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Multiple imputation (MI) is commonly used when item-level missing data are present.
However, MI requires that survey design information be built into the imputation models.
For multistage stratified clustered designs, this requires dummy variables to represent strata
as well as primary sampling units (PSUs) nested within each stratum in the imputation
model. Such a modeling strategy is not only operationally burdensome but also
inferentially inefficient when there are many strata in the sample design. Complexity only
increases when sampling weights need to be modeled. This article develops a general-
purpose analytic strategy for population inference from complex sample designs with
item-level missingness. In a simulation study, the proposed procedures demonstrate
efficient estimation and good coverage properties. We also consider an application to
accommodate missing body mass index (BMI) data in the analysis of BMI percentiles
using National Health and Nutrition Examination Survey (NHANES) III data. We argue
that the proposed methods offer an easy-to-implement solution to problems that are not
well-handled by current MI techniques. Note that, while the proposed method borrows
from the MI framework to develop its inferential methods, it is not designed as an
alternative strategy to release multiply imputed datasets for complex sample design data,
but rather as an analytic strategy in and of itself.

Key words: Finite population Bayesian bootstrap; Haldane prior; stratified sample; clustered
sample; sample weights.

1. Introduction

Stratified multistage sampling is the most common type of sample design for large-scale

surveys conducted by the U.S. federal statistical agencies. This type of sample design

combines the advantages of both stratification (for statistical efficiency) and cluster

sampling (for cost and logistical efficiency). Under this design, the primary sampling units

(PSUs) are stratified in such a way that they are homogeneous with respect to a stratum-

level aggregate of the variable(s) of interest. To permit a maximum degree of stratification
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and thus variance reduction, it is common practice to define a large number of strata where

only a small number of PSUs are selected in each stratum.

Multiple imputation (MI) (Rubin 1976, 1987) is a method commonly used when

item-level missing data are present. However, MI requires that survey design

information be built into the imputation models. Reiter et al. (2006) demonstrated the

importance of simultaneously accounting for stratum effects and clustering effects in

multiple imputation. They showed that when design features were ignored in the

imputation model, biases would occur on the estimated parameter, even if a design-

based analysis method was applied to the imputed data. Current MI methods typically

include dummy variables to represent strata as well as PSUs nested within each

stratum in the imputation model. When necessary, they also identify statistically

significant interactions between these dummies with other covariates through routine

variable selection procedures such as stepwise regression (Reiter et al. 2006; Schenker

et al. 2006). Such a modeling strategy is not only operationally burdensome but also

inferentially inefficient when there are hundreds of strata in the sample design and the

sample in each stratum consequently becomes sparse. For example, the Census

Bureau’s Current Population Survey design groups 1,768 nonself-representing PSUs

into 220 strata.

Possibly a better strategy is to consider clusters as random effects while treating strata as

either fixed (using dummies) or random effects. However, many of the popular software

packages that implement multiple imputation (e.g., SAS MI procedure, R packages mice

or mi, and IVEware) cannot be adapted easily to such an approach. While a few recent

software modules (such as R package pan and MLwiN module REALCOM-IMPUTE)

have started to incorporate mixed effects or multilevel modeling for imputation purposes,

they typically assume normal or latent normal distribution for variables with missing data.

Their performances for missing categorical variables (binary in particular) are unclear.

Moreover, there has been only little research that formally investigates their use in

incorporating strata as well as clusters.

To circumvent these problems with fully parametric model-based imputation

techniques, we develop a two-step semiparametric MI method. The idea is to separate

the need to account for complex sample designs from the treatment of missing data. In the

first step, sample designs are “reversed” through synthetic population data generation

using a weighted finite population Bayesian bootstrap (FPBB) (Cohen 1997; Little and

Zheng 2007; Dong et al. 2014). In the second step, missing values are imputed in the

created synthetic population based on a parametric model that assumes identically

independently distributed (IID) data elements. To account for stratum effects, we combine

a replication variance estimation method (Efron 1979; Kovar et al. 1988; Rao and Wu

1988; Rao et al.1992; Rust and Rao 1996) with the weighted FPBB. Under a standard

missing at random (MAR) assumption (Little and Rubin 2002), our method requires

neither complicated modeling of strata and clusters nor design-based analyses of the

imputed data. Note that while the proposed method borrows from the multiple-imputation

framework to develop its inferential methods, it is not designed as an alternative strategy

to release multiply imputed datasets for complex sample design data. Rather, it is intended

an alternative analytic strategy for population inference from complex sample design data

with item-level missingness.
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In this article, we focus on the estimation of two quantities: quantile estimates for a

continuous variable, and estimates of rare proportions and their associated logistic

regression estimates. We consider a stratified two-stage sample design and investigate a

full range of quantiles including tail behaviors. While design-based methods for quantile

estimation from complex survey data have been developed (Francisco and Fuller 1991;

Woodruff 1952), quantile estimation after imputation is less commonly addressed in the

literature. (A recent exception that considers nonparametric fractional imputation outside

of the complex sample design setting is Yang et al. 2013.) This is the case despite the rapid

development and increasing popularity of MI. We also consider MI for incomplete binary

variables, with a focus on rare outcomes. It is well known that maximum-likelihood

estimation of logistic regression models typically suffers from small sample bias, the

degree of which is strongly dependent on the number of sample cases in the less frequent

of the two categories (King and Zeng 2001). Thus when the dependent binary variable

represents the occurrence of rare events, the logistic regression coefficients can be

substantially biased even with a simple IID data structure. Random effects logistic models

are commonly used for fitting clustered binary data; however, these models rely heavily on

asymptotic theory assumptions, which may not be met in sparse samples. All these issues

might extend naturally to the missing-data context. As shown by Zhao and Yucel (2009),

sequential MI for binary data missing completely at random in a multilevel setting suffers

from severe bias and poor coverage in estimating probabilities that are close to 0 or 1,

particularly when the intraclass correlation is high.

The objectives of this article are: i) to develop a two-step synthetic MI method as a way

to simultaneously account for stratification, clustering, and unequal inclusion probability;

and ii) to demonstrate the effectiveness of the new method with respect to quantile

estimation and logistic regression for binary rare events data as compared with existing

fully parametric imputation strategies. Section 2 discusses the imputation strategies under

three different models: simple random sample, fixed effects for clusters/strata, and random

effects for cluster/strata. Section 3 introduces the newly proposed procedure and the MI

inference rules for quantile estimation under this method. Section 4 presents a Monte

Carlo simulation study as the validation tool to assess the repeated sampling properties

of MI under the various approaches. Section 5 applies different MI procedures to the

analysis of body mass index on youth data from the third National Health and Nutrition

Examination Survey (NHANES III). Some concluding remarks follow in Section 6.

We focus on the two-PSU-per-stratum design in this chapter, although the methods we

develop can accommodate any number of PSUs per stratum.

1.1. Fully Parametric Imputation Methods for the Two-PSU-per-Stratum Design

Here we briefly describe fully parametric multiple-imputation techniques with complex

sample design features incorporated to different degrees. We assume the missing data Yi is

a member of the exponential family, and that there are fully observed covariates Xi

(a ( p þ 1)-dimension vector) such that g(E(YijXi)) ¼ Xib for a known link function g(·)

(e.g., g(u) ¼ log(u/(1 2 u)) for binary outcomes (logistic regression), g(u) ¼ log(u) for

count outcomes (Poisson regression), or g(u) ¼ u for continuous outcomes (Gaussian

regression)).
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1.1.1. Standard Regression Model Assuming SRS

Based on the maximum-likelihood estimates b̂ and the associated asymptotic covariance

matrix V̂(b̂) for the generalized linear model g(E(YijXi)) ¼ Xib, the posterior predictive

distribution of the parameters can be constructed, which is then used to impute the missing

values (Rubin 1987, 169–170). Point and variance estimates of the regression parameters

can then be obtained using the usual MI combining rules (Rubin 1987, 76). For the p th

component of the regression parameter:

b̂p ¼
1

M
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where m ¼ 1, : : : , M imputations are taken from draws widely separated to practically

eliminate autocorrelation. Multivariate combining rules for the joint distribution of b̂ are

available as well (Schafer 1997, 112–118).

1.1.2. Fixed-Effects Model (FX_APR)

Compared to the predictive model using standard generalized linear regression, we can add

dummy variables indicating stratum and cluster memberships to account for stratification

and clustering effects. Note that we also need to include the log transformation of sampling

weight as a predictor if the missing-data mechanism depends on weights to make the

imputation model truly appropriate. The model takes the following form:

g EðYijXiÞ
� �

¼ Xibþ Digþ Eihþ ½z log ðwiÞ�; ð4Þ

where Di is a 1 £ (H 2 1) row vector of dummies representing the H strata, and Ei is a

1 £ Q row vector of dummies representing the clusters nested within each stratum. Note

that Q ¼
P

hQh 2 H, where Qh is the number of clusters in each stratum; in the case of the

two-PSU-per-stratum case, Q ¼ H. The parameter space under this model is expanded as

u ¼ (b,g,h,z), and the steps for imputation are similar to those in the SRS setting.

1.1.3. Mixed-Effects Model (RE_APR)

As there are only two PSUs selected from each stratum, it is not feasible to model clusters

as random effects separately within each stratum. Here we pool all Q þ H clusters in the

sample and model them using a single random-effect term. The imputation model is
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specified as follows:

g EðYjjXjÞ
� �

¼ Xjbþ Djgþ ui þ ½z log ðwjÞ�; ð5Þ

where ui , N 0;s2
u

� �
is a random intercept term representing cluster effects, for

i ¼ 1, : : : ,(Q þ H), and s2
u denotes the between cluster variance. Other terms are as

previously defined. (In the two-PSU-per-stratum case, Q þ H ¼ 2H.)

2. Synthetic MI Using the Weighted FPBB for Stratified Samples

In this section, we develop the two-step multiple-imputation methodology for a stratified

two-stage sample design where a combination of complex sampling techniques are

considered, namely, stratification, clustering, and unequal inclusion probability. We

develop methods for an unrestricted number of clusters per stratum, but for our simulations

and application we focus on the special case of two PSUs selected per stratum, which

mimics the form of a public-use dataset that is commonly released for analyses.

2.1. Synthetic Data Generation to Account for Complex Sample Designs

Consider a finite population P, which is stratified into H strata with Nh PSUs in the h th

stratum, and hence the population size of PSUs is
PH

h¼1Nh ¼ N. For the h th stratum, select

nh PSUs with/without replacement from some probability sampling plan, independently

across strata, and hence the total sample size of PSUs is
PH

h¼1nh ¼ n. Subsampling of mhi

elements (treated as the ultimate sampling units in this example) from a total of Mhi is then

conducted within the i th sampled PSU of the h th stratum for i ¼ 1, : : : ,nh, h ¼ 1,2, : : : ,H.

Hence the overall sample size and population size of elements are
PH

h¼1

Pnh

i¼1mhi ¼PH
h¼1mh ¼ m and

PH
h¼1

PNh

i¼1Mhi ¼
PH

h¼1Mh ¼ M, respectively, where mh and Mh are

the sample size and population size of elements for the h th stratum, respectively. The

population consists of four types of survey variables: a single outcome Y, a single covariate

X, a design matrix Z ¼ [S,C,w ] including the stratum indicators (S), the cluster indicator

(C) and the sample weight (w), and the response indicator R. Let D ¼ ðDs;DnsÞ ¼

fðYhij;Xhij; Zhij;RhijÞ; h ¼ 1; : : : ; H; i ¼ 1; : : : ;Nh; j ¼ 1; : : : ;Mhig denote the popu-

lation of values measured on the survey variables, which is divided into the sampled

component (Ds) and the nonsampled (Dns) component.

We generate synthetic populations using a two-stage procedure. The first stage

accommodates stratification and clustering and the second weighting. We have two broad

approaches. The first, which we term SYN1, assumes that first-stage (cluster-level) and

second-stage (element-level) sample weights are available for the analysis and implements

a weighted FPBB at each level to generate the synthetic population. The second, which we

term SYN2, assumes that only final weights are available for the analysis; it uses a

Bayesian bootstrap to account for stratification and clustering at the first stage and the

weighted FPBB to account for the final weight at the second stage.

2.1.1. Double-Weighted Finite Population Bayesian Bootstrap (SYN1)

For the h th stratum, let ts,h and tns,h index the sampled and nonsampled clusters,

respectively, and {b 1, : : : ,b q, : : : ,b rh, q ¼ 1, : : : ,rh} be the rh (1 # rh # Nh) distinct
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matrices of real numbers each of dimension jbq
rowj £ jb

q
colj with no row vectors in common.

Each cluster in the stratum can take the form of one of b qs. Let thi ¼ q when the i th cluster

takes on the values of b q, for i ¼ 1, : : : , Nh. Assume nh ¼ rh and mhi ¼ bts;hik k (the

number of distinct row vectors in b ts,hi) for convenience of exposition. Let wts,h
(i ) be the

sample weight of the i th sampled cluster in the h th stratum which equals b q, for

i ¼ 1, : : : , nh. Also let wts,hi
,Ds,h( j ) be the sample weight of the j th sampled element in the

i th sampled cluster which equals b
ts;hi

k , for j ¼ 1, : : : , mhi. Finally, let cts,h
(q) and ctns,h

(q) be

the number of sampled and nonsampled clusters that equal b q, and chi
th;Ds;h
ðkÞ and chi

th;Dns;h
ðkÞ

be the number of sampled and nonsampled elements that equal b
ts;hi

k .

It can be shown (cf. Zhou 2014) that, within a stratum h, the Polya posterior for the

counts of distinct unobserved elements Dns,h is given by

p Dns;hjDs;h

� �
¼

Qrh

q¼1 Gðw
t
0

h

ðqÞÞ=Gðwts;h
ðqÞÞ

n on o

GðNhÞ=GðnhÞ
� �

£

Qmh

k¼1 Gðwt
0

h
;Dns;h
ðkÞÞ=Gðwts;h;Ds;h

ðkÞÞ
n on o

GðMhÞ=GðmhÞ
� � ; ð6Þ

where wt0h
(q) ¼ wts,h

(q) þ ctns,h
(q) and wt

0

h
;Dns;h
ðkÞ ¼ wts;h;Ds;h

ðkÞ þ chi
th;Dns;h

ðkÞ, for mh ¼Pmh

k¼1chi
th;Ds;h
ðkÞ and m

0

h ¼ Mh 2 mh ¼
Pm

h

k¼1chi
th;Dns;h

ðkÞ. The full posterior is then given by

the product of the posteriors within each stratum, since these strata are independent and all

strata in the population are in the sample:

p DnsjDs

� �
¼
YH

h¼1
p Dns;hjDs;h

� �
: ð7Þ

A Monte Carlo procedure to simulate from this posterior distribution is then given as

follows:

(i) Draw the Nh 2 nh nonsampled clusters in the population based on the Polya

posterior distribution independently for each stratum. Each of the sampled clusters is

resampled with probability

6hi ¼

wts;h
ði Þ2 1þ lhi;k21 £

Nh 2 nh

nh

	 


Nh 2 nh þ ðk 2 1Þ £
Nh 2 nh

nh

	 
 ; k ¼ 1; : : : ;Nh 2 nh þ 1; ð8Þ

where lhi,k21 is the number of times that the i th cluster in the h th stratum has been

resampled at the (k 2 1)th resampling, and wts,h
(i ) is the weight for the i th sampled

cluster in the h th stratum which is normalized to sum up to the total number of clusters,

that is,
Pnh

i¼1wts;h
ði Þ ¼ Nh.

(ii) From Step 1, form a population of clusters {c11, c12, : : : , c1n1
, c

*

11, c
*

12, : : : ,

c
*

1N12n1
, : : : , cH1, cH2, : : : , cHnH

, c
*

H1, c
*

H2, : : : , c
*

HNH 2nH
}. Record the number of times

each of the clusters from the original sample appears in the FPBB population of clusters,

denoted by thi, i ¼ 1, : : : , nh,h ¼ 1, : : : , H., and
PH

h¼1

Pnh

i¼1thi ¼ N. Then update

the within cluster element-level conditional weights as follows: w
*

jjhi
¼ wjjhi £ thi;
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i ¼ 1; : : : ; nh; h ¼ 1; : : : ;H, where wjjhi is the inverse of the conditional probability

that element j is selected given cluster i in stratum h is selected. Now pool all elements

from these clusters together and treat them as a single FPBB sample (i.e., as if they

have no stratum or cluster boundaries). Note that this FPBB sample has the same

sample size m ¼
PH

h¼1

Pnh

i¼1mhi as the original sample, but different sampling weights.

We then once more apply the weighted FPBB to these pooled elements to generate

M 2 m units from the m units in the FPBB sample. We resample from each of the

resampled clusters M 2 m elements, cycling through M 2 m times and resampling

with probability

ljjhi ¼

w
*

jjhi
2 1þ lhij;k21 £

M 2 m

m

	 


M 2 mþ ðk 2 1Þ £
M 2 m

m

	 
 ; k ¼ 1; : : : ; ðM 2 mþ 1Þ; ð9Þ

where lhij,k is the number of times that the j th element in the i th cluster in the h th stratum

has been resampled at the k th resampling, and wjjhi is the updated conditional weight for

the j th element in the i th cluster in the h th stratum. Again, they are normalized to sum up

to the total number of units in the entire population, that is,
PH

h¼1

Pnh

i¼1

Pmhi

j¼1wjjhi ¼ M.

Thus we create a single synthetic population. Repeat Step 2 B times to obtain B FPBB

synthetic populations.

(iii) Repeat Steps 1-2 L times to obtain L bootstrap samples, yielding L £ B

FPBB populations P
syn
ðlbÞ ¼ P

syn
ðlbÞobs;P

syn
ðlbÞmis

� �
, l ¼ 1, : : : , L, b ¼ 1,: : :B, each of which

consists of both responding elements and nonresponding elements on a vector of

variables {Y,X,Z,R}.

2.1.2. Bootstrap –– Weighted Finite Population Bayesian Bootstrap (SYN2)

Because we often do not know the first- and second-stage weights in public-use datasets,

we consider an alternative to the procedure proposed in Subsection 2.1.1. Rather than

obtaining a sample of clusters from a draw from a Polya posterior, we use replication

methods (Rust and Rao 1996) to capture the cluster-level sampling variance. The final

sampling weights instead of the adjusted element-level conditional weights are then used

directly as input in the second-stage weighted FPBB. We use Rao and Wu’s (1988)

rescaling bootstrap, which is a generalized extension of McCarthy and Snowden’s (1985)

“with replacement bootstrap”. Once the PSUs have been sampled, we continue with

the weighted FPBB approach to complete the synthetic population data generation.

The proposed procedure is as follows:

(i) Select a sample of n
*

h ¼ nh 2 1 PSUs from the parent sample in each stratum via

SRSWR sampling;

(ii) Apply the “ultimate cluster principle” (Wolter 2007), that is, once a PSU is taken

into the bootstrap replicate, all elements in that PSU are taken into the replicate also.

Thus we obtain our first bootstrap sample;

(iii) Repeat the previous steps L times to obtain L bootstrap samples {Boot_l,

l ¼ 1, : : : ,L};
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(iv) Within each bootstrap sample, update the element-level sampling weights as:

w
*

hij ¼ whij £ thi
nh

n
*

h

	 

¼

¼ nh

nh21
whij; if the i th PSU selected in the bootstrap sample

¼ 0; if the i th PSU not selected in the bootstrap sample

8
<

:

As w
*

hij itself implicitly carries over the strata and PSU information in addition to

unequal inclusion probability, we can drop the subscripts hi henceforth by pooling all

elements in the bootstrap sample regardless of which stratum and PSU they originally

came from. Normalize w
*

j s to sum up to m
*
:
Pm

*

j¼1w
*

j ¼ m
*
, where m

*

is the bootstrap

sample size.

(v) For the l th bootstrap sample, l ¼ 1, : : : ,L, apply the weighted FPBB algorithm to

create an entire population D ¼ Dns;D
*

s

� �
based on the posterior predictive distribution

of elements in the nonsampled population Dns ¼ ðYj;Xj; Zj;RjÞ; j ¼ m
*
þ 1; : : : ;M

� �

given the elements in the bootstrap sample D
*

s ¼ ðYj;Xj; Zj;RjÞ; j ¼ 1; : : : ;m
*

� �
.

Operationally, we draw a Polya sample of size M
*
¼ M 2 m

*
from

mult M
*
; l1; : : : ; lK

� �
where the selection probability lk, k ¼ 1, : : : , K is a function

of w
*

j :

lk ¼

w
*

j 2 1þ lj;k21 £
M

*

m *

	 


M * þ ðk 2 1Þ £
M

*

m *

	 
 ; k ¼ 1; : : : ;M
*

þ 1; ð10Þ

Repeat Step (v) for B times to obtain L £ B FPBB populations.

2.2. Imputation of the Synthesized Populations

Once the set of FPBB synthetic populations Psyn ¼ Pðl ÞðbÞ; l ¼ 1; : : : ; L; b ¼ 1; : : : ;B
n o

,

where Pðl ÞðbÞ ¼ Y ðl ÞðbÞmis;P
ðl Þ
ðbÞobs

� �
are created using either the SYN1 method or the SYN2

method, we generate imputations Pimp¼ Pðl ÞðbaÞ;l¼1; : : :;L;b¼1; : : :;B;a¼1; : : :;A
n o

from the posterior predictive distribution p Y ðl ÞðbÞmisjP
ðl Þ
ðbÞobs

� �
based on a parametric model

that does not condition on sample design features, that is, a model taking a form similar to

the SRS model given in Subsection 2.1. We consider imputations based on the covariate

(X) only (SYN1_srs or SYN2_srs) or imputations that include the log of the sample

weights in the linear predictors (SYN1_lwt or SYN2_lwt).

To obtain the MI inference, denote the observed set of synthetic populations by PR ¼

Pðl ÞðbÞobs; b ¼ 1; : : : ;B; l ¼ 1; : : : ; L
n o

and the imputed set of synthetic populations by

P �R ¼ Y ðl ÞðbaÞmis; l ¼ 1; : : : ; L; b ¼ 1; : : : ;B; a ¼ 1; : : : ;A
n o

. The MI point estimator for

the population statistic of interest Q (mean, regression estimator, quantile) is then given by

the mean of the lba th point estimators:

Q̂MI ¼
1

LBA

X

l

X

b

X

b

Q̂lba: ð11Þ
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The MI variance estimator is:

V̂MI ¼ ð1þ L21ÞVL ¼ ð1þ L21Þ
1

L 2 1

X

l

Q̂l 2 Q̂MI

� �2
; where ð12Þ

Q̂l ¼
1

BA

X

b

X

a

Q̂lba:

We then construct the 95% interval estimate for quantiles based on t reference distribution

with degrees of freedom equal to min vcom ¼
P

h nh 2 H; vsyn ¼ L 2 1
� �

. These results

arise from the fact that, by the standard Rubin (1987) MI combining rules, we have

QjPimp ·,tL21
�QL; ð1þ L21ÞVL

� �
; ð13Þ

where �QL ¼
1
L

l

P
~Q ðl Þ, VL ¼

1
L21

l

P
~Q ðl Þ 2 �QL

� �2
, and ~Q ðl Þ ¼ lim

A!1
B!1

1
BA

b

P
a

P
Q̂lba.

Replacing Q̃ (l ) with its finite simulation estimator Q̂l replaces Q̄L with Q̂MI and gives

the results above. A complete theoretical justification for (13) is provided in Dong et al.

(2014) and Zhou (2014). Some intuition of the result can be gained by noting that the

generation of the synthetic population sets the within imputation variance to 0 so that the

posterior variance of Q can be obtained using the between-bootstrap variance only.

Moreover, (11) assumes that E(q̂ba) ¼ Q – a result guaranteed by our Bayesian bootstrap

estimator if the imputation model is also correct – as well as a sufficiently large sample

size for the t approximation is reasonable.

Lo (1988) showed that the variance estimator for the FPBB mean in a simple random

sample setting should be inflated by the factor (nþ1
n21

). In the double-weighted FPBB (SYN1)

setting, a small sample correction to the variance estimate thus needs to be used when the

number of clusters per stratum is small. When nh ¼ a is a constant across all strata, we use
nhþ1
nh21

(1 þ L 21) VL; otherwise we suggest �nhþ1
�nh21

(1 þ L 21) VL, where n̄h ¼ H 21P
hnh.

The Appendix provides the sample R code used to conduct the analyses in the

application in Section 4 and can easily be adapted to other settings.

3. Simulation Study

We conducted a simulation study to investigate the performance of the proposed method

for incorporating stratified cluster-sampling effects in multiple imputation. We targeted

three population statistics: 1) population quantiles, 2) proportions of binary event data, and

3) logistic regression parameters relating the covariate to the binary data. The simulation is

a 2 £ 2 factorial design based on the following factors:

1) keeping the first-stage sampling plan constant, we let the subsampling rate f2 of

elements within sampled clusters be

a) independent of or

b) dependent on the stratum effects, and

2) assume that

a) the missingness on the Y-variable (continuous or binary) depends only on the

covariate (X) (MAR_X), or

b) depends on both X and the final sampling weight W(MAR_X,W).
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We focus on a two-PSU-per-stratum sample design, both because it is a common design,

especially in public-use settings, and because it is a “limiting case” in terms of the number

of PSUs per stratum. In addition to the two variants of our synthetic MI estimators, we

consider standard parametric MI under the SRS, appropriate fixed-effect (FX_APR), and

appropriate random-effect (RE_APR) models.

3.1. Data Generation

Let i be the index for strata, j be the index for clusters, and k be the index for elements.

Suppose there are 50 strata in the population. First, the number of PSUs in each stratum is

randomly determined according to a uniform distribution, that is, Ci , Unif(2,54),

i ¼ 1, : : : , 50; second, the number of population elements within PSUs is randomly

generated as Nij , Unif(20,80), i ¼ 1, : : : ,50, j ¼ 1, : : : ,Ci. Thus we obtain a population

of size N ¼ 67385. The complete data for four survey variables Y ¼ (Y1,Y2,Y3,Y4)T are

generated from a superpopulation model according to a two-step process, In the first step,

Y1 and Y2 are randomly selected from a bivariate linear mixed-effects model; let N2(�)

denote a bivariate normal distribution function:

Y1ijk

Y2ijk

 !
, N2ðm;SÞ; wherem ¼

b1 þ Si þ u1ij þ 11ijk

b2 þ u2ij þ 12ijk

" #
;S ¼

s11 s12

s12 s22

" #
: ð14Þ

Let b1 ¼ b2 ¼ 15 be the fixed covariate effects, Si ¼
i
5

be the fixed stratum effects, and let
�

u1ij u2ij
�T

and
�
11ijk 12ijk

�T
be the random cluster effects and random error terms

drawn from two independent bivariate normal distributions: N2(0,Su) and N2(0,S1).

Elements of Su are set as: s2
u1
¼ 4, s2

u2
¼ 1, su1u2

¼ 0:2, and elements of S1 are set as:

s2
11
¼ 4, s2

12
¼ 3, s1112

¼ 1:732. This results in conditional intraclass correlations (ICC)

of Y1 and Y2 as rY1
¼ 0.5 and rY2

¼ 0.25 (note that the unconditional ICC for the two

variables may be smaller than these values). In the second step, a random-effects logistic

regression model (Anderson and Aitkin 1985; Stiratelli, et al. 1984) is used to simulate two

binary outcome variables Y3 and Y4 as a function of Y2. Under this model, a random effect

is added to the linear part of the logistic regression model for each element in the cluster.

The conditional mean of Y3ijk and Y4ijk is

pijk ¼ E Y�ijkjY2ijk; u�ij

� �
¼ Pr Y�ijk ¼ 1jY2ijk; u�ij

� �
¼

ea0þa1Siþa2Y2ijkþu�ij

1þ ea0þa1Siþa2Y2ijkþu�ij
; ð15Þ

where u3ij , N(0,62), u4ij , N(0,102) and a ¼ (a0,a1,a2)T is the vector of fixed covariate

effects. We fix a2 ¼ 1.5 and vary a0 and a1 to obtain two different binary variables Y3ijk

and Y4ijk, with either moderate (a0 ¼ 2 5,a1 ¼ 2 1.5) or rare probabilities

(a0 ¼ 28,a1 ¼ 26). Given u�ij, the Y�ijk s in the cluster are independent Bernoulli

variables, that is, Y�ijkju�ij , Bern(pijk).

Figure 1 shows the correlations between variables in the simulated population, with the

different shades of grey representing different degrees of association between any of the

two variables. The darker shades indicate higher correlation. All survey outcome variables

(Y1,Y3,Y4) have a moderate to strong (0.2,0.8) stratum effect (H or strID) and clustering

effect (U1,U3,U4), indicating that accounting for these effects in the analysis of missing

data is essential.
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3.2. Sample Design

Within each stratum, we draw a two-stage cluster sample according to the following

procedure: first, we draw a sample of two PSUs without replacement with probability

proportional to the cluster size f 1ij ¼
2*Nij

j

P
Nij

. Second, we sample elements from each

sampled cluster using two different subsampling schemes:

1) sampling probability independent of Si which is defined in (14): SRS with an equal

sampling fraction of f2kjij ¼ 1/5; and

2) sampling probability related to Si: SRS with varying sampling fractions across strata,

that is f2kjij ¼ expit(20.8 2 0.12*Si), where expit(x) ¼ 1/(1 þ e21(x)).

An average of 1,122 elements are selected in each of the 200 simulation replications. The

distributions of sampling weights are shown in Figure 2. The distributions of sampling

weights under the two subsampling schemes are generally very similar with somewhat

more skewness under subsampling scheme 2.

3.3. Imposing Missingness

Throughout the simulation study, we assume that Y2 is always completely observed and we

impose missing values on Y1, Y3, and Y4 independently according to the following deletion

Y1

Y2

Y3

Y4

H

U1

U2

U3

U4

E1

E2

cluslD

strlD 1.0

0.8

0.6

0.4

0.2

0.0

Fig. 1. Correlation between variables in the simulated population (darker shades ¼ higher correlation)
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function conditional on Y2 and/or log transformation of the weight:

Pr R ¼ 0jY2;W
� �

¼
exp ðl0 þ l1*Y2 þ l2* log ðWÞÞ

1þ exp ðl0 þ l1*Y2 þ l2* log ðWÞÞ
; ð16Þ

where R is the response indicator and W is the overall sample weight. Setting l2 ¼ 0, we

obtain the first MAR mechanism (i.e., MAR_X, note that we treat Y2 as a covariate X here),

under which we further set l0 ¼ 3.42, l1 ¼ 20.2 and l0 ¼ 22.58, l1 ¼ 0.2 for deleting

values on Y1 and Y3, Y4, respectively. Setting l2 ¼ 20.6, we obtain the second MAR

mechanism (i.e., MAR_X,W), under which we fix l1 ¼ 0.2 and set two values on

l0 ( ¼ 20.274 or 20.33) for deleting values independently on all three outcome variables

under subsampling scheme 1 and subsampling scheme 2, respectively. All deletion

functions result in approximately 40% missingness on each variable.

3.4. Parametric Multiple Imputation

Both simple random sample SRS (including SRS, SYN1_srs and SYN2_srs) and fixed-

effects model FX_APR can be implemented in R (R Core Team 2013) using mice routines;

for the logistic model associated with the binary outcome, the method ‘logreg’ must be

specified. We use the pan package in R for the mixed-effects imputation (RE_APR) for the

missing continuous outcome; logistic mixed-effects imputation is programmed in SAS for

the missing binary outcome, as there is no missing-data software package readily available

for use.

0.015

0.010

D
en

si
ty

0.005

0.000

0 100 200

Subsampling scheme 1

Weight distribution

Subsampling scheme 2

300 400

Weight

Fig. 2. Distribution of weights under the two subsampling schemes
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3.5. Parameters of Interest and Inference

We focus on inference for the following population parameters: the mean of the

continuous variable Y1, the mean of the binary variables Y3 and Y4 (i.e., Bernoulli

proportions), linear regression coefficients of Y1 on Y2, logistic regression coefficients of

Y3 (or Y4) on Y2, and the population percentiles of the continuous variable Y1.

Weighted analyses and sandwich variance estimators accounting for strata and clusters

are used to estimate smooth statistics (including proportions and regression parameters)

under the three fully parametric MI methods. For estimating quantiles of the distribution of a

continuous survey variable, we construct the sample-weighted point estimator with

confidence intervals based on the test-inversion method (Francisco and Fuller 1991). We

chose the test-inversion method instead of Woodruff’s method (Woodruff 1952) despite the

computational intensity, because the literature suggests that it may outperform Woodruff in

heavily stratified samples or in small-to-moderate-sized samples (Kovar et al. 1988). Based

on the a th imputed dataset, the empirical distribution function can be written as

F̂ ðaÞð yÞ ¼

X

SR

whijI yobs
hij , y

� �
þ
X

S �R

whijI yðaÞhij , y
� �" #

X

S

whij

; ð17Þ

where SR and SR̄ are subsets of the sample data S, consisting of respondents and

nonrespondents respectively. The estimator F̂( y) and its associated estimated variance

v(F̂( y)) can then be obtained using the variance estimator proposed by Francisco and

Fuller (1991) together with standard Rubin combining rules as previously described.

The sample g th quantile estimator thus is q̂g ¼ ðF̂Þ
21ðgÞ, with 95% asymptotic confidence

interval (CI) given by

½L;U� ¼ ½F̂�21 g 2 t0:025

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ðF̂ðqgÞÞ

q	 

; ½F̂�21 gþ t0:025

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ðF̂ðqgÞÞ

q	 
 �
: ð18Þ

3.6. Results

Table 1 compares the average width £ 1022 and average coverage rates of the 95% CI of

q(a), where a ¼ 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, and 0.95, corresponding to seven

selected population quantiles. Among all methods considered, the SRS imputation model

yields the poorest coverage. This results from the compounding effects of biases and

variance underestimation, due to ignoring stratum effects and clustering effects

respectively. As we increase the dependence of both the sampling mechanism and

response mechanism on stratum effects and sampling weights, the performance of SRS

becomes even worse, as exhibited by the markedly increased RelBias and decreased

coverage rates. In addition, ignoring stratum and/or weight effects that are highly relevant

to either mechanism seems to impact the median and second and third quartiles more than

the tail quantiles under SRS, as evident in the relatively lower coverage rates in the right

part of Table 1.
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The FX_APR model (Reiter et al. 2006; Rubin 1996; Schenker et al. 2006), generally

performs fairly well in our simulation study with respect to the estimation of population

quantiles. There is some modest underestimation of the small percentile quartiles with the

second-stage sampling constant. The RE_APR model also performs well, with the

exception of moderate to high overcoverage when the second-stage sampling probability

is associated with the stratum mean and the missingness mechanism.

In contrast, our synthetic MI (SYN2 in particular) compares favorably with all of its

competitors, and in most cases yields results comparable to the RE_APR, which is

regarded as a “gold standard” as it is compatible with the data-generating mechanism

(Meng 1994). There is some undercoverage when the stratified double-weighted FPBB

estimator (SYN1) is used, perhaps due to the fact that the Lo small-sample adjustment is

not as accurate when nh ¼ 2. However, use of a stratified bootstrap-weighted FPBB

estimator (SYN2) generally eliminates this issue. Although an imputation model assuming

SRS suffices for the synthetic MI method in most scenarios, we need to include the

sampling weight as a predictor when the outcome Y and the response indicator R are

strongly associated with each other through the sampling mechanism I, as is the case with

the second subsampling scheme, when both the missingness indicator and the second-

stage sampling rate are functions of the stratum mean.

Tables 2 and 3 compare the absolute relative bias relbias ¼ 100 £
û2ucompletej j
ucomplete

%, RMSE

and 95% nominal CI coverage for the estimated mean/proportions of Y1, Y3 and Y4 and the

slopes of the three outcome variables on Y2, respectively. (ucomplete is the estimated

parameter with complete data, and û is the estimated parameter under one of the different

MI methods.) As in the estimation of the quantiles, the SRS imputation model is biased

and has poor coverage as it ignores stratum and cluster effects. Again, dependence of

subsampling on stratum effects and dependence of response on sampling weights damage

the performance of SRS even further.

FX_APR generally performs well in estimating the mean of a continuous variable

(Y1) and a regular binary variable (Y3) with moderate probability as well as the slopes.

However, it fails for proportion estimation for rare events data (Y4), yielding biased

point estimates and less than nominal coverage throughout all scenarios. One

interpretation might be that overfitting occurs when too many dummies are included to

account for fixed strata and cluster effects, yielding dummy variables where all

observed cases are 0 or 1. In this case, “complete separation” yields unstable coefficient

estimates, damaging the predictive efficacy when the fitted model is used for drawing

missing values. The problem is particularly prominent when the logistic fixed-effects

imputation model is used along with the current sampling design, where an average of

only ten elements are selected per PSU within each stratum; this results in even more

substantial biases on Ȳ4 than the SRS model. (Use of a Bayesian approach with an

informative prior of the form t1(0,2.5) on the fixed-effect parameters using the mi

function in R (Gelman et al. 2008) reduced but did not remove the impact of complete

separation. A relative bias of 12–13% remained for the estimation of of Ȳ4 under the

MAR_X missingness mechanism, with 95% nominal coverage of 89%, while a relative

bias of 17–22% remained under the MAR_X,W mechanism, with nominal coverage

of 84%.) The random-effects model RE_APR more effectively avoids the overfitting

issue through shrinkage effects: note that under RE_APR, we pooled all PSUs from all

Zhou et al.: Synthetic MI Procedures for Complex Samples 245



T
a

b
le

2
.

C
o
m

p
a

ri
so

n
o

f
R

el
B

ia
s,

R
M

S
E

a
n

d
9

5
%

C
I

co
ve

ra
g

e
ra

te
s

fo
r

th
e

m
ea

n
o

f
Y

1
a

n
d

p
ro

p
o

rt
io

n
s

o
f

Y
3

a
n

d
Y

4
,

P
o

p
u
la

ti
o

n
tr

u
e

va
lu

e:
Ȳ
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strata as if there were no strata bounds, and the stratum effects can be thought as being

implicitly modeled in the random intercept term (uj ¼ Ih þ uh( j )).

As in the quantile estimation setting, our synthetic MI compares favorably with all of its

competitors, and in most cases yields comparable results to the RE_APR for estimation of

means and logistic regression parameters. In the case of rare events data, our proposed new

method increases the analytical size through generating synthetic population data thus is

even superior to RE_APR, consistently yielding negligible biases and close to nominal

coverage. The impact of ignoring the weights in the imputation (under MAR_X,W

mechanism) is less than in the quantile estimation setting, with the exception of the

estimation of the continuous mean Ȳ1, where including the weight is required to obtain

approximately correct coverage.

A disadvantage of the method lies in its relative inefficiency for estimating nonlinear

parameters (regression coefficients) (e.g., the synthetic MI results in unbiased point

estimates but a larger RMSE than the two model-based MI methods). This is typical in that

nonparametric methods cannot typically compete with their fully parametric counterparts

under the correct model, and is a tradeoff made to improve robustness to model

misspecification.

4. Application to NHANES III

We apply our method to the National Health and Nutrition Examination Survey

(NHANES) III (1988–1994), which is designed to provide national estimates of the health

and nutritional status of the civilian noninstitutionalized population of the United States

aged two months and older (National Center for Health Statistics 1996). The data are

obtained from a stratified, multistage area probability sampling design with oversampling

of certain age and ethnicity groups. For confidentiality and computational reasons, the

public-use data provides two pseudo-PSUs per stratum. Another unique feature of

NHANES is that data are collected through both interview and actual physical

examinations of the sampled persons. Both unit- and item-level nonresponse occurs in

both components of the survey, and there is a particularly high missing rate on the body

mass index (BMI) measure for youth data in the physical examination component (30%).

As a popular measure of overweight status and obesity, the percentiles of BMI for children

and youths are of particular interest for public health reasons. The upper percentiles and

the lower percentiles are also closely monitored for overweight and underweight status,

respectively. As a result, we restrict our analysis sample to children and youths from two

months to 16 years of age. The Appendix provides the sample R code used to conduct the

analyses below.

We estimate population quantiles (from 0.05 to 0.95 with an increment of 0.05 along

with two extreme percentiles: 0.03 and 0.97) of BMI for children and youths by gender.

We also estimate the proportion of such a population being covered by health insurance,

overall and by race. To assure congenial inference, we include the following variables that

are either of primary interest in the substantive analysis or are important predictors for

BMI measures in the imputation model: age, gender, race, education, mother’s BMI,

father’s BMI and family income (Yuan and Little 2007). We compared three different

methods in our treatment of the missing data:
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1) complete case analysis (CC) with design-based estimation;

2) fully parametric model-based MI using design-based estimation, within which we

apply both an imputation model assuming SRS and the appropriate model conditional

on all three sample design features (i.e., dummy variables indicating cluster and stratum

memberships as well as the log transformation of sampling weights); and

3) our proposed finite population Bayesian bootstrap method (using SYN2 since we do

not have separate weights for the first and second stages of sampling), and including the

log of the weight in the imputation model.

Estimates of the median BMI and the proportion of children with health insurance are

given in Table 4. The CC method appears to overestimate the median of both the BMI

measure and health-insurance coverage for the full sample and race domains relative to the

MI approaches, and yields the widest confidence intervals or largest standard errors as a

result of decreased sample size. Then again, the median of BMI obtained from synthetic

MI is quite similar to that from the model-based MI, while demonstrating some advantages

in efficiency by yielding shorter intervals. The generally lower health-insurance coverage

estimates under the synthetic MI relative to model-based MI might be attributable to the

fact that the synthetic MI are able to capture certain interactions between the sample

design variables and the regular covariate matrix which are not explicitly modeled in the

fully model-based MI.

Figure 3 displays a visual comparison of the percentile estimation for the three methods

under consideration. We look at how those methods perform in three different percentile

ranges by gender domains: the middle percentiles from 0.5 to 0.75, the upper percentiles

from 0.90 to 0.97 and the lower percentiles from 0.03 to 0.1. We chose these percentile

ranges because the extreme lower and upper percentiles of BMI are typically used to

monitor under- and overweight for children and youths, and there is evidence that gender

difference exists in these BMI percentile ranges (particularly when age is considered, i.e.,

growth patterns in BMI). In general, both MI methods result in very similar BMI estimates,

and they are lower than those obtained from CC analysis. This makes sense since our

comparison of the distributions of age for complete cases and for missing cases on the BMI

measure revealed that younger children are more susceptible to missingness, and therefore

CC analysis tends to overestimate BMI by excluding those younger missing cases. The

inclusion of the age variable as a predictor in the imputation model corrects such an

Table 4. Alternative methods in estimating the median of BMI and the health-insurance coverage rate, for full

sample and by gender and race, respectively

Methods

Variable Domain CC Model-based MI Synthetic MI

BMI Overall 17.2 [17.1, 17.4] 17.1 [16.9, 17.3] 17.0 [16.9, 17.2]
Male 17.2 [16.9, 17.4] 17.0 [16.7, 17.2] 17.0 [16.8, 17.2]
Female 17.3 [17.0, 17.7] 17.1 [16.8, 17.4] 17.1 [16.8, 17.3]

Health insurance Overall 0.785 (0.020) 0.778 (0.019) 0.761 (0.019)
White 0.822 (0.018) 0.815 (0.017) 0.799 (0.016)
Nonwhite 0.645 (0.036) 0.643 (0.033) 0.634 (0.036)

Zhou et al.: Synthetic MI Procedures for Complex Samples 249



overestimation. The magnitude of this correction for boys is bigger than that for girls in

estimating the lower percentiles (0.03, 0.05). When examining a report on BMI-for-age

percentiles by gender released by the Center for Disease Control and Prevention (http://

www.cdc.gov/nchs/data/series/sr_11/sr11_246.pdf), we find that baby boys (corresponding

to the lower quantiles here) have a relatively higher BMI, which might be at least part of the

explanation.

5. Discussion

While multiple imputation has become a popular option for the analysis of missing data, some

issues remain unresolved in its practical application to complex sample survey data. The

complex features of sampling compounded with nonresponse in survey data often result in a

rather complicated data structure, which prevents the straightforward application of the

standard MI techniques (such as a multivariate normal model assuming simple random

sampling). In this article, we develop a general-purpose approach to account for various

design features in a highly stratified two-stage sample using a two-step synthetic MI

framework. We have focused on evaluating the performance of the new method compared

with existing methods with respect to several missing-data issues frequently encountered in

large population-based socioeconomic and epidemiological studies. These include:

i) accommodating stratification and multistage sampling in the imputation process; ii) the

employment of nonstandard or non-normal imputation models for estimating probabilities of

rare events; and iii) the estimation of population quantiles with multiply imputed data. (For

examples that consider alternative sample designs, such as independent unequal probability of

selection designs, or cluster and weighted designs without stratification, as well as estimators

of quantities such as means and linear regression parameters, see Zhou (2014).
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Fig. 3. Comparison of methods for quantile estimation of BMI, by gender
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Although multiple imputation is technically valid only for maximum-likelihood

estimates (Kim et al. 2006), we demonstrate that the coverage properties of the proposed

method are fairly good for nonsmooth statistics. Specifically, our stratified variations of the

weighted Polya posterior exhibits robustness to the loss function for estimating the upper

and lower tails of the distribution function where even the appropriate model-based method

(i.e., FX_APR) fails. In contrast with existing fully parametric MI methods, most of which

perform poorly when applied to rare outcome binary data, the proposed method yields quite

stable parameter estimates regardless of the rarity of the outcome. An alternative approach

for MI estimation of quantiles that relies on estimating the CDF using a smooth regression

curve is given by Wei et al. (2012), and could be used at the second-stage imputation step

after the weighted finite population Bayesian bootstrap has been implemented.

It is worth stressing that our method requires only the most straightforward form of

imputation modeling and combining rules for inference. This is because the effects of the

complex sample design and the effect of estimating the nuisance parameters in imputation

(e.g., regression parameters when the main quantity of interest is a quantile of Y) are both

correctly reflected in the replication variance estimation given the design-reversed and

multiply imputed synthetic populations. Any higher-level and nonlinear interactions in the

covariate data, including those with the weights, clusters, or strata, will automatically be

captured in the synthesizing step. However, when the imputation is conducted

parametrically, as it is here, such design-variable interactions will still need to be

considered if they are associated with the missingness mechanism, although the impact of

misspecification will generally be attenuated. Similarly, not-missing-at-random

mechanisms that are dependent on the missing values are not accommodated in this

framework. Finally, we note that assuming SRS for imputation results in correct inference

only at the population level: correct inference for domain estimation requires that the

domains be included in the imputation model. For example, if variables X and Y are

positively correlated in stratum A but negatively correlated in stratum B, this interaction

will be correctly averaged over for the population inference using weighted FPBB, but if

this interaction is of direct interest, it will be attenuated unless incorporated in the

imputation model for the synthetic population. Further, imputing under SRS does not

absolve the imputer from correctly modeling the data. To give a trivial example, assume

data are sampled from two strata denoted by Z ¼ {1,2}, where P(Z ¼ 1) ¼ P(Z ¼ 2) ¼ .5

in the population, and YjZ ¼ 1 , N(5,1) and YjZ ¼ 2 , N(25,1), and stratum 1 is

oversampled with P(IjZ ¼ 1) / .8 The method proposed here will correct the imbalance

between the strata, and assuming a two-component normal mixture model will allow

imputations of Y that maintain the correct marginal distribution of Y with equal-sized

components. This will allow for correct estimation of percentiles, whereas simply

assuming a unimodal normal distribution will only consistently estimate the mean. Correct

estimation of percentiles within the strata will require also conditioning on the strata, as

mentioned above. We note that one advantage of the proposed method is that, with design

issues cleared out of the way, more focus can be given to developing missing-data models.

We also note that the method developed here does not allow for the release of a small

number of multiply imputed datasets to be combined using the standard Rubin rules.

It would be possible to publically release all L £ B £ A multiply imputed datasets to be

analyzed using the methods developed here, although this would typically involve
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hundreds to thousands of datasets. Methods to allow a more modest release, with minimal

impact on inference, are a topic for future research.

Future research will investigate the inferential properties of the proposed method in

situations where auxiliary information on all population units is available, using a

constrained version of the Polya posterior. Two other possible research directions include:

(i) extending the two-step synthetic MI framework to deal with unit nonresponse problems,

and (ii) extending it to deal with generating synthetic data for disclosure risk limitation.

Appendix: R Code for Using the Proposed Two-step MI Method on NHANES III

require(survey)

require(mice)

require(polyapost)

set.seed(seed #)

syn_bmi , -function(dt, N, Bt1, Bt2, Mt){

##Step 1: Generate synthetic populations with missing data;

#Stage 1: Create bootstrap samples from the parent sample;

dsgn , - svydesign(ids ¼ , predcl, strata ¼ , pstrat, nest ¼ TRUE, data ¼

dat, weights ¼ , predwt)

dsgn.RW, -as.svrepdesign(design ¼ dsgn, type ¼ “subbootstrap”, replicates

¼ Bt1)

dim(dsgn.RW$repweights)

repwt, -as.matrix(dsgn.RW$repweights)

repwt[repwt ¼ ¼0], -NA

dim(repwt)

#set up arrays to hold point estimates from bootstrap samples;

btm, -matrix(0,nrow ¼ Bt1,ncol ¼ 3)

btqt, -matrix(0,nrow ¼ Bt1,ncol ¼ 21)

btqtm, -matrix(0,nrow ¼ Bt1,ncol ¼ 21)

btqtf, -matrix(0,nrow ¼ Bt1,ncol ¼ 21)

for (j in 1:Bt1){

st.bb , -cbind(dat,repwt[,j])

#delete those units with zero weights for each bootstrap sample;

st.BB , -na.omit(st.bb)

#recode those 999 back to NA so that the mice package can be used for

imputation;

st.BB$pybmi[st.BB$pybmi ¼ ¼ 999] , -NA

#need to calculate the replicate weights;

Samwt , -st.BB[,9]*st.BB[,13]

#normalize again the adjusted weights;

Samwts , -Samwt*N/sum(Samwt)

np , -nrow(st.BB)
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ids , -seq(np)

ns , -N-np

##Stage 2: Create unweighted synthetic populations within each bootstrap sample;

#Set up arrays to hold point estimates from imputed unweighted synthetic populations;

fbm , -matrix(0,nrow ¼ Bt2,ncol ¼ 3)

fbqt , -matrix(0,nrow ¼ Bt2,ncol ¼ 21)

fbqtm , -matrix(0,nrow ¼ Bt2,ncol ¼ 21)

fbqtf , -matrix(0,nrow ¼ Bt2,ncol ¼ 21)

for(boott in 1:Bt2){

l , -vector()

smp , -wtpolyap(ids, Samwts, ns)

#input the adjusted weights in the weighted Polya sampling algorithm;

for (k in 1:np){

l , -c(l,length(smp[smp ¼ ¼ k]))

}

#check if the vector of l sums up to the number of synthetic population size;

sum(l);

predY1 , -c(rep(st.BB[,1],l)) #bmi

predY2 , -c(rep(st.BB[,2],l)) #race

predY3 , -c(rep(st.BB[,3],l)) #gender

predY4 , -c(rep(st.BB[,4],l)) #income

predY5 , -c(rep(st.BB[,5],l)) #education

predY6 , -c(rep(st.BB[,6],l)) #mother’s bmi

predY7 , -c(rep(st.BB[,7],l)) #father’s bmi

predY8 , -c(rep(st.BB[,8],l)) #age

predwt1 , -c(rep(st.BB[,9],l))

predlwt , -log(predwt1) #log of sample weight

predCID , -c(rep(st.BB[,12],l)) #cluster ID

predSTID , -c(rep(st.BB[,11],l)) #stratum ID

##Step 2: Multiple imputation of the unweighted synthetic populations;

#use the imputation model including log of weight as a predictor (syn_lwt);

temp1 , -data.frame(cbind(predY1, predY2, predY3, predY4, predY5, predY6,

predY7, predY8, predlwt))

temp1_imp , -mice(temp1,method ¼ “norm”, m ¼ Mt)

ml , -complete(temp1_imp, ‘long’)

ml$bmit , -exp(ml$predY1) #back transform bmi to its normal scale

mlmale , -subset(ml, predY3 ¼ ¼ 1)

mlfem , -subset(ml, predY3 ¼ ¼ 2)

multm , -cbind(as.vector(by(ml$bmit,ml$.imp,mean)),

as.vector(by(mlmale$bmit,mlmale$.imp,mean)),

as.vector(by(mlfem$bmit,mlfem$.imp,mean)))
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multqt , -sapply(with(ml,by(ml,.imp,function(x)quantile(x$bmit,

c(0.03,seq(0.05,0.95,0.05),0.97)))),as.vector)

multqtm , -sapply(with(mlmale,by(mlmale,.imp,function(x)quantile(x$bmit,

c(0.03,seq(0.05,0.95,0.05),0.97)))),as.vector)

multqtf , -sapply(with(mlfem,by(mlfem,.imp,function(x)quantile(x$bmit,

c(0.03,seq(0.05,0.95,0.05),0.97)))),as.vector)

fbm[boott,] , -t(apply(multm,2,mean))

fbqt[boott,] , -t(apply(multqt,1,mean))

fbqtm[boott,] , -t(apply(multqtm,1,mean))

fbqtf[boott,] , -t(apply(multqtf,1,mean))

print(boott)

}

btm[j,] , -t(apply(fbm,2,mean))

btqt[j,] , -t(apply(fbqt,2,mean))

btqtm[j,] , -t(apply(fbqtm,2,mean))

btqtf[j,] , -t(apply(fbqtf,2,mean))

print(j)

}

smpm , -apply(btm,2,mean)

smpv , -(1 þ 1/Bt1)*apply(btm,2,var)

smpse , -sqrt(smpv)

smpqt , -apply(btqt,2,mean)

smpqtv , -(1 þ 1/Bt1)*apply(btqt,2,var)

smpqtse , -sqrt(smpqtv)

smpqtm , - apply(btqtm,2,mean)

smpqtvm , -(1 þ 1/Bt1)*apply(btqtm,2,var)

smpqtsem , -sqrt(smpqtvm)

smpqtf , -apply(btqtf,2,mean)

smpqtvf , -(1 þ 1/Bt1)*apply(btqtf,2,var)

smpqtsef , -sqrt(smpqtvf)

tt , -cbind(smpqt,smpqtm,smpqtf,smpqtse,smpqtsem,smpqtsef)

ss , -cbind(smpm,smpse)

write.table(tt,file ¼ “D:/Dissertation/paper3/nhanes/synbmiqt_lwt.csv”,row.

names ¼ FALSE,sep ¼ “,”)

write.table(ss,file ¼ “D:/Dissertation/paper3/nhanes/synbmimn_lwt.csv”,

row.names ¼ FALSE,sep ¼ “,”)

}

##Example##

syn_bmi(dt ¼ dt, N ¼ 100000, Bt1 ¼ 50, Bt2 ¼ 5, Mt ¼ 5)

dt , -read.csv(“D:/Dissertation/paper3/nhanes/synbmi.csv”)

#Set the synthetic population size about 10 times the sample size;

N , -100000
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#Normalize the weights to sum up to the assumed synthetic population size;

dt[,“predwt”] , -dt[,“predwt”]*N/sum(dt[,“predwt”])

sum(dt$predwt)

#Recode the missing values to 999;

dat[is.na(dat)] , -999
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