurice et al. 2004). Such data consist of repeated observations on

the same variables for the same individuals across equally spaced waves of data collection.

The models considered here are concerned with representing the relationship between one

of the variables, treated as dependent, and several other variables, treated as covariates.

We shall adopt i to denote an individual and t to denote time. We denote the survey

variable of interest as yit for individual i at time t. Let yi ¼ ( yi1, : : : , yiT)0 be the vector of

repeated measures. For the population, we consider linear models of the following form to

represent the expectation of yi given the values of covariates:

EðyiÞ ¼ xib; ð1Þ

where xi ¼ (xi1, : : : , xiT)0 is a T £ q matrix, x it is a vector of specified values of q

covariates for individual i at time t, b is a q £ 1 vector of regression coefficients, and the

expectation is with respect to the model.

The estimation of b is based on data from the ‘longitudinal sample’, s, (i.e., the sample

for which observations are available for each t ¼ 1, : : : , T). Following the pseudolikeli-

hood approach (Skinner 1989b), the most general estimator of b considered in this article

is (Skinner and Vieira 2007)

b̂ ¼
ies

X
wixi

0V21xi

0
@

1
A

21

ies

X
wixi

0V21yi; ð2Þ

where wi is a longitudinal survey weight, V is a T £ T estimated ‘working’ variance matrix

of yi given xi (Diggle et al. 2002), taken as the exchangeable variance matrix with diagonal

elements ŝ 2 and off-diagonal elements r̂ŝ 2 and (r̂,ŝ 2) is an estimator of (r,ŝ 2). Further

details on the pseudolikelihood approach may be found in Vieira (2009). The parameter r

is the intra-individual correlation and s 2 is the variance of yit. Further discussion on the

estimation of b and r is presented in Skinner and Vieira (2007). Notice that b̂ would be

fully efficient when the underlying working model holds. Furthermore, under (1), b̂ is

approximately unbiased with respect to the model and to the survey design, and may still

be expected to associate both within and between individual information in a reasonably

efficient manner, even if the working model for the error structure does not hold exactly

(Skinner and Vieira 2007). Without the weight terms and survey-sampling considerations,

the form of b̂, given by (2), is motivated by the generalised estimating Equations (GEE)

approach of Liang and Zeger (1986). We shall denote this unweighted version by b̂u. The

following estimator of the covariance matrix of b̂ allows for a stratified multistage

sampling scheme and it is based upon the classical method of linearisation (Binder 1983;

Skinner 1989b; Skinner and Vieira 2007)

vðb̂Þ¼
�P

ieswixi
0V21xi

�21�P
hnh=ðnh21Þ

P
aðzha2�zhÞðzha2�zhÞ

0
��P

ieswixi
0V21xi

�21
,

where h denotes stratum, a denotes PSU, nh is the number of PSUs in stratum h,
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zha¼
P

iwixi
0V21ei, �zh¼

P
azha=nh and ei ¼ yi 2 xib̂. If the weights, the sampling scheme

and the difference between n/(n 2 1) and 1 are ignored, this estimator reduces to the

‘robust’ variance estimator presented by Liang and Zeger (1986), which is as consistent

when (1) holds, even when the working variance matrix V does not reflect the true variance

structure (Diggle et al. 2002). We shall consider three further alternatives for estimating the

covariance matrix of b̂: (i) va(b̂), which considers that the population consists of only one

stratum (h ¼ 1), and therefore ignores stratification but takes area clustering into account;

(ii) vh(b̂), which considers that each individual i is a PSU, and therefore ignores clustering

but takes stratification into account; and (iii) the naive vn(b̂), which considers that h ¼ 1

and that each individual is a PSU, and therefore ignores both stratification and clustering.

We shall also perform variance estimation for b̂u, which is the point estimator that ignores

the weights and stratification, and considers each individual as a PSU.

We shall be concerned with the potential bias of va(b̂), vh(b̂) and vn(b̂) when in fact the

design is complex. Skinner (1989a) has proposed the misspecification effect (meff ), which

is designed to measure the effects of incorrect specification of both (i) all the features of

the sampling scheme and (ii) the model considered. The effect of the complex sampling

scheme on va(b̂), vh(b̂) and vn(b̂) can be evaluated by considering alternative meffs

estimators, such as

meff a b̂k; vaðb̂kÞ
� �

¼ vðb̂kÞ=vaðb̂kÞ; meff h b̂k; vhðb̂kÞ
� �

¼ vðb̂kÞ=vhðb̂kÞ; and meff n b̂k; vnðb̂kÞ
� �

¼ vðb̂kÞ=vnðb̂kÞ;

where b̂k denotes the k th element of b̂. The meffa, meffh, and meffn separately estimate

the impacts of stratification, clustering, and both stratification and clustering, respectively,

and therefore are particular cases of the original meff of Skinner (1989a). We shall

also calculate all the versions of the meff measure considered for b̂u. Furthermore,

a general meff,

meff g ¼ vðb̂kÞ=vn b̂
u

k

� �
;

with b̂
u

k denoting the k th element of b̂u, defined above, shall be calculated in order to

access the bias caused by ignoring all the sampling-scheme features.

4. Applications

We consider two applications of regression analysis for four waves of the BHPS data,

which include (i) the logarithm of the household income and (ii) a material satisfaction

score as the dependent variables. Covariates were selected on the basis of the discussion in

Salgueiro et al. (2013) and include time, gender, age category, marital status, number of

children in the household, education level, social class, health status, and number of hours

normally worked per week. We first estimate meffs for the linearisation estimator,

considering b̂, as discussed in Section 3. By using data from just the first wave and setting

xi ¼ 1, the estimated meffn for this cross-sectional mean is given in Table 1 and equals

1.343. In order to evaluate the impact of the longitudinal aspect of the data, we estimated a

sequence of each of the meffs discussed above, using data for time 1, : : : , t, for t ¼ 2, 3, 4.

It is important to note that the estimation of cross-sectional and longitudinal means is often
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the aim of official statistics agencies, and therefore we consider the following analysis to

be of particular relevance.

Although these estimated meffs are subject to sampling error, there seems to be some

evidence from Table 1 of a tendency for meffh, meffn, and meffg to increase with the

number of waves. It therefore seems like it becomes more important to allow for clustering

and for the complex sampling design in general when the number of waves in the analysis

increases. This result agrees with Skinner and Vieira (2007). Furthermore, the

stratification effects appear (meffa) to remain constant as the number of waves increases.

The models with logarithm of the household income as the dependent variable appear to

have larger values for meffh, meffn, and meffg than the models with a material satisfaction

score as the dependent variable. This result was expected, as attitudinal variables tend to

have small estimated intracluster (intra-postcode) correlations for variables in British

surveys (Lynn and Lievesley 1991; Vieira and Skinner 2008).

We have elaborated the analysis by including educational level as a covariate and we

present in Table 2 only meff estimates for the estimated coefficients for the constant term

of the longitudinal models.

The main feature of these results is that, as before, there is some evidence that meffh,

meffn, and meffg increase with the number of waves. The intercept term may be seen as a

domain mean, and standard survey-sampling theory for a meff of a mean in a domain

cutting across clusters (Skinner 1989b; Skinner and Vieira 2007) implies that it will be

somewhat less than a meff for the mean in the whole sample, as we have generally

observed when comparing the results in Table 2 with those from Table 1. Moreover, such a

comparison also confirms the observation of Kish and Frankel (1974) and Skinner and

Vieira (2007) that meffs for regression coefficients tend not to be greater than meffs for the

Table 1. Meff estimates for estimated longitudinal means.

Waves

Dependent Variable Meff 12 12 and 13 12 to 14 12 to 15

Log of the household
income

meffa[b̂k,va(b̂k)] 0.971 0.965 0.965 0.963

meffh[b̂k,vh(b̂k)] 1.490 1.653 1.699 1.695

meffn[b̂k,vn(b̂k)] 1.282 1.431 1.474 1.458

meffa

�
b̂

u

k ; va

�
b̂

u

k

��
0.969 0.963 0.961 0.960

meffh

�
b̂

u

k ; vh

�
b̂

u

k

��
1.572 1.795 1.830 1.870

meffn

�
b̂

u

k ; vn

�
b̂

u

k

��
1.343 1.504 1.575 1.653

meffg 1.494 1.598 1.778 1.706

Material satisfaction
score

meffa[b̂k,va(b̂k)] 0.994 0.997 0.993 0.889

meffh[b̂k,vh(b̂k)] 1.075 1.125 1.190 1.197

meffn[b̂k,vn(b̂k)] 1.087 1.104 1.135 1.132

meffa

�
b̂

u

k ; va

�
b̂

u

k

��
1.000 1.000 0.996 0.996

meffh

�
b̂

u

k ; vh

�
b̂

u

k

��
1.079 1.113 1.182 1.199

meffn

�
b̂

u

k ; vn

�
b̂

u

k

��
1.119 1.155 1.207 1.203

meffg 1.306 1.309 1.328 1.297
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means of the dependent variable. Again the stratification effects appear to be constant with

increases in the number of waves.

Although we have chosen not to present the meffs for the contrasts (coefficients for the

education level covariate considered in the model), we have observed that they have varied

in size and generally do not show any tendency to converge to one as the number of waves

analysed increases, which would indicate no misspecification. As observed by Skinner and

Vieira (2007), a meff for a contrast may be considered a combination of the traditional

variance-inflating effect of clustering in surveys together with the variance-reducing effect

of blocking in an experiment. Such variance reduction may be observed when the domains

being contrasted share a common cluster effect that tends to cancel out in the contrasts, and

therefore may imply that the actual variance of the contrast is lower than the expectation

of the variance estimator which assumes independence between domains (Skinner and

Vieira 2007).

The models have been further refined by the inclusion of additional covariates:

. time

. gender (g1 1
4

male, reference category; and g2 1
4

female)

. age category (ac1 1
4

16 to 21 years, reference category; ac2 1
4

22 to 29 years; ac3 1
4

30

to 39 years; ac4 1
4

40 to 49 years; and ac5 1
4

50 years or older)

. number of children in the household

. education level (el1 1
4

first or higher degree, reference category; el2 1
4

other higher

qualification; el3 1
4

nursing or A-levels; el4 1
4

other levels; and el5 1
4

no post-school

qualification)

Table 2. Meff estimates for the estimated constant terms in the longitudinal models (with one education

covariate).

Waves

Dependent Variable Meff 12 12 and 13 12 to 14 12 to 15

Log of the household
income

meffa[b̂k,va(b̂k)] 1.000 1.000 1.000 0.980

meffh[b̂k,vh(b̂k)] 1.000 1.127 1.179 1.230

meffn[b̂k,vn(b̂k)] 1.016 1.108 1.118 1.143

meff a

�
b̂

u

k ; va

�
b̂

u

k

��
0.983 0.982 0.980 0.980

meff h

�
b̂

u

k ; vh

�
b̂

u

k

��
1.104 1.117 1.274 1.330

meff n

�
b̂

u

k ; vn

�
b̂

u

k

��
1.051 1.131 1.208 1.237

meffg 1.195 1.190 1.208 1.214

Material satisfaction
score

meffa[b̂k,va(b̂k)] 0.996 0.998 0.998 1.000

meffh[b̂k,vh(b̂k)] 1.038 1.052 1.111 1.065

meffn[b̂k,vn(b̂k)] 0.972 1.046 1.128 1.087

meff a

�
b̂

u

k ; va

�
b̂

u

k

��
0.993 0.995 0.998 1.002

meff h

�
b̂

u

k ; vh

�
b̂

u

k

��
1.127 1.172 1.137 1.120

meff n

�
b̂

u

k ; vn

�
b̂

u

k

��
1.069 1.176 1.180 1.174

meff g 1.247 1.268 1.406 1.323
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. social class (sc1 1
4

professional occupation, reference category; sc2 1
4

managerial or

technical; sc3 1
4

skilled; and sc4 1
4

partly skilled or unskilled),

. health status (hs1 1
4

excellent, reference category; hs2 1
4

good; hs3 1
4

fair; and hs4 1
4

poor), numbers of hours normally worked per week (nh1 1
4

less than 16 hours,

reference category; nh2 1
4

16 to 29 hours; nh3 1
4

30 to 40 hours; and nh4 1
4

more than

40 hours)

. and marital status (ms1 1
4

married or living as a couple, reference category, and

ms2 1
4

widowed, divorced, separated or never married).

For the model with a material satisfaction score as the dependent variable, we have also

added the logarithm of the household income as a covariate. As before, in Table 3 we

present meff estimates only for the estimated coefficients for the constant term of the

further elaborated longitudinal models.

There is some evidence of a tendency in the meffs for the constant to diverge from unity

as the number of waves increases, especially for the model with a material satisfaction

score as the dependent variable. Although we have not presented the meffs for the

covariates, we have observed that meffh, meffn, and meffg generally have not shown any

tendency to converge to one, for the same reasons as we have argued above. In general,

when comparing the results in Table 3 with those in Tables 1 and 2, we have also

confirmed the observation of Kish and Frankel (1974) and Skinner and Vieira (2007) that

meffs for regression coefficients tend not to be greater than meffs for the means of the

dependent variable, except for the estimated meffs for the constant term of the model with

a material satisfaction score as dependent variable, which has presented surprisingly high

meffs for the more elaborate model.

Table 3. Meff estimates for the estimated constant terms in the longitudinal models (with several covariates).

Waves

Dependent Variable Meff 12 12 and 13 12 to 14 12 to 15

Log of the household
income

meffa[b̂k,va(b̂k)] 0.982 1.000 1.000 1.001

meffh[b̂k,vh(b̂k)] 1.000 0.948 0.994 0.944

meffn[b̂k,vn(b̂k)] 0.829 0.938 1.000 0.970

meffa

�
b̂

u

k ; va

�
b̂

u

k

��
1.000 0.994 1.000 1.002

meffh

�
b̂

u

k ; vh

�
b̂

u

k

��
0.980 0.966 0.981 0.916

meffn

�
b̂

u

k ; vn

�
b̂

u

k

��
0.849 0.955 0.994 0.947

meffg 1.000 1.124 1.175 1.138

Material satisfaction
score

meffa[b̂k,va(b̂k)] 0.992 0.996 0.992 1.000

meffh[b̂k,vh(b̂k)] 1.211 1.273 1.311 1.112

meffn[b̂k,vn(b̂k)] 1.184 1.278 1.349 1.205

meffa

�
b̂

u

k ; va

�
b̂

u

k

��
0.993 0.996 0.991 1.000

meffh

�
b̂

u

k ; vh

�
b̂

u

k

��
1.176 1.225 1.369 1.200

meffn

�
b̂

u

k ; vn

�
b̂

u

k

��
1.155 1.250 1.432 1.306

meffg 1.413 1.573 1.628 1.446
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Table 4 presents coefficient, standard error (seðb̂Þ ¼

ffiffiffiffiffiffiffiffiffi
vðb̂Þ

q
and senðb̂Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
vnðb̂Þ

q
) and

meff estimates for the model for Waves 12 to 15 with logarithm of the household income as

the dependent variable and several covariates. The differences observed when we compare

the point estimates produced by the standard Liang and Zeger (1986) estimator (b̂n, given

by Equation (2) without the weight terms) and the weighted pseudolikelihood estimator

(b̂, given by Equation (2)) suggest that using standard statistical techniques with complex

sampling data may lead to biased point estimates. Note the differences in the estimated

coefficients for gender, age category, health status, and numbers of hours normally worked,

confirming Nathan and Holt’s (1980) results produced in a cross-sectional context.

Moreover, the results in Table 4 also suggest that, in general, the BHPS complex sampling

effects, if not taken into account in the estimation procedure, tend to lead to an

underestimation of standard errors (compare columns labelled (1) and (2) and columns

labelled (3) and (4)), and therefore to narrowed confidence intervals and possibly to the

incorrect rejection of null hypotheses. In our application, complex sampling effects

may lead to inappropriate statistical conclusions. This is confirmed by the estimated

meffs, which are generally above one and even above two for gender. The meffn for b̂n and b̂

are similar, suggesting the impact of the complex sampling is the same irrespective

of whether or not weights are used. However, meffg is nearly always larger than both

these meffn, suggesting that the effect of weighting is to further increase the estimated

standard errors.

Figure 1 includes confidence intervals for both b̂u and b̂, considering both sen(.) and

se(.), for coefficients of covariates which had at least one meffg . 1.5. Horizontal lines are

represented both at b ¼ 0 and b̂ for the plots on the left-hand side, and only b ¼ 0 for the

right-hand ones. Four different confidence intervals were calculated for each coefficient,

labelled as: (a) confidence interval for b̂u based on sen(.), (b) confidence interval for b̂u

based on se(.), (c) confidence interval for b̂ based on sen(.), and (d) confidence interval for

b̂ based on se(.). Note, therefore, that: (a) does not allow for any sampling design features,

(b) allows for clustering and stratification, (c) allows for weighting, and (d) allows for

clustering, stratification, and weighting. The comparison of (a), (b), (c), and (d) helps us to

evaluate the different sampling misspecification effects. Our plots demonstrate that

different coefficients show different types of effects. The plot for the variable number of

children, for example, shows a common situation faced by data analysts. Note the

coefficients are considered significant when the sampling design is not considered in (a).

Moving from (a) to (d), sampling design features are gradually being considered, leading

to the coefficient not being significant in (d). Plots for social class and gender show

weighting and stratification effects in the standard-error estimation. The plot for age

category illustrates the effects of weighting, and the possibility of bias, in the point

estimates. Plots for time and health status show different patterns for the evaluated effects

depending on which point estimator is being considered.

5. Simulation Study

As the results reported in Section 4 are subject to sampling error, we conducted a

simulation study to evaluate the behaviour of the meff measures. Each of the d ¼ 1, : : : ,

D replicate samples is based on the BHPS data subset described above, which is
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considered as the ‘target population’. We evaluated the properties of variance esti-

mators for unweighted point estimators and assessed only the impacts of clustering.

We studied the meff when the number of waves in the analysis is increased. Note that

we do not assess the impact of stratification, unequal probability sampling, nonresponse,

and attrition.

Let yiat be the value for the study variable for unit i ¼ 1; 2; : : : ; nsim
a , in PSU

a ¼ 1, : : : , m sim, at Wave t of the survey, where nsim
a and m sim are the sample sizes and the

number of PSUs for the replicate sample d. To generate the values of yiat for the simulation
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Fig. 1. Confidence intervals for coefficients of covariates with meffg . 1.5.

Journal of Official Statistics498



study, we used the following uniform correlation model, which includes a clustering effect:

yiat ¼ xiatbþ ha þ uia þ viat; ð3Þ

where ha represents the PSU (postcode area) random effects, uia denotes individual-level

random effects (or unobservable individual specific factors), and viat are residuals, with

ha , N 0;s2
h

� �
; uia , N 0;s2

u

� �
, and viat , N 0;s2

v

� �
. We consider the logarithm of

the household income and a material satisfaction score as dependent variables and the

remaining variables listed and described in Section 2 as covariates. We have held the

values of the covariates fixed.

The values adopted for b, sh, s u, and sv were based on maximum-likelihood estimates

for the model fitted to the ‘target population’, which were 0.16 and 2.10 for su, and 0.11

and 1.88 for sv, respectively, for the models with the logarithm of the household income

and with a material satisfaction score as dependent variables. In order to evaluate the

effects of different impacts of clustering on the variance estimation procedures considered,

we used the following realistic choices for sh: (i) sh ¼ 0.06 (actual value estimated from

fitting Model (3) to the data), sh ¼ 0.12 and sh ¼ 0.18, for the model with the logarithm

of the household income as dependent variable; and (ii) sh ¼ 0.35 (actual value estimated

from fitting (3)), sh ¼ 0.70, and sh ¼ 1.05 for the model with a material satisfaction score

as the dependent variable.

Let

Êðmêff Þ ¼
1

D

XD

d¼1

mêff ðd Þ

be the mean of our meff of interest estimated over repeated simulation,

varðmêff Þ ¼
1

D 2 1

XD

d¼1

mêff ðd Þ 2 Êðmêff Þ
� �2

be a simulation estimator of VAR(mêff ), the population variance of the misspecification-

effect measure, and

se½Êðmêff Þ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðmêff Þ=D

p

be the simulation standard error of Ê(mêff ).

We initially set xi ¼ 1 in the models fitted to each generated replicate sample and

therefore studied the behaviour of the meff for longitudinal means. We set nsim
a equal the

sample size for PSU a in our BHPS subsample and m sim ¼ 234, which is equal to the

number of PSUs in our BHPS subsample. Therefore, Table 5 presents simulation results

for four scenarios, including one that considers sh ¼ 0.00 (i.e., no clustering effect), when

D ¼ 1,000.

The simulation results also provide evidence that the meffs increase as the number of

waves in the analysis increases, at least for longitudinal means. This increase seems to be

stronger for larger intracluster correlation. We also observe an increase in the meff when

the intracluster correlation increases, as expected from the survey-sampling literature

(Kish and Frankel 1974; Holt and Scott 1981; Scott and Holt 1982; Skinner 1986; and

Skinner 1989a).
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We also notice that the meffs are greater than one even when sh ¼ 0.00. We believe that

this is due to the model that is being fitted (with no covariates), which is different from the

true model (with several covariates) that was used to generate the data. Therefore, this is a

good example of the use of the meff to measure the effects of incorrect specification of both

the sampling scheme and the model considered.

Following the same strategy considered in Section 4, we have elaborated the analysis

by including educational level as a covariate. Tables 6 and 7 present the results for the

constant term and one of the contrasts (one category) of the educational level covariate, for

the logarithm of the household income and material satisfaction models respectively,

using the same four scenarios as before.

The simulation results with the logarithm of the household income as the dependent

variable and the educational level as the covariate also generally show a tendency for the

meffs to increase as the number of waves in the analysis increases, more clearly for the

constant (domain mean) but also for the contrasts (including those contrasts that were not

presented in Table 6). This increase seems, again, to be stronger for larger clustering

impacts. Furthermore, we notice once again that the meffs are greater than one even when

sh ¼ 0.00, but not as much as we observed in Table 5, as the model that is now being fitted

(with one covariate) is slightly closer to the true model.

The simulation results with the material satisfaction score as the dependent variable and

the educational level as the covariate, presented in Table 7, lead to very similar

conclusions to those drawn from Table 6. In fact the increase in the meff is now even

clearer. Moreover, when comparing the results from Tables 6 and 7 to those presented in

Table 5, we confirm our results from Section 4, and the observation of Kish and Frankel

(1974) and Skinner and Vieira (2007) that meffs for regression coefficients tend not to be

greater than meffs for the means of the dependent variable.

Table 5. Ê(mêff ) and se[Ê(mêff )] (in brackets), for four scenarios (for longitudinal means).

Waves

Dependent Variable sh 12 12 and 13 12 to 14 12 to 15

Log of the household income 0.00 1.1448 1.1561 1.1589 1.1597
(0.0035) (0.0035) (0.0036) (0.0036)

0.06 1.1862 1.2018 1.2078 1.2107
(0.0042) (0.0043) (0.0043) (0.0043)

0.12 1.2697 1.2940 1.3019 1.3073
(0.0053) (0.0055) (0.0056) (0.0056)

0.18 1.3774 1.4061 1.4190 1.4255
(0.0068) (0.0070) (0.0070) (0.0071)

Material satisfaction score 0.00 1.0826 1.0986 1.1017 1.1030
(0.0033) (0.0033) (0.0033) (0.0033)

0.35 1.0890 1.1063 1.1105 1.1129
(0.0033) (0.0034) (0.0035) (0.0035)

0.70 1.1086 1.1363 1.1428 1.1462
(0.0035) (0.0037) (0.0037) (0.0037)

1.05 1.1498 1.1806 1.1889 1.1936
(0.0044) (0.0046) (0.0047) (0.0048)
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We included the following additional covariates: time, gender, age category, marital

status, number of children in the household, education level, social class, health status, and

numbers of hours normally worked. As the simulation results presented in Tables 5, 6, and

7 suggested very similar conclusions drawn from the models with the two different

Table 6. Ê(mêff ) and se[Ê(mêff )] (in brackets), considering four scenarios for the logarithm of the household-

income model with one education covariate.

Waves

Dependent Variable sh Coefficient 12 12 and 13 12 to 14 12 to 15

Log of the
household income

0.00 Constant 1.0454 1.0441 1.0427 1.0435
(0.0043) (0.0043) (0.0043) (0.0042)

el5 1.0478 1.0473 1.0493 1.0473
(0.0036) (0.0036) (0.0036) (0.0037)

0.06 Constant 1.0872 1.0908 1.0921 1.0933
(0.0044) (0.0044) (0.0043) (0.0043)

el5 1.0864 1.0897 1.0881 1.0827
(0.0037) (0.0037) (0.0038) (0.0037)

0.12 Constant 1.1671 1.1892 1.1920 1.1971
(0.0055) (0.0057) (0.0056) (0.0056)

el5 1.1683 1.1835 1.1791 1.1709
(0.0048) (0.0049) (0.0048) (0.0048)

0.18 Constant 1.2760 1.2950 1.2926 1.2976
(0.0069) (0.0068) (0.0067) (0.0067)

el5 1.2644 1.2786 1.2607 1.2458
(0.0057) (0.0058) (0.0055) (0.0053)

Table 7. Ê(mêff ) and se[Ê(mêff )] (in brackets), considering four scenarios for the material satisfaction score

model with one education covariate.

Waves

Dependent Variable sh Coefficient 12 12 and 13 12 to 14 12 to 15

Material
satisfaction score

0.00 Constant 1.0604 1.0667 1.0721 1.0794
(0.0043) (0.0042) (0.0041) (0.0041)

el5 1.0488 1.0513 1.0551 1.0570
(0.0034) (0.0034) (0.0034) (0.0034)

0.35 Constant 1.0672 1.0786 1.0843 1.0897
(0.0043) (0.0043) (0.0043) (0.0043)

el5 1.0503 1.0585 1.0644 1.0662
(0.0037) (0.0036) (0.0035) (0.0035)

0.70 Constant 1.0886 1.0986 1.1075 1.1148
(0.0043) (0.0044) (0.0045) (0.0045)

el5 1.0752 1.0837 1.0895 1.0913
(0.0036) (0.0037) (0.0037) (0.0037)

1.05 Constant 1.1106 1.1300 1.1406 1.1507
(0.0048) (0.0047) (0.0048) (0.0047)

el5 1.0924 1.1094 1.1151 1.1188
(0.0038) (0.0039) (0.0040) (0.0040)
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dependent variables considered, we have chosen to present results for the logarithm of the

household-income models for the more complex model with several covariates. Table 8

presents results for the constant term and for the same contrast that was included in

Tables 6 and 7.

Table 8 also shows an increase in the meff as the number of waves in the analysis

increases. We may draw very similar conclusions to those regarding Tables 6 and 7.

Furthermore, we now notice that the meffs are much closer to one when sh ¼ 0.00,

especially for the situation where we consider four waves, as the model that is being fitted

in that case (with several covariates) is the true model and no clustering effect is induced.

We believe these meff results are not significantly different to one as their 95% simulation

confidence intervals include one for the four-waves model for most of the estimated

coefficients.

6. Discussion

We have presented evidence that the impact of clustering may be stronger for longitudinal

studies than for cross-sectional studies, and that meffs for the regression coefficients

increase with the number of waves considered in the analysis, which confirms previous

theoretical results by Skinner and Vieira (2007; Expression (11)). Longitudinal household

surveys tend to have a long life in most countries (e.g., Panel Study of Income Dynamics in

the United States; German Social Economic Panel in Germany) and therefore a large

number of waves, and in such cases our conclusions are particularly relevant. Moreover,

we have also observed that meffs for regression coefficients tend not to be greater than

meffs for the means of the dependent variable. In fact, lower meffs are expected for models

Table 8. Ê(mêff ) and se[Ê(mêff )] (in brackets), considering four scenarios for the logarithm of the household-

income model with several covariates.

Waves

Dependent Variable sh Coefficient 12 12 and 13 12 to 14 12 to 15

Log of the
household income

0.00 Constant 0.9855 0.9903 0.9925 0.9926
(0.0038) (0.0037) (0.0037) (0.0039)

el5 0.9884 0.9914 0.9933 0.9955
(0.0034) (0.0033) (0.0033) (0.0033)

0.06 Constant 0.9911 1.0105 1.0158 1.0193
(0.0037) (0.0037) (0.0038) (0.0040)

el5 0.9834 1.0087 1.0196 1.0222
(0.0033) (0.0033) (0.0033) (0.0034)

0.12 Constant 0.9938 1.0655 1.0879 1.0961
(0.0039) (0.0042) (0.0047) (0.0049)

el5 0.9869 1.0572 1.0870 1.1003
(0.0032) (0.0037) (0.0040) (0.0041)

0.18 Constant 0.9793 1.1109 1.1607 1.1766
(0.0037) (0.0050) (0.0057) (0.0059)

el5 0.9877 1.1138 1.1626 1.1814
(0.0033) (0.0043) (0.0049) (0.0052)
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with increasing complexity (with more covariates) or for models that are closer to the true

population model, which has been observed in our results. However, as previously stated,

official statistical agencies often wish to estimate domain means, which correspond to

simple models with, for example, a single covariate, and again in such cases our

conclusions are particularly relevant.

Furthermore, our application results suggest that stratification effects remain constant

with increases in the number of waves. This conclusion does not seem to be dependent

upon the complexity of the model (i.e., number of covariates) that is being considered.

The main implication of our findings is that standard errors estimated in the analysis of

panel data may be misleading if the initial sample was clustered and if this clustering is

ignored in the analysis, more strongly so in situations where descriptive statistics (such as

means) are being estimated or when the model that is being fitted is not well specified. Our

results also suggest that longitudinal weighting has implications on both point and

standard-error estimation. The analysis of longitudinal data collected by surveys that adopt

unequal probability selection procedures, unit-nonresponse weighting adjustments for

protection against attrition, and other weighting adjustments requires allowances for such

features. Therefore, the types of misspecification that investigators need to protect against

are those related to clustering and weighting. We believe that by taking our findings into

account, analysts of longitudinal data will be able to produce better inferential results for

panel surveys.

Possible future work could include investigating the impacts of various sampling

design features in the analysis of panel data based on estimating marginal models for a

binary response, such as the ones considered by Roberts et al. (2009). Moreover, the

effects of item nonresponse and of the use of imputation in variance estimation in the

longitudinal data context, which has not been dealt with here, could also be investigated

in future work.
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