
Constructing Synthetic Samples
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We consider the problem of constructing a synthetic sample from a population of interest
which cannot be sampled from but for which the population means of some of its variables are
known. In addition, we assume that we have in hand samples from two similar populations.
Using the known population means, we will select subsamples from the samples of the other
two populations which we will then combine to construct the synthetic sample. The synthetic
sample is obtained by solving an optimization problem, where the known population means,
are used as constraints. The optimization is achieved through an adaptive random search
algorithm. Simulation studies are presented to demonstrate the effectiveness of our approach.
We observe that on average, such synthetic samples behave very much like actual samples
from the population of interest. As an application we consider constructing a one-percent
synthetic sample for the missing 1890 decennial sample of the United States.
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1. Introduction

The Minnesota Population Center (MPC) is an interdepartmental demography research

group at the University of Minnesota. One major goal of the MPC is to create databases

that can be utilized in the study of economic and social behavior. The Center has

developed the Integrated Public Use Microdata Series (IPUMS-USA), which is available

online and which consists, in part, of high-precision one-percent samples of the American

population drawn from fifteen decennial federal censuses. A sample is composed of

microdata consisting of a record for each person. These records are in turn organized into

households, making it possible to study the characteristics of people in the context of their

families or other coresidents. Unfortunately the complete records for the 1890 census were

destroyed and now only certain summary statistics are available. For example, the family

incomes for each particular family are missing but the average 1890 family income is

known for many small regions of the country. Hence the Center now does not have a one-

percent sample based on the complete 1890 census. In this article we will present a method

that will allow a synthetic sample to be created for 1890 using the partial information from

1890 and the samples from 1880 and 1900.

Since overall the 1890 US population should not be that different from the 1880 and

1900 populations, it should be possible to construct a synthetic one-percent sample for

1890 using the one-percent samples from the 1880 and 1900 populations. The records in

the synthetic sample should be chosen in such a way that their summary statistics closely
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match the partial information for 1890. To accomplish this, we define a function that

measures just how closely a possible synthetic sample matches the known population

means. Since there will be many possible synthetic samples that nearly achieve the

minimum of this function, our goal will not be to find an optimal synthetic sample. Instead

we will be looking for one which is nearly optimal. Before considering this problem,

however, we will first consider some simpler problems and present simulation results that

demonstrate that our approach works well in these cases. More information about the MPC

can be found at https://www.pop.umn.edu/.

From one point of view, the lack of a one-percent sample from the 1890 US population

can be thought of as a massive missing-data problem where the entire sample is missing.

Creating a synthetic sample is impossible unless there is some additional information that

can be used, and we believe that this is indeed the case here. In the following, we will

consider simpler versions of this problem and present simulation results which show that

our approach can work. These simulations might suggest that our approach could be

helpful in more standard missing-data problems where just some of the sample is missing.

Here, however, our focus will be on the problem of creating a synthetic one-percent

sample for the 1890 census.

In Section 2 we introduce a simple version of our problem. In Section 3 we propose an

adaptive random search algorithm that will find a nearly optimal synthetic sample. Given

an objective function defined over a large space, this technique is used to locate a point in

the space whose value given by the objective function is very close to the global optimum

of the objective function. In Section 4 we present simulations which show that our method

works well for some simple versions of our problem. In Section 5 we use our algorithm on

census data from 1900 and 1920 and partial information from 1910 to produce synthetic

samples for 1910. If our approach produces good synthetic samples for this situation, then

we believe it should produce a good synthetic sample for 1890 when using the 1880 and

1900 census data. Section 6 contains some final remarks.

2. A Simple Problem

Assume that there are three populations, Population 1, Population 2, and Population 3, and

we believe that in some sense Population 2 is the “average” of the other two. (For our

problem, the three populations can be thought as the records for 1880, 1890, and 1900

respectively.) Attached to each unit in the populations there is a pair of variables, say, X

and Z. We suppose that in the three populations X and Z are related, but we make no model

assumptions about this relationship. We do assume however that the mean of Z is known

for the second population, that we have independent random samples from the first and

third populations, and that for each unit in the samples the values of both X and Z are

observed. A simple version of our problem is to use this limited information about the

second population and the samples from the other two populations to construct a synthetic

sample that is formed by taking elements from the other two samples and that will behave

like an actual sample from the second population.

More formally, for i ¼ 1 and 3 let zi ¼ (zi,1, : : : ,zi,n) be the observed values of Z in the

random sample from population i where n ¼ 2m. These will be considered fixed in what

follows. If s1 ¼ (i1, : : : ,im) and s3 ¼ ( j1, : : : ,jm) where 1 # i1 , i2 , · · · , im # n and
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1 # j1 , j2 , · · · , jm # n we denote the two possible subsamples of size m by zs1
and zs3

and denote the synthetic sample of size n formed by their union as

zs1;s3
¼ ðzs1

; zs3
Þ ¼ ðz1;i1 ; : : : ; z1;im ; z3; j1 ; : : : ; z3; jm Þ ¼ ðzs1;s3;1; : : : ; zs1;s3;nÞ

Finally, let m2 be the known mean of Z for the second population.

We need a function to measure how good the synthetic sample based on s1 and s3

actually is. For example, suppose that the sample mean of zs1,s3
is equal to m2; then we

consider this to be an optimal solution for our problem. Although in theory there can be

more than one such optimal solution, in practice there will almost never be even one

synthetic sample that is optimal in this sense.

Let p ¼ ( p1, : : : ,pn) be a probability vector belonging to G, the n 2 1 dimensional

simplex, and let

Gm2
ðzs1;s3

Þ ¼ p : p [ G and
Xn

i¼1

pizs1;s3;i ¼ m2

( )

This is the set of all probability vectors on zs1
,s3

whose mean is equal to m2.

Let

hð pÞ ¼
Xn

i¼1

ð pi 2 1=nÞ2 and ð1Þ

ps1;s3
¼ arg min {hð pÞ : p [ Gm2

ðzs1;s3
Þ} ð2Þ

Then h( ps1,s3
) is our measure of how good zs1,s3

is as a synthetic sample for the second

population. Given two possible synthetic samples, we will prefer the one that yields the

smaller value of this function. So an optimal solution for our problem is any choice of s1

and s3 that gives the minimum value of h( ps1,s3
) over all possible synthetic samples. Our

approach involves two steps. First, for a given s1 and s3, we need to find ps1,s3
. The second

step involves searching for an s1 and s3 that minimize h( ps1,s3
).

Now for fixed s1 and s3, finding the value h( ps1,s3
) is just a standard quadratic

programming problem and many software packages will have a function that will find a

solution. That said, we do not know how to find explicitly the choices of s*
1 and s*

3, which

minimize h( ps1,s3
) over all possible synthetic samples. Instead we will conduct a random

search over this space to find an approximate solution for our problem. There are
�

2m
m

�2

possible choices for s1 and s3, so one possibility would be to just randomly select a large

number of choices for s1 and s3 and use the one that gives the best answer. But as m

increases, the space we are searching over can become quite large and there are better

search algorithms than random sampling. In the next section, we will explain our adaptive

random search algorithm that seems to give sensible answers to our problem.

Finally, we note that we can include constraints on more than one variable.

In particular, we could have more than one constraint involving the same variable. For

example, if the mean and variance of Z were known, we could add a second constraint

using its second moment.
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3. The Algorithm

As we noted in the previous section, we cannot find explicitly s*
1 and s*

3, a solution for our

desired problem. On the other hand, even though an optimal solution must exist, there will

usually be many other solutions that are almost as good. Our goal is not to find an optimal

solution but to find just one of the possibly many synthetic samples that are nearly optimal.

To do this we will carry out a random search in the space of all possible synthetic

samples. As we just noted above, one possibility would be to select at random a large

number of values for (s1,s3) and keep the one which gives the smallest value of h( ps1,s3
).

This is not very efficient, however, and better methods are available. One approach is to

pick a starting point at random and then select at random a second point that is close to it. If

the value of the function h( ps1,s3
) is smaller than its value at the first point, then we should

move to this new point. If it is not, then we can pick another point at random from the

neighborhood of the first point and repeat the process. If our function has a global

minimum and no local minimums, we will eventually arrive in the neighborhood of the

minimum. If there are local minimums, however, then we could get stuck at one of those

points and never reach the neighborhood of the global minimum. A way to avoid this is to

sometimes allow a move to a point with a larger h( ps1,s3
) value with positive probability.

This probability should depend on both the relative sizes of the two values of the h( ps1,s3
)s

and the point we are at in the search process.

More formally, suppose we are in step l of our search, where ðsl
1; s

l
3Þ is our current state

and we are considering moving to a new state or point in the space of synthetic samples,

say ðslþ1
1 ; slþ1

3 Þ. The first thing to note is that in the long run, rather than picking the new

point at random, it is more efficient to pick one that is close by the current state. In our

case, we will pick either sl
1 or sl

3 at random and then pick one of its entries at random and

replace it by a new member, selected at random, from the appropriate full sample. Once we

have determined ðslþ1
1 ; slþ1

3 Þ, we can check if

hð pslþ1
1
;slþ1

3
Þ , hð psl

1
;sl

3
Þ ð3Þ

If this is the case then we should move to the new state. If the converse is true, then

sometimes we will still want to move to the new state. This will allow us to escape from a

point in the space which is a local minimum. For example, if the above equation is false

then at step l one could move to the new synthetic sample with probability u where

u ¼
hð psl

1
;sl

3
Þ

hð pslþ1
1
;slþ1

3
Þ

t

aþ l
ð4Þ

where 0 , t # a are specified constants. Note that this makes it less likely that we will

move to a worse synthetic sample after lots of steps than earlier in the process. This makes

sense, since we are more likely to be close to the optimal solution after many steps than

when we were near the beginning of the process. We continue this process for a fixed,

large number of steps and then stop. It is important to note that the “best” synthetic sample

in the entire sequence need not be the state we were in when we stopped. It could have

occurred much earlier and we just moved away from it. In fact, this is what usually

happens in our problem.
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The form of the function for u in Equation 4 is just one of many that can be used in

practice but it seemed to work well in our problem. This algorithm is just a special case of

what is known as an adaptive random search. These methods have been used in a variety of

problems for more than 50 years.

4. Some Simulation Examples

We conducted some simulation studies to see how our approach could work in practice.

4.1. First Example

We began by constructing three similar populations where we expect our approach to work

well. Attached to each unit there are the values of two continuous variables and of two

binary variables. We will denote these variables by U, V, X, and Y. The variable U will be a

random sample from a gamma distribution with shape parameter g and scale parameter

one. The variable V will be a random sample from a gamma distribution with shape

parameter l and scale parameter one. The variable Y will be a random sample from a

Bernoulli distribution where u is the probability of observing a one. These variables will be

independent. The final variable, X, will be constructed using logistic regression with the

variable V. For a unit for which V ¼ v let p(v) be the probability that its X variable has the

value one. Then for our model

logð pðvÞ=ð1 2 pðvÞÞÞ ¼ bv

Using this model we generated three populations, each with 4,000 units. The parameter

values for the three populations are given in Table 1. Note that the parameter values for the

second population are the average of the other two in all cases. In addition, for each

variable their distributions across the three populations are quite similar. In the second

population the correlation between V and X was 0.18.

The first four rows of Table 2 give the results of 1,200 random samples, each of size 40,

taken from the second population, where the population mean of each variable was

estimated. For each variable the table gives the average value of the sample mean, its

average absolute error, the average lower bound and average length of the usual 95%

confidence interval and its frequency of coverage. The next four rows give the results

when synthetic samples were constructed assuming that the true mean of V in the second

population was known. These synthetic samples were also of size 40 and used 20

observations each from samples of size 40 taken from the other two populations. Note that

the two results are very similar except that the confidence intervals for the synthetic

Table 1. Parameter values used to generate the three populations with four

variables for the first example in Section 4

Population g l b u

1 6 7 0.10 0.4
2 5 8 0.15 0.5
3 4 9 0.20 0.6
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samples always contain the true mean of V. This must be the case because of the way they

were formed. The constraint guarantees this.

One might wonder how the synthetic samples do when estimating population quantiles.

In Table 3 the true values of the five quantiles of V in the second population are given. The

next two rows give the average values of their standard estimates along with their average

absolute error for 1,200 samples of size 40. The next two sets of two rows give the same

information for synthetic samples formed by constraining on the true means of U and X in

Table 2. Comparing the results from 1,200 samples of size 40 from Population 2 to 1,200 synthetic samples

formed by combining samples from Populations 1 and 3 constraining on knowing the population mean of V for the

first example in Section 4

Mean absErr lowBd Length Coverage Rate

Variable When sampling from the actual population

U 5.02 0.29 4.34 1.37 0.932
V 7.99 0.35 7.12 1.74 0.950
X 0.75 0.056 0.62 0.27 0.943
Y 0.51 0.063 0.35 0.31 0.947

Using synthetic samples

U 5.08 0.26 4.38 1.40 0.962
V 7.98 0.0 7.05 1.86 1
X 0.74 0.052 0.60 0.27 0.968
Y 0.49 0.061 0.34 0.31 0.955

Table 3. Comparing the results for estimating five quantiles of variable V for the first example in Section 4 when

sampling from the population and when using three different constraining variables to construct synthetic

samples. The results are based on 1,200 samples of size 40

0.10 quantile 0.25 quantile 0.50 quantile 0.75 quantile 0.90 quantile

True 4.61 5.92 7.65 9.64 11.77

When sampling from the actual population

Mean of est 4.78 6.02 7.68 9.62 11.58
absErr 0.44 0.41 0.41 0.52 0.84

Using synthetic samples formed by constraining on the mean of U

Mean of est 4.66 5.97 7.66 9.70 11.81
absErr 0.44 0.41 0.43 0.51 0.81

Using synthetic samples formed by constraining on the mean of X

Mean of est 4.62 5.91 7.64 9.73 11.84
absErr 0.42 0.37 0.43 0.54 0.79

Using synthetic samples formed by constraining on the mean of V

Mean of est 4.58 5.87 7.61 9.67 11.79
absErr 0.37 0.30 0.28 0.33 0.60
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the second population. We see that these results are very similar to those found using

actual samples from the second population. Finally, the last two rows of the table give the

results for synthetic samples formed by constraining on the mean of V from the second

population. We see that these results are significantly better than using actual samples

from the second population. What is the explanation for this perhaps surprising result?

This happens because knowing the mean of V in the second population is a very

important piece of information. This fact, along with samples from two very similar

populations, allows us to construct synthetic samples that on average are better than

random samples drawn from the actual population. This is not a common situation, but we

believe that something like this could hold for the 1890 census. Next we will consider an

example where our approach does not work as well.

4.2. Second Example

Perhaps it is not so surprising that we can find good synthetic samples when the three

populations are very similar. Here we will consider another example where they are less

similar and in particular where a mean of the middle population is not approximately

equal to the average of the means of the other two. In this example we assume that each

population has two continuous variables, say U and V, which are independent and of

course independent across the three populations. Suppose the mean of U in the ith

population is mu,i while the mean in the ith population of V is mv,i. In our simulation the

values of the mu,is were equal to 8, 10, and 12, for i ¼ 1, 2, and 3, while the corresponding

values of the mv,is were 8, 9, and 12 respectively. All the distributions were normal with a

common standard deviation equal to two. Each population contained 4,000 units and we

constructed synthetic samples of size 60 for the second population using random

samples of size 80 from the other two. Each synthetic sample contained 30 units from

each of the other samples. We considered estimating the mean and the population

quantiles of the variable U in the second population using synthetic samples based on

various constraints.

The results for estimating the means are in Table 4. When constraining on the E(V) our

point estimate for E(U) behaves just like the one based on samples from the actual

population because mu,2 ¼ (mu,1 þ mu,3)/2. On the other hand, our point estimate for E(V)

when constraining on E(U) performs poorly because mv,2 is not the average of the other

two means for V.

In addition, note that when constraining on E(V) the confidence intervals for E(U) are

too long. In other words, even though our synthetic samples are centered properly they are

too spread out. This happens despite the fact that the populations all have the same

variance. So even though the average of the means for U for the first and third populations

is equal to the mean of U for the second population, they are just too far apart to get good

synthetic samples using just this one constraint. We can overcome this problem if we have

more information about U for the second population. Suppose we know both its mean and

variance; then we can constrain on both the first and second moments of U when selecting

a synthetic sample. We did this in another simulation where we constrained on both E(U)

and E(U 2) and we see from Table 4 that the length of the intervals, on average, are nearly

the same as those based on random samples from U.
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To explore this further, we next considered the results for estimating the quantiles of U

for the second population. We see from Table 5 that when constraining on either E(U) or

E(V) our synthetic samples tend to underestimate the 0.10 quantile and overestimate the

0.90 quantile. That is, our synthetic samples are too spread out. However, when our

constraints include both E(U) and E(U 2), our estimates based on synthetic samples

perform better than random samples from the actual population. Although we have not

included the simulation results, the story is the same for estimating the quantiles of V.

4.3. Third Example

We produced another example where each population consists of samples from three

independent normal random variables, say U, V, and W. In all cases their standard

deviations were 1.5. The means of U across the three populations were 8, 10, and 12

respectively, while for V they were 8, 9, and 12 and for W 8, 11, and 12. Each population

contained 4,000 units. Then we took 1,000 samples of size 120 from the first and third

populations to construct a synthetic sample for the middle population of size 40 by using

20 units each from the two samples. We constructed synthetic samples where for each

variable their first two sample moments agreed with the first two population moments for

the middle population. For each sample we estimated the 0.10, 0.25, 0.50, 0.75, and 0.90

population quantiles by their corresponding sample quantiles. Both the real samples and

synthetic samples were approximately unbiased. Averaged over all samples and all

Table 4. Comparing the results for estimating E(U) and E(V) for the second example in Section 4 when

sampling from the population and when constraining on moments of U and V. The results are based on 1,000

samples of size 60

Mean absErr lowBd Length Coverage Rate

Variable When sampling from the actual population

U 9.97 0.20 9.47 1.00 0.949
V 9.01 0.20 8.52 0.99 0.950

When constraining on E(V)

U 10.02 0.19 9.31 1.42 0.998
V 9.01 0.0 8.29 1.45 1

When constraining on E(U)

U 9.98 0.0 9.27 1.42 1
V 10.07 1.06 9.34 1.45 0.11

When constraining on E(U) and E(U 2)

U 9.98 0 9.48 1.00 1
V 10.11 1.10 9.35 1.51 0.068

When constraining on E(U), E(U 2), E(V), and E(V 2)

U 9.99 0.01 9.49 1.01 1
V 9.03 0.02 8.52 1.01 1
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quantiles, the average absolute error for the real samples was 0.28 and for the synthetic

samples 0.17. We repeated this example but now using a standard deviation of 2 instead of

1.5. In this case, averaged over all samples and all quantiles the average absolute error for

the real samples was 0.28 and for the synthetic samples it was 0.20. So in both cases

the synthetic samples seem to give a good picture of the unsampled populations.

Once again, this shows that one can construct good synthetic samples from samples of

similar populations for a population for which some true population parameters are

known. How good the synthetic samples will actually be depends on how similar the

populations are and how much is known about the middle population.

4.4. Fourth Example

So far we have seen that our method seems to work well when the three populations are

quite similar and we are estimating means and quantiles. It is natural to wonder how our

method will work if we are interested in estimating more complicated population

parameters, say a regression coefficient.

Consider three populations, each of which consists of two variables X and Y. Let mi

denote the mean of X in the ith population. In population i, X is normally distributed with

mean mi and standard deviation 5. The distribution of Y given X ¼ x is normal with mean

50 þ bix and standard deviation 15. All three populations will contain 4,000 units.

Table 5. Comparing the results for estimating five quantiles of variable U for the second example in Section 4

when sampling from the population and when constraining on moments of U and V. The results are based on

1,000 samples of size 60

0.10 quantile 0.25 quantile 0.50 quantile 0.75 quantile 0.90 quantile

True 7.43 8.66 10.00 11.31 12.53

When sampling from the actual population

Mean of est 7.49 8.68 10.00 11.28 12.45
absErr 0.35 0.28 0.24 0.29 0.35

When constraining on E(V)

Mean of est 6.36 7.83 10.05 12.08 13.61
absErr 1.07 0.85 0.24 0.77 1.08

When constraining on E(U)

Mean of est 6.40 7.87 9.98 12.02 13.61
absErr 1.04 0.79 0.23 0.71 1.08

When constraining on E(U) and E(U 2)

Mean of est 7.49 8.68 10.00 11.28 12.33
absErr 0.23 0.20 0.14 0.11 0.28

When constraining on E(U), E(U 2), E(V), and E(V 2)

Mean of est 7.55 8.36 9.85 11.47 12.70
absErr 0.18 0.31 0.17 0.17 0.22
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In the first example we let mi ¼ 200, 205, and 210 for i ¼ 1, 2, and 3 and set bi to be

equal to 2 for all three populations. For the middle population the true value of the

regression parameter was 1.99 and the correlation between X and Y was 0.58. We then took

500 random samples of size 120 from the first and third populations and for each pair of

random samples found a synthetic sample of size 60 by selecting 30 units each from

the two random samples where we assumed the population means of X and Y were known

for the middle population. For these 500 synthetic samples, we found that the average

value of their estimates for b2 was 1.95 with average absolute error of 0.23. The average

length of their 95% confidence interval was 0.53 with a frequency of containing the true

value equal to 0.928. The corresponding values for 500 random samples from the middle

population were 2.01, 0.31, 0.78, and 0.930. So in this example the synthetic samples

perform very well.

In a second example we set the three mis equal to 200 but let the three bis be equal to

2.00, 2.15, and 2.30 for the three populations. For this case with 500 synthetic samples

formed as in the previous paragraph, we found that the average value of our estimates was

2.21 with an average absolute error of 0.70. The average length of the 95% confidence

intervals was 1.71 with a frequency of containing the true value equal to 0.924. The

corresponding values for 500 random samples from the middle population were 2.18, 0.33,

0.778, and 0.932. So here our synthetic samples are not doing so well. We believe this

happens because in this second example the three populations are not quite as similar as

those in the previous example. We find it interesting, however, that the confidence

intervals based on the synthetic samples have approximately the correct coverage

probability in both examples. In any case, it is clear from all our simulations that how well

synthetic samples work depends not only on how similar the three populations are but also

on what population parameters are being estimated.

4.5. Behavior of the Algorithm

Recall that our goal is not to find an optimal synthetic sample but just one among the large

group of those who are nearly optimal. For the example in Subsection 4.3 where the

standard deviation was 2, we ran our adaptive random search algorithm for 20,000 steps

for each sample. We kept track of how many times it moved to a new state, the time it

moved to the best state, our solution, and the time of the last move. For this example, on

average, our chain moved to 96 new states, the last move occurred at step number 8,500

and our solution occurred at step number 8,055. The average of the minimum of the pis in

our solution was 0.024. Note that if our solution satisfied the constraints exactly, all the pis

would equal 1/40 ¼ 0.025. For the case where the standard deviation was 1.5, we ran our

algorithm for 40,000 steps because there is more separation among the three populations.

For this case, on average, our chain visited 174 states with the last move happening at step

19,537 and our solution occurring at step 15,533. The average of the minimum of the pis in

our solutions was 0.023.

Readers might have been questioning the need for using an adaptive random search

algorithm and whether using random sampling for the searching could work just as well.

For the above problem we took 100 random samples and for each sample we selected

20,000 possible synthetic samples at random. For each sample we found the value of the
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vector ps1,s3
, which is the solution to the problem given in Equation 2. We then found the

synthetic sample, which minimized the function h in Equation 1 over all the random

samples. Averaged over these 100 samples the average minimum value of p was 0.0076.

We repeated this but now included 100,000 random samples in our search. In this case, the

average of the minimum values of p was 0.0084. Finally, we used 400,000 random

samples for our search and found that this average was 0.0102. So even taking 20 times the

number of synthetic samples that we do using our method, random sampling cannot find

any synthetic samples that are as nearly balanced as ours.

Clearly our solutions are not optimal, but they are good enough for the synthetic

samples to be good representations of real samples because we are constructing synthetic

samples from samples of two populations that are similar to the population of interest.

5. A Simulation Using Census Data

To look at the potential performance of the proposed method for the missing 1890

population problem, we tested the proposed method on some actual census data from

nearby decades. We used data supplied from the MPC for one geographical area out of a

total of 56 possible geographical areas. We had approximately 2.3% samples from 1900,

1910, and 1920, which we treated as the entire populations. Associated with each

individual was a vector of possible values indicating gender, age, marital status and race.

We then selected 100 random samples of size about 100 from the 1900, 1910, and 1920

populations. We assumed that the sample from 1910 is missing and only the population

means of five constrained variables were known. The five constrained variables were

“married males”, “single males”, “married females”, “single females”, and “Negroes”. We

used the population means of these five variables from our 1910 population as our mean

constraints and samples from the 1900 and 1920 “populations” to construct synthetic

samples which contained about 50 individuals each from 1900 and 1920.

Because individuals are members of households, when a person was selected to be in

our sample we included everyone in their household as well. Our samples always included

at least 100 individuals. Our synthetic samples also always included at least 100

individuals. At each step of the search it was possible that we would need to remove more

than one household to reduce the size of the current synthetic sample to be less than 100.

By the same token, we might also need to add more than one household to ensure the

number of individuals in the next synthetic sample would be at least 100. So a possible

synthetic sample need not contain exactly 50 observations from 1900 and 1920

respectively.

To see what happens in this case, we constructed 100 synthetic samples using samples

from 1900 and 1920 and the true 1910 population means as constraints. The results are

given in Table 6.

To gain a better understanding of how the synthetic samples work we did another

simulation where instead of constraining on the population means of the five variables we

used sample information. That is, each time we took a sample from the 1910 population as

well and used the sample means of our five constraining variables as the constraints

when constructing a synthetic sample for 1910 from the samples from 1900 and 1920.
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Table 7 contains the results and is based on 100 samples. For comparison, we also

calculated the estimates using the actual 100 samples from the 1910 population.

Note that the point estimates and the length of the confidence intervals based on the

synthetic samples are very similar in the two tables. The intervals in Table 6 have better

coverage rates, however. The better results occur because we are using better information,

true population means, as our constraints.

For our purposes the more important fact is that the results for the synthetic samples are

very similar to the results for the real samples in Table 6. This happens because the

difference between the 1910 means and the average of the 1900 and 1920 means is quite

small for most variables we considered. Because of the small size of our samples, it is not

surprising that, especially for the rarer categories, the coverage rates of the confidence

intervals can fall short of 95%. Moreover, we would expect the synthetic sample to

perform poorly for a category whose 1910 mean is different from the average of its means

from 1900 and 1920. For example, the coverage rate of the confidence intervals for

“mulattoes” from the true 1910 sample is 0.53, which is much higher than 0.31, the

coverage rate for the synthetic samples from 1900 and 1920. We believe that this stems

from fact that the population proportion of “mulattoes” in 1910 is about 0.068, which is

much higher than 0.028 which is the average of 1900 and 1920 population proportions.

Note also that the margin of errors for the actual and synthetic samples are very similar.

Because of the similarity of the three populations and the fact that the majority of the

variables are binary, we see that just constraining on first moments is enough to obtain

intervals with about the right length.

In our simulations, using the adaptive random search method based on Equation 4, we

stopped the iterations after 5,000 steps. When trying to find one particularly good synthetic

sample, there is no reason to stop after a particular number of steps. We did it here to make

the running of a set of simulations easier. Since for the 1890 problem we are only

interested in creating one sample, running the algorithm a long time is not a problem.

However, it could take some experimentation to come up with a good choice for the values

of t and a in Equation 4, as the number of variables used as constraints varies.

Table 6. The results for the synthetic samples for the 1910 population when the true population means are used

as constraints

Variable Mean absErr SD Margin of error Coverage rate

Married males 0.178 0.006 0.384 0.074 1.000
Divorced males 0.002 0.002 0.016 0.003 0.160
Widowed males 0.013 0.009 0.097 0.019 0.780
Single males 0.308 0.006 0.464 0.089 1.000
Negroes 0.352 0.004 0.480 0.092 1.000
Mulattoes 0.035 0.048 0.133 0.025 0.370
Married females 0.181 0.006 0.387 0.074 1.000
Divorced females 0.002 0.004 0.018 0.004 0.180
Widowed females 0.037 0.009 0.187 0.036 0.950
Single females 0.280 0.007 0.451 0.087 1.000
Foreign born 0.007 0.010 0.047 0.009 0.340
Age 23.093 1.451 18.628 3.571 0.950
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Another approach to the 1890 census problem could be to try to use the information

from the 1880 and 1900 censuses to create a model for the 1890 population that would then

be used to generate a sensible one-percent census for 1890. Although such an approach

could work, building a model for the entire US population would be a big problem. We

believe, however, that the approach used here is simpler, and it effectively uses the

information available in the 1880 and 1900 censuses in a simple and straightforward

manner that bypasses the difficult problem of trying to construct a sensible model.

On the other hand, when constructing a one-percent sample for 1890 for a particular

geographic area, historical information should be used when selecting the variables to

constrain upon. These variables could depend on which area of the country you are

considering. For rarer groups, you could make sure that each synthetic sample contains

about the right proportion of individuals of that type. For example, if a family with a

foreign-born individual is removed then it must be replaced by another family containing a

foreign-born individual. If a proposed synthetic sample does not have approximately the

correct mean for some variable not included in the constraining set, then one can always

add this variable to the constraint set and find a new synthetic sample. Since a synthetic

sample for the whole country will be made up of a collection of synthetic samples for a

Table 7. A comparison of actual and synthetic samples for the census data when constraints based on sample

information is used

Sample Variable Mean absErr SD
Margin
of error

Coverage
rate

1910 Married males 0.156 0.030 0.363 0.070 0.920
1910 Divorced males 0.001 0.002 0.008 0.002 0.080
1910 Widowed males 0.010 0.010 0.078 0.015 0.640
1910 Single males 0.333 0.042 0.471 0.091 0.950
1910 Negroes 0.325 0.101 0.450 0.087 0.510
1910 Mulattoes 0.077 0.052 0.224 0.043 0.530
1910 Married females 0.157 0.030 0.364 0.070 0.910
1910 Divorced females 0.003 0.004 0.029 0.006 0.280
1910 Widowed females 0.026 0.016 0.149 0.029 0.740
1910 Single females 0.314 0.050 0.463 0.089 0.870
1910 Foreign born 0.010 0.012 0.057 0.011 0.350
1910 Age 21.352 2.643 17.416 3.364 0.650

synthetic Married males 0.157 0.028 0.364 0.070 0.940
synthetic Divorced males 0.001 0.002 0.008 0.002 0.080
synthetic Widowed males 0.009 0.009 0.074 0.014 0.620
synthetic Single males 0.331 0.037 0.471 0.090 0.980
synthetic Negroes 0.326 0.099 0.452 0.087 0.530
synthetic Mulattoes 0.026 0.050 0.109 0.021 0.310
synthetic Married females 0.159 0.027 0.366 0.070 0.960
synthetic Divorced females 0.001 0.003 0.014 0.003 0.140
synthetic Widowed females 0.027 0.016 0.151 0.029 0.760
synthetic Single females 0.315 0.048 0.464 0.089 0.900
synthetic Foreign born 0.010 0.011 0.063 0.012 0.410
synthetic Age 21.614 2.170 17.418 3.336 0.810
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large number of many small geographic areas, the approach given here should be able to

construct a good synthetic sample for the 1890 population.

6. Final Remarks

Here we have considered the problem of constructing a synthetic sample from a population

for which we have limited information. We proposed a novel approach that assumes the

existence of two known populations which taken together are a good approximation to the

missing population. We have seen in some cases that a synthetic sample can be constructed

and used as a substitute for a missing sample and inferences based on it are as good as

those based on the actual sample. In particular, we saw that to get synthetic samples that do

a good job of estimating the quantiles of a variable one can constrain on the first two

moments of the variable. To obtain the synthetic sample, we used an adaptive random

search algorithm to solve an optimization problem which incorporates the available

limited information about the population of interest. Simulations demonstrated the good

performance of our approach for some small sample sizes.

As we have pointed out, creating a synthetic one-percent sample for the 1890 census is

an extreme missing-data problem, and as far as we know this problem has never been

considered in the literature. Although this is perhaps stating the obvious, we were not

interested in combining or merging two data sets, a problem which has often been

discussed in the literature (Kadane 2001). On the other hand, synthetic data has been

considered in several contexts. It has been recommended to replace missing or censored

observations with imputed or synthetic observations. In some such cases auxiliary

information is used to model the missing observations. In the survey-sampling context,

after a sample has been selected Hidiroglou and Laniel (2001) considered constructing

synthetic variables at the estimation stage. In situations where confidentiality is an issue,

Fienberg et al. (1998) considered constructing synthetic samples as part of a disclosure-

avoidance methodology, but they were modifying existing samples rather than

constructing new ones. Reiter (2002), Reiter (2005), and Drechsler and Reiter (2012)

recommended constructing many synthetic samples and then using multiple imputation

to make inferences. It was argued that valid inferences could still be made using such

synthetic data. Multiple imputation is not an option for the MPC since the goal is to create

a one-percent sample for the 1890 census. In a situation closer to our problem, Kohnen and

Reiter (2009) considered combining information from two populations, but again they use

multiple imputation to construct many synthetic samples. Meeden (2000) gives an

approach to the standard missing-data problem involving constraints that is closer in spirit

to what we are doing here. There, after one set of values are imputed for the missing

observations, the observed and imputed values are then adjusted so that confidence intervals

based on this adjusted sample will have the correct frequentist coverage probability under

repeated sampling.

Another possible application of our methods is to create a synthetic sample for a

population using samples from similar populations and constraints based on partial

information from a sample taken from the population of interest. In one case here, we saw

that such synthetic samples worked well. We have carried out other simulation studies, not

included here, and observed that if the three populations are not too different such
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synthetic samples behave very much like actual samples from the population. Although

real data are always preferred, it seems clear to us that in some cases inferences based on

synthetic data can perform almost as well as inferences based on actual data.
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