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We extend the twofold small-area model of Stukel and Rao (1997; 1999) to accommodate
binary data. An example is the Third International Mathematics and Science Study (TIMSS),
in which pass-fail data for mathematics of students from US schools (clusters) are available at
the third grade by regions and communities (small areas). We compare the finite population
proportions of these small areas. We present a hierarchical Bayesian model in which the first-
stage binary responses have independent Bernoulli distributions, and each subsequent stage is
modeled using a beta distribution, which is parameterized by its mean and a correlation
coefficient. This twofold small-area model has an intracluster correlation at the first stage and
an intercluster correlation at the second stage. The final-stage mean and all correlations are
assumed to be noninformative independent random variables. We show how to infer the finite
population proportion of each area. We have applied our models to synthetic TIMSS data to
show that the twofold model is preferred over a onefold small-area model that ignores the
clustering within areas. We further compare these models using a simulation study, which
shows that the intracluster correlation is particularly important.

Key words: Intracluster and intercluster correlations; credible intervals; goodness of fit;
hierarchical model; simulation study.

1. Introduction

We assume that there are several small areas and each area consists of several clusters;

each cluster consists of a number of units (individuals). A random sample of clusters is

taken from each area and within each sampled cluster a random sample of units is taken.

This is the twofold sample design. A hierarchical Bayesian model is used to make

inference about the finite population proportion of each small-area. In this model we have

an intracluster (between two units in the same cluster) correlation at the first stage and an

intercluster (between two units in two different clusters in the same area) correlation at the

second stage. We show that the intracluster correlation is important by comparing the
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twofold small-area model with a onefold small-area model (the intracluster correlation

is ignored). The Third International Mathematics and Science Study (TIMSS) uses a

similar design.

In Subsection 1.1 we describe the TIMSS data that we use to illustrate our methodology

and we discuss its importance. In Subsection 1.2 we introduce pertinent literature to show

what has been done in twofold modeling and related problems. In Subsection 1.3 we

clearly identify the innovations in this paper. Finally, we show a plan of the entire article.

1.1. Description of TIMSS Data

TIMSS is sponsored by the International Association for the Evaluation of Education

Achievement, an international organization of national research institutions and

government research agencies, and it is used to compare the performance of primary

school students in mathematics and science. TIMSS provides reliable and timely data on

the mathematics and science achievement of third-grade US students compared to that of

students in other countries. Of course, there are other studies used for this purpose with

similar objectives (e.g., the Program for International Student Assessment, PISA). These

studies provide information to “No Child Left Behind” and the “Race to the Top”

programs in the US; to date, the US has spent more than ten billion dollars on the Race to

the Top program since it was announced by President Barack Obama in 2009 (Hamilton

2009). Our study can potentially be used to suggest which regions and communities in the

US need funding to improve the education systems (e.g., qualified teachers, improved

equipment, parental participation, extramural programs, etc).

The basic sample design used in TIMSS for the population of third and fourth grade

students was a two-stage stratified cluster design. The first stage consisted of a sample of

schools; the second stage consisted of samples of one mathematics classroom from each

eligible target grade in the sampled schools. The design required schools to be sampled

using a probability proportional to size (PPS) systematic sampling (Foy et al. 1996), and

classrooms to be sampled with equal probabilities. Different aspects of the design were

adapted to national conditions and analytical needs. For example, many countries stratified

the school sampling frame by variables of national interest. As another example, if

geographic regions were an explicit stratification variable, then separate school sampling

frames would be constructed for each region. The multistage stratified cluster design

results in differential probabilities of selection and each student consequently has different

weights. In a realistic analysis of the TIMSS data we would need to incorporate the survey

weights into the analysis. However, because our main interest is to show how to handle the

clustering within small areas, we have ignored the survey weights.

The data set, which we used and collected in 1999, consists of 2,477 students (135

schools) who participated in TIMSS (see Calsyn et al. 1999). Clusters are schools while

the units within the clusters are the students. Areas are formed crossing region and

community. There are four regions of the US (Northeast, South, Central, and West) and

there are three communities (village or rural area, outskirts of a town or city, and close to

the center of a town or city), which the students come from. Thus there are twelve areas

(strata). The binary variable is whether a student’s mathematics score is below average.

We use synthetic data to illustrate our methodology and we take roughly half of the
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sampled data (i.e., a simple random sample of half the number of schools and a simple

random sample of half the number of third-grade students from each selected school) for

analysis and we use the other half to assess the predictive power of our procedure. The

finite population is the original sample. Our objective is to make inference about the finite

population proportion of students who earned below average scores in mathematics for

each small-area. This measure can be used to compare the regions and the communities in

the US.

The data (half) on the mathematics test scores are shown in Table 1, where we define the

twelve areas (e.g., NR is a village or rural area in the north east). There are some schools in

which all students were either below average or above average, thereby creating some

difficulties for estimation. Looking at Table 1, the numbers of schools sampled in the

twelve areas are 2, 4, 5, 4, 8, 6, 1, 3, 7, 3, 6, 15 and the numbers of students sampled in

the schools range from 4 to 13. Each area is too sparse for direct estimation even with the

complete data set.

1.2. Pertinent Literature

Nandram and Sedransk (1993) described a hierarchical Bayesian model to make

inference about the finite population proportion under two-stage cluster sampling, the

design we have within each area in a twofold sample design. The model can be viewed

as a discrete analogue of the model for two-stage cluster sampling with normal data

(Scott and Smith 1969) that has been extended in many directions (e.g., Malec and

Sedransk 1985). We note that the work of Nandram and Sedransk (1993) was extended

by Nandram (1998) to multinomial data and this extension may be viewed as a Bayesian

analogue of the Dirichlet-multinomial model for cluster sampling (Brier 1980). However,

our onefold model is different because in this design a simple random sample is

taken from each area, but in the twofold model a two-stage cluster sample is performed in

each area.

When there is a clustering effect, the units in a cluster are, in general, positively

correlated leading to a smaller effective sample size and therefore larger variability in the

estimates of the cell probabilities (i.e., the design effect is larger than one for each area).

For example, see Brier (1980), Bedrick (1983), Holt et al. (1980), and Scott and

Holt (1982). There is a similar issue in hypothesis testing. Clustering will evidently

result in larger p-values than what would be obtained under simple random sampling.

Rao and Scott (1981; 1984) have studied this problem very carefully for contingency

tables and obtained simple and familiar corrections to the standard chi-squared statistic

for the test of independence for two-way contingency tables arising from two-stage

cluster sampling and more generally. Nandram et al. (2013) have a Bayesian analogue of

these works.

From a Bayesian perspective, a related problem is when data are fitted to a hierarchical

model but actually follow a model with an additional unknown structure. This is like our

problem in which a onefold model is fitted and the second-stage cluster sampling within

each area is ignored. Using posterior predictive p-values, Yan and Sedransk (2007) studied

the situation where the data follow a normal model with a two-stage (three-stage) hierar-

chical structure while the fitted model has a one-stage (two-stage) hierarchical structure.
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They used several diagnostic procedures to help detect this additional structure. Yan and

Sedransk (2010) studied the ability to detect a three-stage model when a two-stage model

is actually fitted, and using Bayesian standardized residuals concluded that it is due to

the magnitude of correlation induced by the additional structure. This is the key point of

our work.

For twofold modeling, there have been some activities for continuous response

variables, not binary response variables, and most of this work has been within the

empirical Bayes framework. Onefold and twofold nested error regression models were

introduced by Fuller and Battese (1973) in which transformations to uncorrelated errors

with constant variance are obtained starting with a general error covariance matrix.

Transformations permit the calculation of generalized least-squares estimators and their

covariance matrices by ordinary least-squares regression. They have made an analogy

between survey sampling and experimental design via subsampling of primary, secondary,

and tertiary sampling units, and split-split-plot experiments. Ghosh and Lahiri (1988)

studied multistage sampling under posterior linearity using Bayes and empirical Bayes

methods. Estimation of regression models with nested error structure and unequal error

variances were further studied by Stukel and Rao (1997) under two-stage and three-stage

cluster sampling. Small-area models under twofold nested error regression models

were also studied by Stukel and Rao (1999); see also Rao (2003, sec. 5.5.3) and Datta and

Ghosh (1991).

1.3. Innovations

This is mainly a methodological article on twofold small-area modeling, and in attempting

to analyze the TIMSS data, we have made the following significant innovations.

1. Our models are for categorical data (binary). As can be seen from the literature,

twofold modeling has been done for continuous data. While the categorical data

models are related to the continuous data models, they pose additional difficulties for

methodology and model fitting.

2. We have a new reparameterization of the beta distribution in terms of correlation

(intracluster and intercluster). This permits modeling these correlations directly.

In fact, this opens up a new avenue for the analysis of data collected using a

twofold sample design and further analysis of more complex categorical (e.g.,

polychotomous) data.

3. With these reparameterizations we develop two hierarchical Bayesian models, a

onefold and a twofold model for binary data.

4. The computations pose some difficulties for the Gibbs sampler and we have

overcome these difficulties using random samples instead of the Gibbs sampler.

In our twofold model there are two weakly identified parameters, thereby causing

long-range dependence in the Gibbs sampler.

5. The TIMSS data will be analyzed using both our onefold and twofold models. We

demonstrate that the intracluster correlation creates an important difference between

the two models and provides additional insight to the analysis of these data.

A simulation study demonstrates the importance of the twofold model for TIMSS

data as well.

Nandram: Bayesian Predictive Inference of a Proportaion Under a Twofold Small-Area Model 191



In Section 2 we describe the onefold and twofold models and we describe how to fit

them. In Appendix A we describe how to perform the computation for the twofold model

without using the Gibbs sampler. In a technical report, Nandram (2014) now called

TRN14, we compare our sampling-based method with the Gibbs sampler. In Section 3, we

analyze the TIMSS data and we also compare the onefold and twofold models. We also

present a simulation study to compare the onefold and the twofold small-area model even

further. Section 4 contains concluding remarks, and some additional problems are

discussed. In Appendix B we briefly describe a multifold model.

2. Bayesian Small-Area Models

We make two simple observations. Let yijp ,iid Bernoulli( p), p , Beta{mt,(1 2 m)t},

where 0 , m , 1 is the mean of the beta random variable and t is the sum of the

parameters of the standard beta distribution.

First, the yi are exchangeable and the correlation between yi and yj is r ¼ (1 þ t)21

with t ¼ (1 2 r)/r. Thus, we can write the model as yijp ,iid Bernoulli(p),

p , Beta m 12r
r
; ð1 2 mÞ 12r

r

n o
.

Second, considering a single observation, y1 say, the posterior mean of p given y1 is

Eð pjr;m; y1Þ ¼ ry1 þ ð1 2 rÞm:

The prior density, r , Uniform(0,1), is called a shrinkage prior. Shrinkage priors have

good frequentist properties (see Natarajan and Kass 2000; Molina et al. 2014; Toto and

Nandram 2010). These observations motivate the construction of our small-area model for

binary data.

We have a population of l small areas and within the i th area there are Mi clusters.

Within the j th cluster there are Nij individuals. The binary responses are yij k, k ¼ 1,

: : : , Nij, j ¼ 1, : : : , Mi, i ¼ 1, : : : , l. A simple random sample of mi clusters is taken

from the i th area and a simple random sample of nij individuals is taken from the j th

cluster. Let ni ¼
Pmi

j¼1nij, sij ¼
Pnij

k¼1yijk, si ¼
Pmi

j¼1sij.

Letting Ni ¼
PMi

j¼1Nij, the finite population proportion for the i th area is

Pi ¼
XMi

j¼1

XNij

k¼1

yijk=Ni; i ¼ 1; : : : ; l:

Let T ð1Þij ¼
PNij

k¼nijþ1 yijk; j ¼ 1; : : : ;mi, denote the nonsampled total of the j th sampled

clusters and T ð2Þij ¼
PNij

k¼1 yijk; j ¼ mi þ 1; : : : ;Mi, the total of the j th nonsampled cluster.

Letting ni ¼
Pmi

j¼1nij, p̂i ¼
Pmi

j¼1

Pnij

k¼1yijk=ni, it is convenient to express Pi as

Pi ¼
n

nip̂i þ
Xmi

j¼1

T ð1Þij þ
XMi

j¼miþ1

T ð2Þij

o�
Ni; i ¼ 1; : : : ; l; ð1Þ

where the p̂i are observed. Bayesian predictive inference is required for T ð1Þij and T ð2Þij .

There is an expression similar to (1) for the finite population mean for each area (Stukel

and Rao 1999).
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2.1. A Onefold Model

We first construct the small-area onefold Bayesian model,

yijkjpi
ind, Bernoullið piÞ; j ¼ 1; : : : ;Mi; k ¼ 1; : : : ;Nij;

piju; g
iid, Beta u

1 2 g

g
; ð1 2 uÞ

1 2 g

g

� �
; i ¼ 1; : : : ; l;

where in a standard Beta(a, b), u ¼ a/(a þ b) and g ¼ (a þ b þ 1)21. Note that the

cluster effects are dropped (i.e., the pi do not have subscript j ). Noting that u and g are

really probabilities, a priori

u; g iid, Betaðao;boÞ;

where ao ¼ bo for a noninformative prior with small values (e.g., ao ¼ 1 for a uniform

prior and ao ¼ .5 for Jeffreys prior). Here, 0 , g , 1 strictly, and the uniform prior on

g is a shrinkage prior.

The model of Nandram and Sedransk (1993) for two-stage cluster sampling with binary

responses is similar to the current one. One important difference is in the prior

specification of u and the reparametrization of g, which unlike Nandram and Sedransk

(1993) is stochastic here. Furthermore, we predict the finite population proportion of each

area, not the overall finite population proportion.

The onefold model can be fitted easily by making random draws from the joint posterior

density of u and g, and samples of pi can be obtained using the multiplication rule.

Specifically,

pijsi; u; g
ind, Beta si þ u

1 2 g

g
; ni 2 si þ ð1 2 uÞ

1 2 g

g

� �
;

and

pðu; gjy~ Þ /
Yl
i¼1

B{si þ uð1 2 gÞ=g; ni 2 si þ ð1 2 uÞð1 2 gÞ=g}

B{uð1 2 gÞ=g; ð1 2 uÞð1 2 gÞ=g}
£ uao21

ð1 2 uÞbo21gao21ð1 2 gÞbo21; 0 , u; g , 1; ð2Þ

where B(�,�) is the beta function.

Because the posterior density of (u,g) is not in a simple form, we use a one-dimensional

grid method and numerical integration via Gaussian quadrature to draw samples from it.

We first integrate out u to get pðgjy~ Þ <
PG

g¼1wgpðxg; gjy~ Þ, where xg, g ¼ 1, : : : ,G, are the

G roots of a Legendre orthogonal polynomial with weights wg, g ¼ 1, : : : ,G; G ¼ 20 or so

provides a very accurate and fast procedure. Then, we use a one-dimensional grid to draw

g from pðgjy~ Þ. The unit interval is simply divided into 100 subintervals of equal width,

and the joint posterior density is approximated by a discrete distribution with probabilities

proportional to the heights of the continuous distribution at the midpoints of these

subintervals. Now, it is easy to draw a sample from this univariate discrete distribution of

pðgjy~ Þ. It is efficient to remove subintervals with small probabilities (smaller than 1026);

we call the others probable subintervals. To draw a single deviate, we first draw one of the

probable subintervals. After we have obtained this subinterval, a uniform random variable
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is drawn within this subinterval. This is a standard jittering procedure and it provides

different deviates with probability one. We call this random number generator the

univariate grid sampler that is also used to fit the twofold model.

Once samples of the pi are obtained, Bayesian predictive inference follows easily because

T ð1Þij jpi
ind, BinomialðNij 2 nij; piÞ and T ð2Þij jpi

ind, BinomialðNij; piÞ and, given pi, T ð1Þij and T ð2Þij

are independent. It follows easily that
Pmi

j¼1T ð1Þij þ
PMi

j¼miþ1T ð2Þij jpi , BinomialðNi 2 ni; piÞ.

Thus it is easy to make inference about Pi by using data augmentation. For each iterate pi,

we simply draw
Pmi

j¼1T ð1Þij þ
PMi

j¼miþ1T ð2Þij . We use 1,000 samples; convergence monitoring is

not required.

2.2. A Twofold Model

The twofold small-area model adds one layer to the onefold model. For a twofold Bayesian

model,

yijkjpij
ind, Bernoullið pijÞ; k ¼ 1; : : : ;Nij;

pijjmi; r
ind, Beta mi

1 2 r

r
; ð1 2 miÞ

1 2 r

r

� �
; j ¼ 1; : : : ;Mi;

miju; g
iid, Beta u

1 2 g

g
; ð1 2 uÞ

1 2 g

g

� �
; i ¼ 1; : : : ; l;

and a priori

r; u; g iid, Betaðao;boÞ

with the same comments about this prior as for the onefold model. We assume that

0 , u, r,g , 1 strictly. This can be achieved by taking e # u, r, g # 1 2 e, where e is a

small positive quantity (e.g., e ¼ 1026).

If we allow r to go to zero, then the pij almost surely go to the mi and the twofold model

becomes the onefold model. (In the limit, the mi in the twofold model become the pi in the

onefold model.) That is, if r is small, we anticipate very little difference between the two

models. Thus it is r that distinguishes the onefold and twofold models.

In Subsection 2.1 we stated that cor( yijk, yijk0jmi, r) ¼ r, k – k0. That is, within the same

area, the correlation between two units in the same cluster (intracluster) is r. Clearly,

cor( yijk, yij0k0jmi, r) ¼ 0 and within the same area the actual correlation between two units

in two different clusters (intercluster) is 0. It is also easy to show that

corð yijk; yij 0k 0 ju; r; gÞ ¼ g; j – j0; k – k 0:

That is, one can interpret g as the intercluster correlation between two units in two

different clusters in the same area. Finally, note that corð yijk; yijk 0 ju; r; gÞ ¼

gþ ð1 2 gÞr $ maxðr; gÞ.
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Using Bayes’ theorem and letting sij ¼
Pnij

k¼1yijk; p~ ¼ ð pij; j ¼ 1; : : : ;mi; i ¼ 1;

: : : ; lÞ0, and m~ ¼ ðmi; i ¼ 1; : : : ; lÞ0, the joint posterior density is

pðp~ ;m~; u~; r; gjy~ Þ /
Yl
i¼1

Ymi

j¼1

p
sij

ij ð1 2 pijÞ
nij2sij

p
mið12rÞ=r21
ij ð1 2 pijÞ

ð12miÞð12rÞ=r21

B{mið1 2 rÞ=r; ð1 2 miÞð1 2 rÞ=r}

£
Yl
i¼1

m
u ð12gÞ=g21
i ð1 2 miÞ

ð12uÞð12gÞ=g21

B{u ð1 2 gÞ=g; ð1 2 uÞð1 2 gÞ=g}

( )
uao21ð1 2 uÞbo21rao21ð1 2 rÞbo21gao21

ð1 2 gÞbo21; 0 , pij;mi; u; r; g , 1; j ¼ 1; : : : ;mi; i ¼ 1; : : : ; l:

We use both the Gibbs sampler and a random sampler to fit the model. The Gibbs

sampler is used after collapsing over the pij and then samples are obtained from

the posterior densities of the pij using the composition method (i.e., multiplication rule).

Once samples of the pij are obtained, Bayesian predictive inference follows easily

because T ð1Þij jpij
ind, BinomialðNij 2 nij; pijÞ; j ¼ 1; : : : ;mi, for the sampled clusters and

T ð2Þij jpij
ind, BinomialðNij; pijÞ; j ¼ 1; : : : ;Mi, for the nonsampled clusters. Given pij, T ð1Þij

and T ð2Þij are independent. However, the Gibbs sampler is not easy to use because there are

weakly identified parameters and this needs special attention. See TRN14 for the technical

details and convergence monitoring.

For the random sampler, first note that conditionally a posteriori the pij are independent

and

pijjsij;mi; r
ind, Beta{sij þ mið1 2 rÞ=r; nij 2 sij þ ð1 2 miÞð1 2 rÞ=r}:

Accordingly, once samples are obtained from the joint posterior density of m~; u; r; gjs~ ,

a sample of pij is easy to obtain. Then, after integrating out the pij, we have

pðm~; u; r; gjy~ Þ /
Yl
i¼1

ami

j¼1

B{sij þ mið1 2 rÞ=r; nij 2 sij þ ð1 2 miÞð1 2 rÞ=r}

B{mið1 2 rÞ=r; ð1 2 miÞð1 2 rÞ=r}

£
Yl
i¼1

m
u ð12gÞ=g21
i ð1 2 miÞ

ð12uÞð12gÞ=g21

B{u ð1 2 gÞ=g; ð1 2 uÞð1 2 gÞ=g}
£ uao21ð1 2 uÞbo21rao21ð1 2 rÞbo21

gao21ð1 2 gÞbo21; 0 , mi; u; r; g , 1; i ¼ 1; : : : ; l: ð3Þ

See Appendix A for the more detailed computations using the random sampler. For

the TIMSS data, the results from the Gibbs sampler and the random sample are similar

(see TRN 14).

3. Numerical Analysis

We discuss an illustrative example using data from the Third International Mathematics

and Science Study (TIMSS) and we perform a simulation study to confirm the superiority

of the twofold small-area model. This section has three subsections.

In Subsection 3.1 we describe the model diagnostic procedures used for analysis. In

Subsection 3.2 we analyze the TIMSS data. We compare the onefold and twofold models.
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We have used the posterior mean (PM), posterior standard deviation (PSD), and 95%

highest posterior density (HPD) interval to summarize the distributions. We also computed

the numerical standard error (NSE), which is based on the batch means method; NSE is a

measure of the repeatability of the entire sampling. In Subsection 3.3 we describe a

simulation study.

3.1. Model Diagnostics

We discuss three goodness-of-fit procedures, the deviance information criterion (DIC)

together with the complexity or effective number of parameters (PD), the conditional

predictive ordinate (CPO) along with the logarithm of the pseudomarginal likelihood

(LPML), and the Bayesian predictive p-value (BPP). The DIC, LPML, and BPP look at the

overall fit of the model; see Gelman et al. (2013) for further discussions of these measures.

We give expressions for the twofold model because it is easy to write down similar ones

for the onefold model.

In the twofold model sijjpij
ind, Binomialðnij; pijÞ, pijjmi

ind, Beta{mið1 2 rÞ=r; ð1 2 miÞ

ð1 2 rÞ=r}. Thus, integrating out the pij we get a product of beta-binomial probability

mass functions,

pðs~ jm~; rÞ ¼
Yl
i¼1

Ymi

j¼1

nij

sij

 !
B{sij þ mið1 2 rÞ=r; nij 2 sij þ ð1 2 miÞð1 2 rÞ=r}

B{mið1 2 rÞ=r; ð1 2 miÞð1 2 rÞ=r}
:

It is also true that E(sijjmi, r) ¼ nijmi and Var(sijjmi, r) ¼ nij{1 þ (nij 2 1)r}mi(1 2 mi).

Let

PD ¼ �D 2 Dð �u~ ; �gÞ; DIC ¼ �Dþ PD

respectively be the complexity of the model and the deviance information criterion, where

D̄ and Dð �u~ ; �gÞ are defined below for the onefold and twofold models.

Let mðhÞi ; i ¼ 1; : : : ; l; r ðhÞ; h ¼ 1; : : : ;M, denote the iterates of Gibbs sampling from

the twofold model, �mi ¼
PM

h¼1m
ðhÞ
i =M; i ¼ 1; : : : ; l, and �r ¼

PM
h¼1r

ðhÞ=M. Then,

Dð �m~ ; �rÞ ¼ 22log{pðs~ j �m~ ; �rÞ} and �D ¼ 22
PM

h¼1log{pðs~ jm~ðhÞ; r ðhÞÞ}=M.

Models with smaller DIC are preferred over models with larger DIC. Models are

penalized both by the value of D̄, which favors a good fit, and PD. Since D̄ will decrease as

the number of parameters in a model increases, PD compensates for this effect by favoring

models with a smaller number of parameters. However, DIC tends to select overfitted

models. The Bayesian predictive information criterion (BPIC) can protect against this

effect but it is difficult to compute, it is not meant for dependent data, and consistency (as

the sample size increases) is needed (see Ando 2007). The inconsistency problem can be

overcome by integrating out the pij and the mi, but this creates dependent data.

Similar to the DIC, the second measure is the LPML. Both measures are based on the

same cross-validation (leave-one-out) procedure. A summary statistic for CPO values is

LPML; unlike the DIC, larger values of LPML indicate better fitting models (e.g., Geisser
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and Eddy 1979). For the twofold model the CPO is given by

ĈPOij ¼
1

M

XM

h¼1

1

f sijjp
ðhÞ
ij

� �
8<
:

9=
;

21

; j ¼ 1; : : : ;mi; i ¼ 1; : : : ; l;

where pðhÞij ; h ¼ 1; : : : ;M, are the samples from pijjsij,mi, r and sijjpij
ind, Binomialðnij; pijÞ.

Again, it is interesting to note that for each (ij ), ĈPOij is the harmonic mean of the

likelihoods f ðsijjp
ðhÞ
ij Þ; h ¼ 1; : : : ;M. Then,

LPML ¼
Xl
i¼1

Xmi

j¼1

logðĈPOijÞ:

The LPML, like the DIC, can discriminate between the onefold and the twofold models.

We compute the CPO and the LPML at the cluster level, the LPML being preferable

(easy to use).

Our third measure is the BPP for the two models. For the twofold model, the

discrepancy function is

T2ðs~ ;m~; rÞ ¼
Xl
i¼1

Xmi

j¼1

{sij 2 Eðsijjmi; rÞ}
2

Varðsijjmi; rÞ
:

Then the BPP is P{T2ðs~
ðrepÞ;m~; rÞ $ T2ðs~

ðobsÞ;m~; rÞjs~}, where probability is calculated

over the iterates ðm~ ðhÞ; r ðhÞÞ; h ¼ 1; : : : ;M. Extremely small (near 0) or extremely large

(near 1) values of this probability indicate that the model does not fit well.

3.2. Illustrative Example

First, we compare the two models using the three measures. For the onefold (twofold) model,

PD ¼ 6.70 (PD ¼ 7.98), DIC ¼ 313 (DIC ¼ 282), LPML ¼ 2609 (LPML ¼ 2575), and

BPP ¼ .000 (BPP ¼ .467). The BPP tells us that while the twofold model fits the TIMSS data

reasonably well, the onefold model does not. The other two measures, DIC and LPML, tell us

that the twofold model provides a better fit to the TIMSS data.

Using the onefold model, for u PM ¼ .556, PSD ¼ .052, NSE ¼ .002, and the 95%

HPD interval is (.448,.654); for g PM ¼ .112, PSD ¼ .053, NSE ¼ .001, and the 95%

HPD interval is (.034,.215). Using the twofold model, for u PM ¼ .566, PSD ¼ .055, and

NSE ¼ .002, the 95% HPD interval is (.443,.662); for g PM ¼ .078, PSD ¼ .056,

NSE ¼ .002, and the 95% HPD interval is (.001,.187). Thus inferences about u and g are

very similar under the onefold and twofold models.

More importantly, the posterior mean of r is .217 with a standard deviation of .050,

NSE ¼ .001, and the 95% HPD interval of (.122,.309). This also shows that the twofold

model, which accommodates the two-stage cluster sampling via the intracluster

correlation, r, may be preferred.

In Table 2 we present posterior inference about the finite population proportions for the

mathematics scores. We see that the posterior means of the onefold model can be larger or

smaller than the posterior means of the twofold model. However, the posterior standard

deviations for the twofold model are always larger than those of the onefold model. This

clearly shows how the twofold model accommodates the clustering effect. In Table 2 we
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have also presented the direct estimates. The direct estimates and their standard errors

seem to be closer to the PMs and PSDs of the onefold model, but there are some

differences (e.g., areas CR and WR).

In Figure 1 we present plots of the empirical posterior densities of the finite population

proportions. These are obtained using the Parzen-Rosenblatt normal kernel density

estimator with an optimal window width (e.g., Silverman 1986). In both pictures (onefold

and twofold models) we observe a clear difference between the onefold and twofold

models. The distributions under the twofold model are more spread out than those of the

corresponding onefold model.

Using the TIMSS data (half sample) we perform two small empirical studies. First, we

study the quality of the Bayesian predictive inference. Then the ‘true values’ of the finite

population proportions (original sample) for the areas are .541, .347, .608, .600, .550, .667,

.436, .421, .560, .458, .522, .643. Under the twofold model the 95% HPD interval of the

finite population proportion of area SO misses the true value. But under the onefold

model the 95% HPD intervals for areas SO, SC, CC miss the true value (see Table 1 for

abbreviations). Thus, once again the twofold model provides a better fit than the

onefold model.

Second, we investigate the effect of a larger number of areas. As our half-sample dataset

has only twelve areas, we have artificially increased the number of areas. Specifically, we

have bootstrapped the twelve areas in the half sample to fill in the additional number of

areas to get 25, 50, 75, and 100 areas. Detailed comparisons between random sampling and

Gibbs sampling are given in TRN14. For example, in the computations random sampling

is twice as fast as Gibbs sampling, but the measures (e.g., DIC, LPML, and BPP)

are similar.

Table 2. Comparison of posterior inference from the onefold and twofold models for the finite population

proportions by areas for US students below average in mathematics

Onefold Twofold

Area Direct PM PSD 95% HPD PM PSD 95% HPD

NR .500.104 .515 .087 (.367, .696) .528 .116 (.316, .747)
NO .316.067 .355 .063 (.234, .480) .396 .093 (.234, .594)
NC .696.054 .682 .052 (.587, .785) .667 .075 (.523, .806)
SR .649.068 .636 .061 (.527, .760) .618 .087 (.440, .773)
SO .383.047 .395 .047 (.303, .483) .410 .067 (.288, .539)
SC .827.047 .795 .048 (.694, .877) .757 .071 (.617, .889)
CR .364.127 .427 .108 (.217, .609) .459 .152 (.196, .717)
CO .542.093 .548 .080 (.386, .707) .549 .111 (.336, .757)
CC .683.052 .667 .051 (.573, .766) .660 .068 (.516, .778)
WR .296.078 .345 .076 (.203, .484) .403 .107 (.203, .602)
WO .587.065 .582 .058 (.452, .683) .583 .080 (.448, .751)
WC .703.037 .694 .036 (.618, .760) .685 .051 (.591, .783)

NOTE: PM is the posterior mean, PSD is the posterior standard deviation and HPD is highest posterior density

interval. The Monte Carlo errors of the posterior means are smaller than .004 in all cases, and in most cases are

substantially smaller than .004. The direct estimate and its standard error are written as ab where a is the direct

estimate and b is its standard error.
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3.3. Simulation Study

We have performed a small simulation study to help understand how inferences about the

finite population proportions change with the intracluster correlation coefficient (r) and

the number (l) of small areas. We have studied r ¼ .01, .10, .25, .50, .75 and l ¼ 12, 25,

50, 75, 100. Thus, there are twenty-five design points in our simulation study.

We have set the number of schools in each area to be 100 and the number of students

within each school to be 15 (i.e., Nij ¼ 15, j ¼ 1, : : : , Mi, Mi ¼ 100, i ¼ 1, : : : , l).

We also hold u ¼ .60 and g ¼ .05, near the posterior means calculated for the real data.

We have taken a simple random sample of five schools from the 100 generated for the
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Fig. 1. Comparison of the onefold (solid) and twofold (dotted) models via posterior inferences of the finite

population proportions of the empirical densities of finite population proportions by area
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population, and a simple random sample of ten students from each selected school (i.e.,

mi ¼ 5 schools and nij ¼ 10 students). So there are up to 100 areas each having 100

schools and each school having up to 15 students. So we have up to 10,000 schools and

150,000 students. The number of areas can be as large as current computing facilities

allow because the area effects can be drawn using parallel computing via our method of

random sampling (not Gibbs sampling).

We have simulated binary data from the twofold small-area model,

miju;g
iid, Beta u

1 2 g

g
; ð1 2 uÞ

1 2 g

g

� �
; i ¼ 1; : : : ; l;

pijjmi; r
ind, Beta mi

1 2 r

r
; ð1 2 miÞ

1 2 r

r

� �
; j ¼ 1; : : : ;Mi;

yijkjpij
ind, Bernoullið pijÞ; k ¼ 1; : : : ;Nij:

Thus, we have the true value of Pi ¼
PMi

j¼1

PNij

k¼1yijk=
PMi

j¼1 Nij; i ¼ 1; : : : ; l. We have

taken 1,000 samples at each of the 25 design points.

In a similar way, we have generated data from the onefold model,

piju; g
iid, Beta u

1 2 g

g
; ð1 2 uÞ

1 2 g

g

� �
; j ¼ 1; : : : ;Mi;

yijkjpi
ind, Bernoullið piÞ; k ¼ 1; : : : ;Nij;

with a subset of the same design points (i.e., r ¼ 0).

For all generated data sets we fit the onefold and twofold models using random draws,

as described for the computations. We have used parallel computing to fit the models.

Note that we need to fit 25,000 simulated data sets.

Here, we have also studied the frequentist properties of our procedure. We compute the

absolute bias (AB), relative absolute bias (RAB), and root posterior mean squared error

(RPMSE). Specifically, we obtain ABih ¼ jPMih 2 Pihj; RABih ¼ ABih=Pih and

RPMSEih ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PSD2

ih þ AB2
ih

q
; i ¼ 1; : : : ; l; h ¼ 1; : : : ; 1;000. We have also computed

the 95% HPD interval for each of the 1,000 simulated runs. We have looked at the width

(Wih) and the credible incidence (Iih). Here Iih ¼ 1 if the 95% HPD interval contains the

true value Pi and Iih ¼ 0 if the 95% credible interval does not contain the true value Pi.

For each area and each design point we have taken the average of these quantities.

For example, the estimated probability content of the 95% HPD interval for the i th area is

Ci ¼
P1000

h¼1 Iih=1;000.

First, we discuss the simulations when data are generated from the twofold model. In

Table 3 we present a comparison of the onefold and twofold models using these measures.

The coverages for the twofold model are much closer to the nominal value of 95% than

those from the onefold model. In some cases the coverages from the onefold model are

much too small. However, the 95% HPD intervals from the twofold model are wider than

those from the onefold model. These effects are much larger as r increases for each l,

thereby clearly showing how the twofold model takes care of the clustering effect.

All measures (AB, RAB, RPMSE) for the twofold model are smaller than those for the

Journal of Official Statistics200



onefold model. These effects become more intense for larger r. Again this shows the

superiority of the twofold model over the onefold model.

In Table 4 we present summaries of PD, DIC, LPML, and BPP. As expected, the PDs for

the twofold model should be larger than those for the onefold model. All the DICs for the

twofold model are smaller than the corresponding ones for the onefold model, and

this disparity becomes larger as l and r increase. The results are the same for the LPML.

Under the onefold model most of the BPPs are near 0, but under the twofold model the

corresponding BPPs are around 0.5. These measures show that while the twofold model is

more complex, it is superior to the onefold model. In TRN14 we compare plots of the

sample distributions of the negative LPML under the onefold and twofold models over the

1,000 runs by l and r. The negative LPML under the twofold model are smaller than under

the onefold model and this discrepancy increases with both r and l. There are overlaps of

distributions when r ¼ .10 but not for other values of r.

Second, we discuss the simulations when data are generated from the onefold model.

In Table 5 we present comparisons of the onefold and twofold models. As expected, the

onefold model is slightly better than the twofold model. AB, RAB, RPMSE are only

Table 3. Simulation for data drawn from the twofold model: Comparison of coverage and widths of 95% HPD

intervals and absolute bias, relative absolute bias and, root posterior mean squared error at twelve design points

l r Model C-HPD W-HPD AB RAB RPMSE

25 .10 TFM .940.0015 .276.0002 .056.0003 .098.0005 .096.0002

OFM .860.0022 .227.0001 .061.0003 .106.0005 .090.0002

.25 TFM .938.0016 .318.0002 .068.0003 .121.0007 .113.0002

OFM .732.0029 .227.0001 .081.0004 .142.0008 .107.0003

.50 TFM .918.0018 .355.0003 .077.0004 .136.0008 .127.0003

OFM .612.0031 .227.0002 .107.0005 .184.0009 .129.0004

.75 TFM .944.0015 .417.0003 .083.0004 .147.0009 .145.0003

OFM .495.0032 .222.0003 .137.0006 .239.0012 .157.0006

50 .10 TFM .940.0011 .273.0001 .058.0002 .104.0004 .097.0001

OFM .857.0016 .225.0001 .060.0002 .105.0004 .090.0002

.25 TFM .935.0011 .314.0002 .067.0002 .119.0005 .112.0002

OFM .727.0020 .228.0001 .082.0003 .143.0005 .108.0002

.50 TFM .936.0011 .350.0002 .074.0002 .133.0005 .124.0002

OFM .607.0022 .229.0001 .108.0004 .190.0007 .131.0003

.75 TFM .942.0010 .386.0002 .080.0003 .143.0006 .135.0002

OFM .492.0022 .222.0002 .137.0004 .240.0008 .157.0004

100 .10 TFM .946.0007 .275.0001 .056.0001 .100.0003 .096.0001

OFM .862.0011 .225.0001 .060.0001 .105.0003 .089.0001

.25 TFM .939.0008 .311.0001 .066.0002 .117.0003 .110.0001

OFM .752.0014 .229.0001 .080.0002 .140.0004 .106.0002

.50 TFM .930.0008 .340.0001 .075.0002 .136.0004 .122.0001

OFM .602.0015 .227.0001 .109.0003 .192.0005 .131.0002

.75 TFM .936.0008 .385.0001 .082.0002 .150.0005 .137.0001

OFM .485.0016 .222.0001 .140.0003 .248.0006 .160.0003

NOTE: TFM is the twofold model and OFM is the onefold model. W-HPD and C-HPD are respectively the width

and the probability content of a HPD interval. A, AB, and RPMSE are the absolute bias, relative absolute bias and

root posterior mean square error. The notation ab means that a is the estimate and b is the standard error.
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slightly smaller under the onefold model. However, the coverages of the HPD intervals

under the twofold model are closer to the nominal value of 95%, with those from the

onefold model being slightly smaller. This is due to the phenomenon that the intervals

under the onefold model are narrower.

In Table 6 we present summaries of PD, DIC, LPML, and the BPP. These measures are

very similar for the two models. While the BPPs are different, they show that the two

models fit equally well. However, the main difference is in PD, the complexity of the

model. While the twofold model is more complex than the onefold model, they fit equally

well when the onefold model is expected to hold.

Table 4. Summaries of the 1,000 simulation runs with (data drawn from the twofold model) for the complexity,

deviance information criterion, log pseudomarginal likelihood, and the Bayesian predictive p-value by l, r and

model

Onefold Twofold

l r PD DIC LPML BPP PD DIC LPML BPP

25 .10 4.998 553 21107 .010 15.61 521 21086 .462
.25 6.795 625 21190 .000 12.09 557 21087 .467
.50 9.289 717 21333 .000 9.38 530 21038 .478
.75 10.970 710 21465 .000 9.27 419 2953 .479

50 .10 4.980 1141 22303 .000 30.86 1081 22261 .461
.25 6.981 1291 22475 .000 23.60 1156 22260 .473
.50 9.566 1450 22773 .000 17.29 1107 22162 .479
.75 11.220 1465 23050 .000 15.06 870 21983 .495

100 .10 5.015 2278 24606 .000 61.67 2162 24522 .472
.25 6.889 2574 24943 .000 45.68 2316 24524 .476
.50 9.649 2873 25526 .000 31.90 2200 24320 .485
.75 11.420 2873 26104 .000 28.39 1720 23957 .496

NOTE: PD is the effective number of parameters, DIC is the deviance information criterion, LPML is the

log pseudomarginal likelihood and BPP is the Bayesian predictive p-value based on the chi-squared measure.

The standard errors are negligible.

Table 5. Simulation for data drawn from the onefold model: Comparison of coverage and widths of 95% HPD

intervals and absolute bias, relative absolute bias, and root posterior mean squared error

l Model C-HPD W-HPD AB RAB RPMSE

12 TFM .953.0019 .244.0002 .048.0003 .085.0007 .084.0002

OFM .933.0023 .223.0002 .047.0003 .084.0006 .079.0002

25 TFM .949.0014 .234.0001 .049.0002 .088.0005 .082.0002

OFM .929.0017 .219.0001 .046.0002 .083.0005 .078.0002

50 TFM .948.0010 .233.0001 .048.0002 .086.0003 .082.0001

OFM .943.0010 .220.0001 .047.0002 .083.0003 .078.0001

75 TFM .954.0008 .236.0001 .046.0001 .082.0003 .081.0001

OFM .945.0008 .221.0000 .045.0001 .080.0002 .077.0001

100 TFM .959.0006 .236.0001 .046.0001 .081.0002 .081.0001

OFM .948.0007 .221.0000 .045.0001 .079.0002 .077.0001

NOTE: TFM is the twofold model and OFM is the onefold model. W-HPD and C-HPD are respectively the width

and probability content of a HPD interval. A, AB and RPMSE are the absolute bias, relative absolute bias, and

root posterior mean square error. The notation ab means that a is the estimate and b is the standard error.
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4. Concluding Remarks

We have developed a twofold hierarchical Bayesian model to analyze binary data arising

from a twofold sample design for small areas. This model incorporates an intracluster

correlation, and it is an extension of the two-stage hierarchical Bayesian model of

Nandram and Sedransk (1993) and, more importantly, the twofold model of Stukel and

Rao (1997; 1999) for binary data. A onefold model ignores the intracluster correlation. We

have performed a Bayesian predictive inference for the finite population proportion of

each area. We have discussed how to study the onefold and twofold small-area models in

detail. As an illustrated example, we have used synthetic data from TIMSS, a study of the

performance of US students at the third grade in mathematics. We have also performed a

simulation study to compare the onefold and twofold models. We have shown how to

overcome a difficulty in running the Gibbs sampler that we initially used to fit the twofold

model (see TRN14).

We have shown that when there is clustering within each area, the onefold model gives

poor performance, and the twofold model is much more preferable. The onefold model can

lead to estimators that differ from the twofold model in terms of both location and spread.

Our simulation study provides strong evidence that the twofold model is to be preferred

when there is a two-stage cluster sampling design within each area. This is a direct

consequence of the effect of the intracluster correlation. The Bayesian measures (deviance

information criterion, log pseudomarginal likelihood, Bayesian predictive p-value) and

frequentist measures (bias, mean squared error, coverage) show that the twofold model is

better than the onefold model. While we have demonstrated that the twofold model is

preferred when data are available from a twofold sampling design with cluster sampling,

other sampling designs (e.g., stratification) in each area will give different results, and

these need to be investigated separately.

We have shown that the twofold model is preferable to the onefold model for the TIMSS

data. Although the two models give similar results, we have better point and interval

estimates from the twofold model. We can see from Table 2 that there are some possibly

interesting findings for TIMSS data even though we have not used all features of the data.

Table 6. Summaries of the 1,000 simulation runs (data are drawn from the onefold model) for the complexity,

deviance information criterion, log pseudomarginal likelihood, and the Bayesian predictive p-value by l and

model

Onefold Twofold

l PD DIC LPML BPP PD DIC LPML BPP

12 3.673 250 2530 .445 8.94 233 2531 .661
25 3.362 486 21055 .553 16.57 460 21059 .781
50 3.587 1023 22203 .479 34.43 962 22208 .772
75 3.574 1527 23301 .526 52.81 1438 23308 .852
100 3.692 2043 24401 .538 70.73 1914 24410 .882

NOTE: PD is the effective number of parameters, DIC is the deviance information criterion, LPML is the

log pseudomarginal likelihood, and BPP is the Bayesian predictive p-value based on the chi-squared measure.

The standard errors are negligible.
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Apparently a school in a western rural (WR) area is the best and city schools (NC, SC,

CC, WC) are not so good.

This research has opened up many avenues for future work on twofold small-area

models. First, for a more realistic analysis of the TIMSS data, it is possible to incorporate

the survey weights into our analysis. Second, it may be desirable to have the intracluster

correlation to vary with area. It is expected that the computation will be challenging

because with a single intracluster correlation there is long-range dependence among the

iterates from the Gibbs sampler. Third, it is desirable to study threefold models (states

within regions and counties within states). Fourth, we can look at polychotomous data

instead of binary data; in TIMSS one can use three levels for mathematics score (below

average, average, above average). Fifth, we can consider multivariate binary data; in

TIMSS there are both mathematics and science scores. This will lead naturally to consider

test of independence for two categorical variables. Sixth, benchmarking for small areas

is also an important problem (states within regions and counties within states). Seventh,

we can look at covariates via logistic regression; in TIMMS there are covariates. Eight,

we can use nonparametric models (e.g., Dirichlet process mixtures and mixture of finite

Polya trees) to help robustify our twofold model.

APPENDIX A: Computation Without Gibbs Sampling

Long-range dependence is a general problem for the hierarchical Bayesian model when

Markov chain Monte Carlo methods are used to fit it. Typically long-range dependence is

due to weak identifiability in some parameters and/or indirect functional relation among

the parameters, and this causes poor mixing in the Gibbs sampler. The solution of thinning

the iterates, used in practice, is not really efficient. These problems occur when the twofold

model is fitted, and so it is pertinent to present an alternative algorithm that uses just

random samples.

Our strategy is to use the composition method (i.e., multiplication rule) to draw random

samples from the posterior density pðm~; u; r; gjy~ Þ. That is,

pðm~; u; r; gjy~ Þ ¼
Yl
i¼1

pðmiju; r; g; y~ Þ

( )
gðu; r; gjy~ Þ:

Integrating out mi, i ¼ 1, : : : ,l, the joint posterior density of u; r; gjy~ is

pðu; r; gjy~ Þ ¼ A
Yl
i¼1

ð1

0

giðmiÞf ðmiÞdmi

� �" #
uao21ð1 2 uÞbo21rao21ð1 2 rÞbo21gao21

ð1 2 gÞbo21;

where A is a normalization constant hence forth omitted,

giðmiÞ ¼
Ymi

j¼1

B{sij þ mið1 2 rÞ=r; nij 2 sij þ ð1 2 miÞð1 2 rÞ=r}

B{mið1 2 rÞ=r; ð1 2 miÞð1 2 rÞ=r}
;
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and

f ðmiÞ ¼
m
u ð12gÞ=g21
i ð1 2 miÞ

ð12uÞð12gÞ=g21

B{u ð1 2 gÞ=g; ð1 2 uÞð1 2 gÞ=g}
:

Note that while gi (mi) is the ratio of two beta functions (computations discussed earlier)

both of which are functions of r but not u and g, f (mi) is a function of u and g but not r.

More importantly, f (mi) is a density function of a beta random variable. We can integrate

out the mi, one at a time, and form their product to obtain the complete integral. Thus, we

only need to discuss how to compute
Ð 1

0
giðmiÞf ðmiÞdmi; i ¼ 1; : : : ; l, for one area. Also,

note that f (mi) does not depend on i under the integral sign. While this integral can be

computed using Monte Carlo methods, it is much more efficient to use numerical

integration in the following way.

Let F(�) denote the cdf corresponding to f (�). Partition the interval (0,1) into a mesh of

G subintervals ½a0; a1�; ½a1; a2�; : : : ; ½aG21; aG� where a0 ¼ 0, ai ¼ i/G, i ¼ 1, : : : , G.

Then, using the Riemann middle sum, it is easy to show that

G!1
lim

XG

v¼1

gi

av21 þ av

2

� 	
{FðavÞ2 Fðav21Þ} ¼

ð1

0

giðxÞf ðxÞdx; i ¼ 1; : : : ; l:

Thus, for reasonably large G,
PG

v¼1gi
av21þav

2


 �
{FðavÞ2 Fðav21Þ} <

Ð 1

0
gi ðxÞ f ðxÞ dx;

i ¼ 1; : : : ; l.

Together with integrating out the mi, we have also integrated out u, r, where we use

Gaussian quadrature via Legendre orthogonal polynomials,

pðgjy~ Þ <
XG

g1¼1

XG

g2¼1

wg1
wg2

Yl
i¼1

ð1

0

pðmi; xg1
; xg2

;gjy~ Þdmi

( )
;

where wg, g ¼ 1, : : : ,G, are the weights and xg, g ¼ 1, : : : , G, are roots of the Legendre

polynomial with xg1
and xg2

corresponding to u and r respectively. Note that the single

integral over each mi is done as described above and the whole procedure is a three-

dimensional integral. Now, using univariate grids, samples of the posterior density of g are

obtained in exactly the same manner as described for the onefold model using the

univariate grid sampler.

Then, conditional on g, the posterior density of r is

pðrjg; y~ Þ <
XG

g¼1

wg

Yl
i¼1

ð1

0

pðmi; xg; rjg; y~ Þdmi

( )
:

Again using the univariate grid sampler, samples are drawn from the posterior density of r.

Next, conditional on (r,g), the posterior density of u is

pðujr; g; y~ Þ <
Yl
i¼1

ð1

0

pðmi; ujr; g; y~ Þdmi

( )
:

Again using the univariate grid sampler, samples are drawn from the posterior density of u.
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Finally, conditional on (u, r,g), the mi are independent and samples are again obtained

from pðmiju; r; g; y~ ) using the univariate grid sampler. We have always used 100 grids for

the mi, u, r and g.

APPENDIX B: A Multistage Hierarchical Bayesian Model

In TIMSS the countries can be compared, a task beyond the scope of the current article.

The small areas (regions and communities) are clustered within the countries and the

schools are clustered within these small areas. This is a generalization of the twofold

design, which we have discussed in detail in Section 2, to a threefold design. Thus we

describe the multistage model mainly for reasons of theoretical interest.

The multifold hierarchical Bayesian model is

yij1; : : : ; jk jmij1; : : : ; jk21

ind, Bernoulliðmij1; : : : ; jk21
Þ:

For s ¼ 1, : : : , k 2 1,

mij1; : : : ; jk2s
jmij1; : : : ; jk2ðsþ1Þ

; g1
ind, Beta mij1; : : : ; jk2ðsþ1Þ

1 2 g1

g1

; ð1 2 mij1; : : : ; jk2ðsþ1Þ
Þ

1 2 g1

g1

� �
:

and

miju; gk
iid, Beta u

1 2 gk

gk

; ð1 2 uÞ
1 2 gk

gk

� �
:

Finally, a priori

u; g1; : : : ; gk
iid, Uniformð0; 1Þ:

Note that in this hierarchical Bayesian model, the first two stages are conjugate and the

other stages are nonconjugate. More importantly, the correlation between two units at the

first stage is g1. Furthermore, when the first-stage means are integrated out, the correlation

between two units in two different clusters is g2, and so on. It is expected that the

correlations will decay as we go down the hierarchical structure of the model. That is,

the correlation between two units at the area level is expected to be the smallest while the

correlation at the last stage of the multistage cluster sampling design is expected to be

the largest.

While the multistage model is of practical importance, it would need significant

research to develop it into a useful methodology and it is expected that the computation

will be challenging.
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